Review Papers

Microfluidic sensing: state of the art fabrication and detection techniques

[+] Author Affiliations
Jing Wu

Zhejiang University, State Key Lab of Modern Optical Instrumentation, Department of Optical Engineering, Institute of Advanced Nanophotonics, Zheda Road 38, Xihu District, Hangzhou, Zhejiang 310027, China

Min Gu

Swinburne University of Technology, Faculty of Engineering and Industrial Sciences, Centre for Micro-Photonics, Hawthorn, 3122, Victoria, Australia

J. Biomed. Opt. 16(8), 080901 (August 04, 2011). doi:10.1117/1.3607430
History: Received March 05, 2011; Revised May 30, 2011; Accepted June 14, 2011; Published August 04, 2011; Online August 04, 2011
Text Size: A A A

Open Access Open Access

* Address all correspondence to: Jing Wu, Zhejiang University, Department of Optical Engineering, Zheda Road 38, Xihu District, Hangzhou, Zhejiang 310027 China; Tel: 8657187951628; E-mail: jingcindywu@126.com.

Here we introduce the existing fabrication techniques, detection methods, and related techniques for microfluidic sensing, with an emphasis on the detection techniques. A general survey and comparison of the fabrication techniques were given, including prototyping (hot embossing, inject molding, and soft lithography) and direct fabrication (laser micromachining, photolithography, lithography, and x-ray lithography) techniques. This is followed by an in-depth look at detection techniques: optical, electrochemical, mass spectrometry, as well as nuclear magnetic resonance spectroscopy-based sensing approaches and related techniques. In the end, we highlight several of the most important issues for future work on microfluidic sensing. This article aims at providing a tutorial review with both introductory materials and inspiring information on microfluidic fabrication and sensing for nonspecialists.

Figures in this Article

With microfluidic/nanofluidic technology it is possible to operate on microscale or nanoscale liquids for controling or sensing purposes. With the microfabrication techniques initially rooted from the microelectromechanical systems (MEMS) technology, this field will gradually develop into a discipline itself.13 The fundamental techniques for microfluidic or optofluidic device fabrication originate from the semiconductor industry and are based on silicon or glass materials. With the development of polymer-based fabrication techniques, polymer-based microfluidic devices become more prevalent with the advantages of being economic and easy to fabricate, and having material versatility and good system compatibility.

The early designs of the microfluidic controling systems were mostly monolithic miniaturized components such as microvalves, micropumps, and micromixers.46 With further development, whole microfluidic systems were realized, which were made up of multiple elements to achieve certain functions. These parts comprise either of the monolithic microfluidic components7 or of the microfluidic components with the external components/devices.8 Designs of those microfluidic devices, such as geometries and scales, have been modified and improved according to the applications for better performance.916 Further development requires more components to be coupled with the microfluidic system for increased system functionality. Optical components seem ideal, with the benefits of noncontact, fast response, compactness, high sensitivity, multiplex operation possibility, and so on. Self-contained microfluidic devices have generated impact in the point-of-care and global health.1718 However, in order to achieve real self-contained miniature devices, it is ultimately required to have highly integrated systems. This means lowering or even eradicating the dependence on macro, bulky, external devices to perform control, detection, or analysis functions, by the development and integration of the necessary functional microcomponents. Examples recently demonstrated are the implementation of lensless microscopes of sub-pixel resolving ability on microfluidic platforms for on-chip imaging or diagnosis.1213,19

The term optofluidics was coined in 2003 at the California Institute of Technology in Pasadena to describe systems that combine optics and microfluidics/nanofluidics (or to say, optical microfluidics).2021 The interaction between light and fluid provides possibilities of both versatile microsystems and a wide spectrum of applications.9,2226 In the past decade, there has been a growing interest and development of optical microfluidics (optofluidics) and an explosion of publications in the field. Actually, we can classify all microfluidic devices to either controlers or sensors. Here, we would like to emphasis on the microfluidic sensors. After the review of fabrication techniques in Sec. 2, we will have a brief introduction of the existing microfluidic detection methods and techniques in Secs. 34. This is followed by a review of optofluidic sensing techniques in Sec. 5.

In the early days, the fabrication of microfluidic devices mainly relied on techniques transferred from the conventional two-dimensional integrated circuit (IC) and silicon-based two- or three-dimensional MEMS processes. This includes photolithography, thin film metallization, and chemical etching. Later, glass based, glass-silicon, glass-polymer mixed microfluidic fabrication techniques, and devices started to garner more interest.6,2739 The glass materials were preferred partly for the biocompatibility toward the biomedical related applications4044 and the ideal surface characteristics where high temperature or strong solvents should appear4553 (e.g., on-chip capillary electrophoresis-based operations). However, lack of optical transparency at interested wavelengths (for silicon), micromachining difficulties, and comparably high expenses for both silicon and glass materials have hampered their wider applications in microfluidics. Tremendous effort has been made to find alternative materials that are more cost-effective and easier for micromachining. With the development of related fabrication techniques in recent years, the polymer/plastic-based microfluidic systems has garnered more interest than its conventional competitors.54 In spite of comparatively weak bonding and structure deformation during device packaging processes, polymer materials still seem attractive due to the facts that: they are more economic compared with silicon and glasses, easier to be fabricated in/on, avoidance of high-temperature annealing and stringent cleaning, more system integration friendly (e.g., interconnections), and there exists a wider range of materials to be chosen for characteristics that are required for each specific application, such as good optical transparency, biocompatibility, and chemical or mechanical properties. Another important reason for the interest from both academia and industry on polymer microfluidic devices is the possibility of disposable microfluidic chips toward biomedical and clinical applications. These devices usually require low cost of fabrication, high volume production, good reproducibility, and versatility in design for a wide spectrum of specific applications.

