Articles

Correction of the Internal Absorption Effect in Fluorescence Emission and Excitation Spectra from Absorbing and Highly Scattering Media: Theory and Experiment

[+] Author Affiliations
N. N. Zhadin, R. R. Alfano

New York State Center for Advanced Technology for Ultrafast Photonic Materials and Applications, Mediphotonics Laboratory, Institute for Ultrafast Spectroscopy and Lasers; The City College of The City University of New York, Department of Physics, New York, New York?10031

J. Biomed. Opt. 3(2), 171-186 (Apr 01, 1998). doi:10.1117/1.429874
History: Received Nov. 18, 1996; Revised Dec. 22, 1997; Accepted Jan. 10, 1997
Text Size: A A A

Abstract

Fluorescence spectra measured from biological samples, such as tissues or cell suspensions, are usually distorted due to the light absorption by intrinsic chromophores. These distortions are aggravated by strong scattering of light inside the samples. A new method is described for a fast correction of these spectral distortions, using only steady-state spectroscopic measurements. The method is based on the formulas derived from a simplified photon diffusion model, in the isotropic one-dimensional approximation applied to a semi-infinite, highly scattering, and moderately absorbing medium with a refractive-index-matched boundary. The formulas describe the spectral distortions of the fluorescence emission and excitation spectra, together with the diffuse reflectance spectrum, as the functions of one spectral characteristic of the medium, the darkness, which is the ratio of absorption coefficient and reduced scattering coefficient. The algorithm does not involve any iterative procedures, and offers a direct, simple, and fast method for real-time spectral correction. The true fluorescence emission or excitation spectrum is directly calculated from a pair of experimental spectra: the fluorescence emission or excitation spectrum and the diffuse reflectance spectrum, measured from the same position on a sample. The correction produces the profile of the true fluorescence spectrum, the same as the one measured from the corresponding sample with an infinitely low absorption and no scattering. The restoration of the spectral profiles of true fluorescence emission and excitation spectra was tested experimentally, using highly scattering phantoms with a fluorescent dye and a deliberately added nonfluorescent dye producing strong inner-filter distortions. © 1998 Society of Photo-Optical Instrumentation Engineers.

© 1998 Society of Photo-Optical Instrumentation Engineers

Citation

N. N. Zhadin and R. R. Alfano
"Correction of the Internal Absorption Effect in Fluorescence Emission and Excitation Spectra from Absorbing and Highly Scattering Media: Theory and Experiment", J. Biomed. Opt. 3(2), 171-186 (Apr 01, 1998). ; http://dx.doi.org/10.1117/1.429874


Figures

Tables

References

Access This Article
Sign in or Create a personal account to Buy this article ($20 for members, $25 for non-members).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Related Book Chapters

Topic Collections

PubMed Articles
Advertisement
  • Don't have an account?
  • Subscribe to the SPIE Digital Library
  • Create a FREE account to sign up for Digital Library content alerts and gain access to institutional subscriptions remotely.
Access This Article
Sign in or Create a personal account to Buy this article ($20 for members, $25 for non-members).
Access This Proceeding
Sign in or Create a personal account to Buy this article ($15 for members, $18 for non-members).
Access This Chapter

Access to SPIE eBooks is limited to subscribing institutions and is not available as part of a personal subscription. Print or electronic versions of individual SPIE books may be purchased via SPIE.org.