Current methods for fabrication of microfluidic devices include prototyping techniques (includes hot embossing,5556 injection molding,5758 and soft lithography59) and direct fabrication techniques such as laser photoablation or laser micromachining,60 photolithography/optical lithography61 and x-ray lithography62 (Figs. 12). Table 1 presents the advantages and disadvantages of those techniques. Note that “photolithography” in this table refers to conventional photolithography that is mostly employed in IC industry for micrometer scale patterning. In fact, during the past decade photolithography techniques have progressed to achieve smaller feature patterning ability and have been coupled to various plastic/polymer-based techniques to better suit lab-on-a-chip applications. To date, most of the current soft lithography processes still rely on modern photolithography techniques for master template/mask fabrication. Consequently, the low resolution ability of soft lithography can be gradually improved with the high quality masks by modern photolithography. Sub-100-nm fabrication resolution can also be achieved by composite layers of stamps.63 Other techniques were also used to obtain the soft lithography masters with nanometer scale features below 5 nm: such as to replicate those features from single-walled carbon nanotubes64 or from crystal fractures65 as soft lithography masters. For photolithography made masters for the soft lithography process, the recently reported resolution limit has been pushed to around 20 nm by Li et al. 66

Graphic Jump LocationF1 :

Illustrations of the typical fabrication procedures by the prototyping techniques (hot embossing, inject molding, and soft lithography).

Graphic Jump LocationF2 :

Illustrations of the typical fabrication procedures by the direct fabrication techniques: (a) laser micromachining, (b) photolithography/optical lithography, and (c) x-ray lithography. The “metal mask insertion” step in x-ray lithography is usually realized by electroplating.

Table Grahic Jump Location
Microfluidic fabrication techniques.

Integrated microfluidic devices involve the large-scale integration of various microfluidic components, such as microvalves, microchannels, micropumps, microfluidic mixers, and other elements to handle and control fluids at the microscale.67 They are frequently used for biological, chemical, and biomedical analysis. There has already been a considerable amount of insightful review articles on related topics.6772 Various detection methods exist in the field of chemical, biological diagnosis, or analysis on microfluidic platforms.

The detection methods in microfluidics can be classified into three major types: optical methods,9,7389 electrochemical methods,90102 and mass spectrometry methods.103113 Among these methods, optical and electrochemical methods are the most frequently utilized due to their selectivity and sensitivity. Other than the above major methods, approaches such as nuclear magnetic resonance (NMR) spectroscopy,114118 magneto-resistive,119 and acoustical120121 are also coupled to microfluidics for sensing application.

As demonstrated in Fig. 3, typical optical detection methods comprise the direct detection by monitoring the light properties including fluorescence,74,8183 absorbance,8486 and luminescence-based8789 methods, and the light property modulation detections such as surface plasmon resonance (SPR) detection.76,80,122 These methods usually involve techniques such as evanescent waves,10 SPR,76,80,122123 interferometry,75,124128 Raman spectrometry,77,129131 fiber optics,78 and optical waveguides.79,132 Photonic crystals, optical cavity structures, and several optical techniques have also been reported to be integrated with the microfluidic system for sensing purposes, using one- and two-dimensional surface PCs (guided mode resonance filters),133136, or three-dimensional photonic crystals,137138 optical cavities,139140 whispering gallery mode resonators,141147 and optical tweezers for cell related monitoring or fluidic rheological measurements148150 (Fig. 4).

Graphic Jump LocationF3 :

Typical optical methods. (a) Fluorescence (in this case, fluorescent resonance energy transfer/FRET), (b) absorbance, (c) luminescence, and (d) surface plasmon resonance-based optical detection methods. GFP: green fluorescent protein; YFP: yellow fluorescent protein; GS: glass substrate.

Graphic Jump LocationF4 :

(a) Result of a three-dimensional photonic crystal optofluidic sensor for refractive index detection. The fluid refractive index in the microchannel above the photonic crystal was detected by the bandgap position shift. Transmittance spectrum of the whole system that reveals a bandgap around 4.3 μm (left inset). An illustration of the sensor (right inset and see Ref. 138). (b) Demonstration of the shear stress mapping inside a microfluidic device by optical tweezers (top sketch). Theoretical calculated results by the pure fluidic model and the experimental measured results of the fluid velocity and shear stress along y direction in the microfluidic device (bottom and see Ref. 150).

Electrochemical measurements are based on electrical property modulations of the analyte species that undergo redox reactions, and are usually employed for the detection of the electroactive species. They can be assigned to three categories: amperometries,9094 potentiometries9597 and conductometry98102 measurements. The principles of these methods are demonstrated in Fig. 5. Amperometric detection is based on the fact that an applied voltammetric potential between a reference and a working electrode would cause the oxidation or reduction of the electroactive species in the vicinity, and an electrical current will be induced. Sensitive detection of the analyte(s) can be realized by the cyclic voltammogram(s) and current versus time curves of the electrode. In potentiometric detection, analyte detection is realized by monitoring the potential of an ion-selective electrode (usually a membrane) against a reference electrode. When selective ions pass through the membrane and a local equilibrium is established at the sensing interface, the resulting charge separation causes a potential between the working electrode and the reference electrode in relation to the species type and concentration. The principle of conductometric detection is that the conductivity of a zone is affected by the charged species in the zone. Different types of species would have their specific conductivity responses, which would also vary with different concentrations. It is the most commonly employed method in electrochemical measurements since it, in principle, can deal with all charged species of interest. The detection involves measuring the conductivity at a series of frequencies, both in conventional contacted conductivity detection101 and capacitively coupled contactless conductivity detection (C4D) methods such as potential gradient detection.102 Electrochemical detections are often used together with (capillary) electrophoresis operations (such as capillary electrophoresis separation) or in electrophoresis systems. Considering this, in this review the “electrochemical methods” actually include electrophoresis related work.92,99,101102

Graphic Jump LocationF5 :

Three types of electrochemical detection methods for microfluidics: (a) amperometric, (b) potentiometric, and (c) conductometic (capacitively coupled conductivity detector) detection.

Mass spectrometry103 (MS) is able to perform highly selective detection by monitoring the trajectory of ions in electric and/or magnetic fields, which elucidate the mass and charge of the ions. Its most important application is in proteomic studies for protein separation and further identification from the fragmentation pattern of proteins. Identification after separation can be carried out in two ways. One is direct detection by combing through the database using the individual types of obtained protein(s). The more sophisticated way is carrying out tandem MS (Ref. 151) to get protein fragments/ions for sequence tagging. To date, several MS configurations have already been developed to be integrated with microfluidic devices for this application, for instance, electrospray ionization (ESI)-MS (Refs. 104106) and matrix-assisted laser desorption ionization (MALDI)-MS.107109 In 2006, another paradigm is ion trap mass spectrometry integrated with microfluidics for protein identification by Hardouin et al. 111 Other systems were also reported, such as a chip-liquid chromatography (LC)-MS system for label-free profiling of human serum113 and a LC-ESI-MS system for multiple proteins detection from breast cancer cellular extract.112 The resolving ability of MS has recently been pushed down to the detection of a single molecular by Roukes's group in Caltech using a nanoelectromechanical system-based MS (NEMS-MS) (Fig. 6).110 It can be expected that in the future when NEMS-MS meets microfluidics, a much more effective microfluidic-MS platform could be realized to analyze biological or chemical species (e.g., proteins or nanoparticles) at a single molecular level with the ability to operate in multiplexing and parallel modes.

Graphic Jump LocationF6 :

First generation NEMS-MS system developed by Roukes's group (a), the NEMS mass spectrometry for a gold nanoparticles dispersion (b), and the real-time records of single-molecule adsorption events from their experiments (Ref. 110).

Besides protein separation and identification, MS has also been applied to the quantitative detection in protein expression in various states (especially in disease states). However, the miniaturization and high sensitivity requirements have currently been one of the most significant technological hurdles. Yet, microfluidics seems to hold great promises for the related technological breakthrough: The micrometer scale geometries and smaller platform of microfluidic devices meet the enhanced sensitivity and system miniaturization need; the multi-channel geometries in microfluidics enable high throughput processing and multiplexing ability. Considering these, to couple with microfluidics could be the ultimate lab-on-a-chip solution for MS toward quantitative proteome applications. To our knowledge, there has not been any further report on MS-based microfluidic sensing and yet a lot of interesting research remains to be carried out.

Other than the three major categories, other methods such as the NMR spectroscopy115 have also been explored to be applied to microfluidic detection.43 It is a well-developed detection method in chemistry and life sciences, which employs the magnetic properties of nucleis or the chemical shift Zeeman effect and/or the Knight shift effect for detection purpose. NMR spectroscopy is able to detect biological and chemical analyte species such as proteins and nucleic acids. However, its application in microscale systems has been restricted by the low sensitivity of conventional NMR detection technique. Recently, this problem has been solved by hyperpolarization methods (e.g., to introduce the highly polarized para-hydrogen agent for signal enhancement). High resolution NMR for microfluidic systems was realized in 2007 by Pine's group in UC Berkley on the study of multi-phase flows and catalyst deactivation (Fig. 7).116 Besides direct detection, the Pines’ group also pioneered the remote monitor work of NMR-based microfluidic detections. In 2007, they reported the remote monitoring of spin coherence transfer in chemical transformations117 and a double-phase encoded remote detector of the fluid diffusion through membranes.118 This technique is readily applicable mostly in hydrogenation reaction-related detection and imaging, and might be extended for more applications in microfluidics. However, the limited reaction time scale/polarization lifetimes remains a key technological bottle-neck for NMR-based microfluidic analytical detection. Besides, similar to MS spectroscopy, another key hurdle is system miniaturization, in other words, to reduce the comparably large detector for better interface into microfluidics. In fact, not many related publications were reported afterward on NMR-based microfluidic detection. In spite of the technological challenges, NMR is still a competitive technique for microfluidic applications compared to optical or electrochemical methods: It does not have the optical accessibility issue for the region of interest (ROI) and the data acquisition time is much shorter, which makes time-resolved studies much easier; it has better detection pervasiveness than electrochemical methods that are limited to electroactive species. Hence, the solution to the weak NMR signal issue in microsystems, either by further signal enhancement or better detection instrumentations, will trigger a wider spectrum of lab-on-a-chip applications of NMR.

Graphic Jump LocationF7 :

Density of active catalyst and flow map imaging by the hyperpolarization enhanced NMR spectroscopy reported by Pines’ group. MRI images [field of view (FOV) (x to z): 2.3 mm by 7.0 mm; pixel size: 20 μm by 60 μm] of a tightly packed catalyst bed (catalyst layer thickness is ∼5 mm) are shown. The picture shows the flow map in the xz plane with the use of polarized propane. The orientation of the arrows represents direction of the velocity, and their length represents its magnitude. The SNR of thermally polarized propylene was insufficient to generate a velocity map. The resolution of the flow map is intentionally decreased by retaining only one of every 16 arrows to avoid excessive overlap of the arrows (Ref. 116).

In Sec. 3 we discussed general detection methods in microfluidics. Here, we would like to emphasize the microfluidics/optofluidics sensing techniques. A general review is presented in Table 2. From Table 2 we can see that the different methods have corresponding advantages and limitations. Some of them can be coupled with each other either to achieve certain phenomena for detection or to enhance sensor ability. For instance, evanescent waves are utilized with interferometers, optical fibers, fluorescence induction, and optical waveguides, in order to further enhance the detection sensitivity (e.g., in the form of a fiber-optic evanescent-wave approach152 or a fiber-optic localized plasmon resonance sensor153). They are also widely used to induce surface plasmon resonance, which is essential in surface-enhanced Raman scattering.154 Cavities structures are used in localized plasmon resonance detections to improve sensing performance.155 Other detection methods were also actively studied for microfluidics, such as integrated optics components that can accommodate large arrays of compact optical channels and devices. One example is the laser induced fluorescence (LIF) detection, which is extensively used in microchip separations.156

Table Grahic Jump Location
Optofluidic sensing techniques.

The past decade has witnessed the progresses in microfluidics: more microfluidic system prototypes, increased device complexity, and more fabrication and sensing techniques have been developed or improved. However, microfluidics sensors are still in a formative stage and hold tremendous opportunities to be applied to a wider spectrum of fields and applications. We could expect the next drive engine to microfluidics sensors development would be based on:

  1. Complete integration for compactness and self-contained microsystems

    While most of the current microfluidic systems are still based on microfluidic devices that are coupled with external macroscopic detectors or preliminary external detection platforms, it is of great significance to push the microfluidic systems down to a complete microscale level. The development of specific detection components for microfluidics and complete integration techniques would enable real compact and self-contained microfluidic systems.

  2. New and existing sensing principles and related technological advances

    It is essential to explore for new sensing principles, or possible sensing components to be integrated with microfluidics while improving the sophistication of the microfluidic sensing systems. Ideal candidates should be both localized and sensitive (with minimized negative system perturbance), easy to fabricate and integrate, easy to assemble or even without post-fabrication assembly. More materials could also be considered, for instance, functionalized nanoscale particles, such as specialty nanocomposites (e.g., nanomaterials, nanocrystals, nanoparticles, nanocolloids, liquid crystals, quantum dots) and bio-/chemical-functionalized nanoscale materials or particles, could be incorporated with a microfluidic environment for flexible reconfiguration and system tuning for various sensing purposes.

    Continuous research investments on optical, electrical, chemical, as well as mechanical, thermal, magnetic, or biological phenomena would open up new possibilities as well. In addition, technological advances in related fields such as electrical/optical/chemical instrumentation, microfabrication techniques, new material development, and processing techniques, would all contribute to the development of microfluidic sensors. Once the major barriers of existing sensing methods are cleared, such as the short life time and low resolution issue in NMR microfluidic sensors, the progress would be rapidly sped up.

  3. Theoretical work and software development

    The study of integrated microfluidic sensors should be extended to more sophisticated simulation methods and elaborate algorithmic models for a deeper understanding at a theoretical level. For instance, a more complex model should be developed for the theoretical understanding of the shear stress acting on the particle in microflows, which includes the effect of the particle size and other parameters such as concentration and temperature. As in a real microfluidic suspension environment, considerable deviations have been observed in the experimental measurement results from the simulation with a pure fluidic system.150 Modeling of the fluidic dynamic characteristics, such as velocity, heat transfer, and shear stress inside microfluidic devices will also be beneficial.

    Microfluidic work from the very beginning has been mainly among physical or more specifically fluid mechanical and lab-on-a-chip communities. However, the most important end-users are usually biological or chemical specialists, to whom the theoretical understanding, numerical simulation skills, and lab-on-a-chip know-how could be a huge hurdle. The accessibility of more user friendly simulation software to nonspecialists could alleviate this problem and allow biologists and chemists to actually get actively involved in the early stage development of the sensors to better suit the actual demands.

    Besides, the simulation software provides a more economical and quicker research and development loop by the pre-fabrication numerical tests for various designs or fabrication procedure optimization. In this way, the cost and time frame will be sharply reduced with refined theoretical simulations and modeling work carried out beforehand.

  4. Standard integration interfaces

    Another important issue is that most of the current microfluidic sensing platforms are “one-design-one-application” types. It is not easy to modify or upgrade the systems or switch for multi-function operations. Usually the change of applications or the instruction of an additional task would simply mean redesigning a system. Thus, a standard microfluidic interface, that is friendly and flexible for various functional components to be easily integrated to, holds great promises for enhancing the adaptivity of microfluidic sensing systems. This will open up the possibility of dynamic microfluidic systems that support versatile modes of interfacing and operations.

Berg  A., , Craighead  H. G., , and Yang  P.-D., “ From microfluidic applications to nanofluidic phenomena. ,” Chem. Soc. Rev.. 39, , 899–900  ((2010)).
Tian  W.-C., and Finehout  E., Chapter 11 in  Current and Future Trends in Microfluidics within Biotechnology Research. , Lee  A. P. and Lin  G., Eds.,  Springer ,  New York  ((2008)).
Whitesides  G. M., “ The origins and the future of microfluidics. ,” Nature. 442, , 368–373  ((2006)).
Stroock  A. D., , Dertinger  S. K. W., , Ajdari  A., , Mezic  I., , Stone  H. A., , and Whitesides  G. M., “ Chaotic mixer for microchannels. ,” Science. 295, , 647–651  ((2002)).
Husband  B., , Bu  M., , Evans  A. G. R., , and Melvin  T., “ Investigation for the operation of an integrated peristaltic micropump. ,” J. Micromech. Microeng.. 14, , S64–S69  ((2004)).
Unger  M. A., , Chou  H. P., , Thorsen  T., , Scherer  A., , and Quake  S. R., “ Monolithic microfabricated valves and pumps by multilayer soft lithography. ,” Science. 288, , 113–116  ((2000)).
Thorsen  T., , Maerkl  S. J., , and Quake  S. R., “ Microfluidic large-scale integration. ,” Science. 298, , 580–584  ((2002)).
Balslev  S., , Bilenberg  B., , Geschke  O., , Jorgensen  A. M., , Kristensen  A., , Kutter  J. P., , Mogensen  K. B., , and Snakenborg  D., “ Fully integrated optical system for lab-on-a-chip applications. ,” in  Proc. IEEE Int. Conf. on Micro Electro Mechanical Systems, MEMS. , 25–29 Jan. 2004, pp. 89–92 ,  Maastrict ,  the Netherlands  ((2004)).
Armani  A. M., , Kulkarni  R. P., , Fraser  S. E., , Flagan  R. C., , and Vahala  K. J., “ Label-free, single-molecule detection with optical microcavities. ,” Science. 317, , 783–787  ((2007)).
Sirbuly  D. J., , Tao  A., , Law  M., , Fan  R., , and Yang  P.-D., “ Multifunctional nanowire evanescent wave optical sensors. ,” Adv. Mater.. 19, , 61–66  ((2007)).
Krishnan  M., , Mojarad  N., , Kukura  P., , and Sandoghdar  V., “ Geometry-induced electrostatic trapping of nanometric objects in a fluid. ,” Nature. 467, , 692–695  ((2010)).
Cui  X.-Q., , Lee  L. M., , Heng  X., , Zhong  W.-W., , Sternberg  P. W., , Psaltis  D., , and Yang  C.-H., “ Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging. ,” Proc. Natl. Acad. Sci. U.S.A.. 105, , 10670–10675  ((2008)).
Zheng  G., , Lee  S. A., , Yang  S., , and Yang  C.-H., “ Sub-pixel resolving optofluidic microscope for on-chip cell imaging. ,” Lab Chip. 10, , 3125–3129  ((2010)).
Mandal  S., and Erickson  D., “ Nanoscale optofluidic sensor arrays. ,” Opt. Express. 16, , 1623–1631  ((2008)).
Park  S.-M., , Huh  Y. S., , Szeto  K., , Joe  D. J., , Kameoka  J., , Coates  G. W., , Edel  J. B., , Erickson  D., , and Craighead  H. G., “ Rapid prototyping of nanofluidic systems using size-reduced electrospun nanofibers for biomolecular analysis. ,” Small. 6, , 2420–2426  ((2011)).
Li  J.-L., , Day  D., , and Gu  M., “ Design of a compact microfludic device for controllable cell distribution. ,” Lab Chip. 10, , 3054–3057  ((2010)).
Yager  P., , Edwards  T., , Fu  E., , Helton  K., , Nelson  K., , Tam  M. R., , and Weigl  B. H., “ Microfluidic diagnostic technologies for global public health. ,” Nature. 442, , 412–418  ((2006)).
Moon  S. J., , Keles  H. O., , Ozcan  A., , Khademhosseini  A., , Haeggstrom  E., , Kuritzkes  D., , and Demirci  U., “ Integrating microfluidics and lensless imaging for point-of-care testing. ,” Biosens. Bioelectron.. 24, , 3208–3214  ((2009)).
Seo  S., , Su  T.-W., , Tseng  D. K., , Erlinger  A., , and Ozcan  A., “ Lensfree holographic imaging for on-chip cytometry and diagnostics. ,” Lab Chip. 9, , 777–787  ((2009)).
Horowitz  V. R., , Awschalom  D. D., , and Pennathur  S., “ Optofluidics: field or technique?. ” Lab Chip. 8, , 1856–1863  ((2008)).
Fainman  Y., , Lee  L., , Psaltis  D., , and Yang  C.-H.,  Optofluidics: Fundamentals, Devices, and Applications. ,  McGraw-Hill ,  New York  ((2009)).
Groisman  A., , Enzelberger  M., , and Quake  S. R., “ Microfluidic memory and control devices. ,” Science. 300, , 955–958  ((2003)).
Hong  J. W., , Studer  V., , Hang  G., , Anderson  W. F., , and Quake  S. R., “ A nanoliter scale nucleic acid processor with parallel architecture. ,” Nat. Biotech.. 22, , 435–439  ((2004)).
Tian  B., , Cohen-Karni  T., , Qing  Q., , Duan  X.-J., , Xie  P., , and Lieber  C. M., “ Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. ,” Science. 319, , 830–834  ((2010)).
Tao  X., , Lee  A., , Limapichat  W., , Dougherty  D. A., , and MacKinnon  R., “ A gating charge transfer center in voltage sensors. ,” Science. 328, , 67–73  ((2010)).
Yang  M., , Li  C.-W., , and Yang  J., “ Cell docking and on-chip monitoring of cellular reactions with a controlled concentration gradient on a microfluidic device. ,” Anal. Chem.. 74, , 3991–4001  ((2002)).
Terry  S. C., , Jerman  J. H., , and Angell  J. B., “ A gas chromatographic air analyzer fabricated on a silicon wafer. ,” IEEE Trans. Electron Devices. 26, , 1880–1886  ((1979)).
Harrison  S. J., , Fluri  K., , Seiler  K., , Fan  Z.-H., , Effenhauser  C. S., , and Manz  A., “ Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. ,” Science. 261, , 895–897  ((1993)).
Raley  N. F., , Davidson  J. C., , and Balch  J. W., “ Examination of glass-silicon and glass-glass bonding techniques for microfluidic systems. ,” Proc. SPIE. 2639, , 41–45  ((1995)).
Kopp  M. U., , Mello  A. J. D., , and Manz  A., “ Chemical amplification: continuous-flow PCR on a chip. ,” Science. 280, , 1046–1048  ((1998)).
Stjernstrom  M., and Roeraade  J., “ Method for fabrication of microfluidic systems in glass. ,” J. Micromech. Microeng.. 8, , 33–38  ((1998)).
Bings  N., , Wang  C., , Skinner  C., , Colyer  K., , Harrison  D., , Li  J., , and Thibault  P., “ Microfluidic devices connected to glass capillaries with minimal dead volume. ,” Anal. Chem.. 71, , 3292–3296  ((1999)).
Ruano  J. M., , Benoit  V., , Aitchison  J. S., , and Cooper  J. M., “ Flame hydrolysis deposition of glass on silicon for the integration of optical and microfluidic devices. ,” Anal. Chem.. 72, , 1093–1097  ((2000)).
Grover  W. H., , Skelley  A. M., , Liu  C. N., , Lagally  E. T., , and Mathies  R. A., “ Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices. ,” Sens. Actuators B. 89, , 315–323  ((2003)).
Jia  Z.-J., , Fang  Q., , and Fang  Z.-L., “ Bonding of glass microfluidic chips at room temperatures. ,” Anal. Chem.. 76, , 5597–5602  ((2004)).
Cheng  Y., , Sugioka  K., , and Midorikawa  K., “ Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing. ,” Opt. Lett.. 29, , 2007–2009  ((2004)).
Bu  M.-Q., , Melvin  T., , Ensell  G. J., , Wilkinson  J. S., , and Evans  A. G. R., “ A new masking technology for deep glass etching and its microfluidic application. ,” Sens. Actuators B. 115, , 476–482  ((2004)).
Allen  P. B., and Chiu  D. T., “ Calcium-assisted glass-to-glass bonding for fabrication of glass microfluidic devices. ,” Anal. Chem.. 80, , 7153–7157  ((2008)).
Vulto  P., , Huesgen  T., , Albrecht  B., , and Urban  G. A., “ A full-wafer fabrication process for glass microfluidic chips with integrated electroplated electrodes by direct bonding of dry film resist. ,” J. Micromech. Microeng.. 19, , 077001  ((2009)).
Li  P. C. H., and Harrison  D. J., “ Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects. ,” Anal. Chem.. 69, , 1564–1568  ((1997)).
Waters  L. C., , Jacobson  S. C., , Kroutchinina  N., , Khandurina  J., , Foote  R. S., , and Ramsey  J. M., “ Microchip device for cell lysis, multiplex PCR amplification, and electrophoretic sizing. ,” Anal. Chem.. 70, , 158–162  ((1998)).
Ichiki  T., , Ujiie  T., , Shinbashi  S., , Okuda  T., , and Horiike  Y., “ Immunoelectrophoresis of red blood cells performed on microcapillary chips. ,” Electrophoresis. 23, , 2029–2034  ((2002)).
Lee  H., , Sun  E., , Ham  D., , and Weissleder  R., “ Chip-NMR biosensor for detection and molecular analysis of cells. ,” Nat. Med.. 14, , 869–874  ((2008)).
Qu  B.-Y., , Wu  Z.-Y., , Fang  F., , Bai  Z.-M., , Yang  D.-Z., , and Xu  S.-K., “ A glass microfluidic chip for continuous blood cell sorting by a magnetic gradient without labeling. ,” Anal. Bioanal. Chem.. 392, , 1317–1324  ((2008)).
Jacobson  S. C., , Koutny  L. B., , Hergenroder  R., , Moore  A. W., , and Ramsey  J. M., “ Microchip capillary electrophoresis with an integrated postcolumn reactor. ,” Anal. Chem.. 66, , 3472–3476  ((1994)).
Liang  Z.-H., , Chiem  N., , Ocvirk  G., , Tang  T., , Fluri  K., , and Harrison  D. J., “ Microfabrication of a planar absorbance and fluorescence cell for integrated capillary electrophoresis devices. ,” Anal. Chem.. 68, , 1040–1046  ((1996)).
Fluri  K., , Fitzpatrick  G., , Chiem  N., , and Harrison  D. J., “ Integrated capillary electrophoresis devices with an efficient postcolumn teactor in planar quartz and glass chips. ,” Anal. Chem.. 68, , 4285–4290  ((1996)).
Jacobson  S. C., , Culbertson  C. T., , Daler  J. E., , and Ramsey  J. M., “ Microchip structures for submillisecond electrophoresis. ,” Anal. Chem.. 70, , 3476–3480  ((1998)).
Ujiie  T., , Ichiki  T. K., , and Horiike  Y., “ Fabrication of quartz microcapillary electrophoresis chips using plasma etching. ,” Jpn. J. Appl. Phys.. 39, , 3677–3682  ((2000)).
Lee  T. M. H., , Hsing  I.-M., , Lao  A. I. K., , and Carles  M. C., “ A miniaturized DNA amplifier: its application in traditional chinese medicine. ,” Anal. Chem.. 72, , 4242–4247  ((2000)).
Deng  Y.-Z., , Zhang  H.-W., , and Henion  J., “ Chip-based quantitative capillary electrophoresis/mass spectrometry determination of drugs in human plasma. ,” Anal. Chem.. 73, , 1432–1439  ((2001)).
Gottschlich  N., , Jacobson  S. C., , Culbertson  C. T., , and Ramsey  J. M., “ Two-dimensional electrochromatography/capillary electrophoresis on a microchip. ,” Anal. Chem.. 73, , 2669–2674  ((2001)).
Omasu  F., , Nakano  Y., , and Ichiki  T., “ Measurement of the electrophoretic mobility of sheep erythrocytes using microcapillary chips. ,” Electrophoresis. 26, , 1163–1167  ((2005)).
Mukhopadhyay  R., “ When PDMS isn't the best. ,” Anal. Chem.. 79, , 3248–3253  ((2007)).
Becker  H., and Heim  U., “ Hot embossing as a method for the fabrication of polymer high aspect ratio structures. ,” Sens. Actuators, A. 83, , 130–135  ((2000)).
Qi  S.-Z., , Liu  X.-Z., , Ford  S., , Barrows  J., , Thomas  G., , Kelly  K., , McCandless  A., , Lian  K., , Goettert  J., , and Soper  S. A., “ Microfluidic devices fabricated in poly(methyl methacrylate) using hot-embossing with integrated sampling capillary and fiber optics for fluorescence detection. ,” Lab Chip. 2, , 88–95  ((2002)).
Chien  R.-D., “ Micromolding of biochip devices designed with microchannels. ,” Sens. Actuators, A. 128, , 238–247  ((2006)).
Attia  U. M., , Marson  S., , and Alcock  J. R., “ Micro-injection moulding of polymer microfluidic devices. ,” Microfluid. Nanofluid.. 7, , 1–28  ((2009)).
McDonald  J. C., , Duffy  D. C., , Anderson  J. R., , Chiu  D. T., , Wu  H.-K., , Schueller  O. J. A., , and Whitesides  G. M., “ Fabrication of microfluidic systems in poly(dimethylsiloxane). ,” Electrophoresis. 21, , 27–40  ((1999)).
Rossier  J., , Reymond  F., , and Michel  P. E., “ Polymer microfluidic chips for electrochemical and biochemical analyses. ,” Electrophoresis. 23, , 858–867  ((2002)).
Cao  H., , Tegenfeldt  J. O., , Austin  R. H., , and Chou  S. Y., “ Gradient nanostructures for interfacing microfluidics and nanofluidics. ,” Appl. Phys. Lett.. 81, , 3058–3060  ((2002)).
Mappes  T., , Achenbach  S., , and Mohr  J., “ X-ray lithography for devices with high aspect ratio polymer submicron structures. ,” Microelectron. Eng.. 84, , 1235–1239  ((2007)).
Odom  T. W., , Love  J. C., , Wolfe  D. B., , Paul  K. E., , and Whitesides  G. M., “ Improved pattern transfer in soft lithography using composite stamps. ,” Langmuir. 18, , 5314–5320  ((2002)).
Hua  F., , Sun  Y.-G., , Gaur  A., , Meitl  M. A., , Bilhaut  L., , Rotkina  L., , Wang  J.-F., , Geil  P., , Shim  M., , and Rogers  J. A., “ Polymer imprint lithography with molecular-scale resolution. ,” Nano Lett.. 4, , 2467–2471  ((2004)).
Xu  Q.-B., , Mayers  B. T., , Lahav  M., , Vezenov  D. V., , and Whitesides  G. M., “ Approaching zero: using fractured crystals in metrology for replica molding. ,” J. Am. Chem. Soc.. 127, , 854–855  ((2005)).
Li  Z.-W., , Gu  Y.-N., , Wang  L., , Ge  H.-X., , Wu  W., , Xia  Q.-F., , Yuan  C.-S., , Cheng  Y.-F., , Cui  B., , and Williams  R. S., “ Hybrid nanoimprint-soft lithography with sub-15 nm resolution. ,” Nano Lett.. 9, , 2306–2310  ((2009)).
Beebe  D. J., , Mensing  G. A., , and Walker  G. M.: “ Physics and applications of microfluids in biology. ,” Annu. Rev. Biomed. Eng.. 4, , 261–286  ((2002)).
Stone  H. A., , Stroock  A. D., , and Ajdari  A., “ Engineering flows in small devices: microfluidics toward a lab-on-a-chip. ,” Annu. Rev. Fluid Mech.. 36, , 381–411  ((2004)).
Baharudin  L., “ Microfluidics: fabrications and applications. ,” Instru. Sci. Tech.. 36, , 222–230  ((2008)).
Mogensen  K. B., , Klank  H., , and Kutter  J. P., “ Recent developments in detection for microfluidic systems. ,” Electrophoresis. 25, , 3498–3512  ((2004)).
Liu  A. Q., , Huang  H. J., , Chin  L. K., , Yu  Y. F., , and Li  X. C., “ Label-free detection with micro optical fluidic systems (MOFS): a review. ,” Anal. Bioanal. Chem.. 391, , 2243–2452  ((2008)).
Siegel  A. C., , Tang  S. K. Y., , Nijhuis  C. A., , Hashimoto  M., , Phillips  S. T., , Dickey  M. D., , and Whitesides  G. M., “ Co-fabrication: a strategy for building multi-component microsystems. ,” Acc. Chem. Res.. 43, , 518–528  ((2010)).
Bornhop  D. J., and Swinney  K., “ Detection in capillary electrophoresis: a review. ,” Electrophoresis. 21, , 1239–1250  ((2000)).
Ross  D., , Gaitan  M., , and Locascio  L. E., “ Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye. ,” Anal. Chem.. 73, , 4117–4123  ((2001)).
Dumais  P., , Callender  C. L., , Noad  J. P., , and Ledderhof  C. J., “ Integrated optical sensor using a liquid-core waveguide in a Mach-Zehnder interferometer. ,” Opt. Express. 16, , 18164–18172  ((2008)).
Kim  I. T., and Kihm  K. D., “ Label-free visualization of microfluidic mixture concentration fields using SPR reflectance imaging. ,” Exp. Fluids. 41, , 905–916  ((2006)).
Park  T., , Lee  S., , Seong  G. H., , Choo  J., , Lee  E. K., , Kim  Y. S., , Ji  W. H., , Hwang  S. Y., , Gweon  D. G., , and Lee  S., “ Highly sensitive signal detection of duplex dye-labelled DNA oligonucleotides in a PDMS microfluidic chip: confocal surface-enhanced Raman spectroscopic study. ,” Lab Chip. 5, , 437–442  ((2005)).
Lien  V., and Vollmer  F., “ Microfluidic flow rate detection based on integrated optical fiber cantilever. ,” Lab Chip. 7, , 1352–1356  ((2007)).
Chang-Yen  D. A., and Gale  B. K., “ An integrated optical oxygen sensor fabricated using rapid-prototyping techniques. ,” Lab Chip. 3, , 297–301  ((2003)).
Sinton  D., , Gordon  R., , and Brolo  A. G., “ Nanohole arrays in metal films as optofluidic elements: progress and potential. ,” Microfluid. Nanofluid.. 4, , 107–116  ((2008)).
Ridgeway  W. K., , Seitaridou  E., , Phillips  R., , and Williamson  J. R., “ RNA-protein binding kinetics in an automated microfluidic reactor. ,” Nucleic Acids Res.. 37, , e142  ((2009)).
Santiago  J. G., , Wereley  S., , Meinhart  C. D., , Beebe  D. J., , and Adrian  R. J., “ A micro-particle image velocimetry system. ,” Exp. Fluids. 25, , 316–319  ((1998)).
Olsen  M. G., , Bauer  J. M., , and Beebe  D. J., “ Particle imaging technique for measuring the deformation rate of hydrogel microstructures. ,” Appl. Phys. Lett.. 76, , 3310–3312  ((2000)).
Minas  G., , Martins  J. S., , Ribeiro  J. C., , Wolffenbuttel  R. F., , and Correia  J. H., “ Biological microsystem for measuring uric acid in biological fluids. ,” Sens. Actuators, A. 110, , 33–38  ((2004)).
Duggan  M. P., , McCreedy  T., , and Aylott  J. W., “ A non-invasive analysis method for on-chip spectrophotometric detection using liquid-core waveguiding within a 3D architecture. ,” Analyst (Cambridge, U.K.). 128, , 1336–1340  ((2003)).
Petersen  N. J., , Mogensen  K. B., , and Kutter  J. P., “ Performance of an in-plane detection cell with integrated waveguides for UV/Vis absorbance measurements on microfluidic separation devices. ,” Electrophoresis. 23, , 3528–3536  ((2002)).
Filanoski  B., , Rastogi  S. K., , Cameron  E., , Mishra  N. N., , Maki  W., , and Maki  G., “ A novel homogeneous bioluminescence resonance energy transfer element for biomolecular detection with CCD camera or CMOS device. ,” Luminescence. 23, , 22–27  ((2008)).
Hofmann  O., , Miller  P., , Sullivan  P., , Jones  S. T., , deMello  J. C., , Bradley  D. D. C., , and deMello  A. J., “ Thin-film organic photodiodes as inte- grated detectors for microscale chemiluminescence assays. ,” Sens. Actuators B. 106, , 878–884  ((2005)).
Jorgensen  A. M., , Mogensen  K. B., , Kutter  J. P., , and Geschke  O., “ A biochemical microdevice with an integrated chemiluminescence detector. ,” Sens. Actuators B. 90, , 1–3  ((2003)).
Zhu  J.-Z., , Zhu  Z.-Q., , Lai  Z.-S., , Wang  R., , Guo  X.-M., , Wu  X.-Q., , Zhang  G.-X., , Zhang  Z.-R., , Wang  Y.-T., , Chen  Z.-Y., “ Planar amperometric glucose sensor based on glucose oxidase immobilized by chitosan film on prussian blue layer. ,” Sensors. 2, , 127–136  ((2002)).
Cha  W., , Tung  Y.-C., , Meyerhoff  M. E., , and Takayama  S., “ Patterned electrode-based amperometric gas sensor for direct nitric oxide detection within microfluidic devices. ,” Anal. Chem.. 82, , 3300–3305  ((2010)).
Fanguy  J. C., and Henry  C. S., “ The analysis of uric acid in urine using microchip capillary electrophoresis with electrochemical detection. ,” Electrophoresis. 23, , 767–773  ((2002)).
Cai  X. X., , Klauke  N., , Glidle  A., , Cobbold  P. H., , Smith  G. L., , and Cooper  J. M., “ Ultra-low-volume, real-time measurements of lactate from the single heart cell using microsystems technology. ,” Anal. Chem.. 74, , 908–914  ((2002)).
Ohgami  N., , Upadhyay  S., , Kabata  A., , Morimoto  K., , Kusakabe  H., , and Suzuki  H., “ Determination of the activities of glutamic oxaloacetic transaminase and glutamic pyruvic transaminase in a microfluidic system. ,” Biosens. Bioelectron.. 22, , 1330–1336  ((2007)).
Suzuki  H., and Matsugi  Y., “ Microfabricated flow system for ammonia and creatinine with an air-gap structure. ,” Sens. Actuators B. 98, , 101–111  ((2004)).
Liu  R. H., , Yang  J.-N., , Lenigk  R., , Bonanno  J., , and Grodzinski  P., “ Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. ,” Anal. Chem.. 76, , 1824–1831  ((2004)).
Grabowska  I., , Sajnoga  M., , Juchniewicz  M., , Chudy  M., , Dybko  A., , and Brzozka  Z., “ Microfluidic system with electrochemical and optical detection. ,” Microelectron. Eng.. 84, , 1741–1743  ((2007)).
Galloway  M., , Stryjewski  W., , Henry  A., , Ford  S. M., , Llopis  S., , McCarley  R. L., , and Soper  S. A., “ Contact conductivity detection in poly(methyl methacylate)-based microfluidic devices for analysis of mono- and polyanionic molecules. ,” Anal. Chem.. 74, , 2407–2415  ((2002)).
Zuborova  M., , Demianova  Z., , Kaniansky  D., , Masar  M., , and Stanislawski  B., “ Zone electrophoresis of proteins on a poly(methyl methacrylate) chip with conductivity detection. ,” J. Chromatogr. A. 990, , 179–188  ((2003)).
Lago  C. L., , Silva  H. D. T., , Neves  C. A., , Brito-Neto  J. G. A., , and Silva  J. A. F., “ A dry process for production of microfluidic devices based on the lamination of laser-printed polyester films. ,” Anal. Chem.. 75, , 3853–3858  ((2003)).
Huang  X.-H., , Zare  R. N., , Sloss  S., , and Ewing  A. G., “ End-column detection for capillary zone electrophoresis. ,” Anal. Chem.. 63, , 189–192  ((1991)).
Wu  Z.-Y., , Fang  F., , Josserand  J., , and Girault  H. H., “ On-column conductivity detection in capillary-chip electrophoresis. ,” Electrophoresis. 28, , 4612–4619  ((2007)).
Hoffmann  E., and Stroobant  V.,  Mass Spectrometry: Principles and Application. , 3rd ed.,  Wiley ,  New York  ((2007)).
Schultz  G. A., , Corso  T. N., , Prosser  S. J., , and Zhang  S., “ A fully integrated monolithic microchip electrospray device for mass spectrometry. ,” Anal. Chem.. 72, , 4058–4063  ((2000)).
Licklider  L., , Wang  X. Q., , Desai  A., , Tai  Y. C., , and Lee  T. D., “ A micromachined chip-based electrospray source for mass spectrometry. ,” Anal. Chem.. 72, , 367–375  ((2000)).
Kameoka  J., , Orth  R., , Ilic  B., , Czaplewski  D., , Wachs  T., , and Craighead  H. G., “ An electrospray ionization source for integration with microfluidics. ,” Anal. Chem.. 74, , 5897–5901  ((2002)).
Miliotis  T., , Kjellstrom  S., , Nilsson  J., , Laurell  T., , Edholm  L. E., , and Marko-Varga  G., “ Capillary liquid chromatography interfaced to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using an on-line coupled piezoelectric flow-through microdispenser. ,” J. Mass Spectrom.. 35, , 369–377  ((2000)).
Liu  J., , Tseng  K., , Garcia  B., , Lebrilla  C. B., , Mukerjee  E., , Collins  S., , and Smith  R., “ Electrophoresis separation in open microchannels. A method for coupling electrophoresis with MALDI-MS. ,” Anal. Chem.. 73, , 2147–2151  ((2001)).
Mok  M. L., , Hua  L., , Phua  J. B., , Wee  M. K., , and Sze  N. S., “ Capillary isoelectric focusing in pseudo-closed channel coupled to matrix assisted laser desorption/ioization mass spectrometry for protein analysis. ,” Analyst (Cambridge, U.K.). 129, , 109–110  ((2004)).
Naik  A. K., , Hanay  M. S., , Hiebert  W. K., , Feng  X. L., , and Roukes  M. L., “ Towards single-molecule nanomechanical mass spectrometry. ,” Nat. Nanotechnol.. 4, , 445–450  ((2009)).
Hardouin  J., , Duchateau  M., , Joubert-Caron  R., , and Caron  M., “ Usefulness of an integrated microfluidic device (HPLC-Chip-MS) to enhance confidence in protein identification by proteomics. ,” Rapid Commun. Mass Spectrom.. 20, , 3236–3244  ((2006)).
Armenta  J. M., , Dawoud  A. A., , and Lazar  L. M., “ Microfluidic chips for protein differential expression profiling. ,” Electrophoresis. 30, , 1145–1156  ((2009)).
Horvatovich  P., , Govorukhina  N. I., , Reijmers  T. H., , van der Zee  A. G. J., , Suits  F., , and Bischoff  R., “ Chip-LC-MS for label-free profiling of human serum. ,” Electrophoresis. 28, , 4493–4505  ((2007)).
Webb  A., “ Nuclear magnetic resonance of mass-limited samples using small RF coils. ,” Anal. Bioanal. Chem.. 388, , 525–528  ((2007)).
Webb  G. A.,  Nuclear Magnetic Resonance. ,  The Royal Society of Chemistry ,  Cambridge  ((2003)).
Bouchard  L.-S., , Burt  S. R., , Anwar  M. S., , Kovtunov  K. V., , Koptyug  I. V., , and Pines  A., “ NMR imaging of catalytic hydrogenation in microreactors with the use of para-hydrogen. ,” Science. 319, , 442–445  ((2008)).
Anwar  M. S., , Hilty  C., , Chu  C., , Bouchard  L.-S., , Pierce  K. L., , and Pines  A., “ Spin Coherence Transfer in Chemical Transformations Monitored by Remote Detection NMR. ,” Anal. Chem.. 79, , 2806–2811  ((2007)).
Telkki  V.-V., , Hilty  C., , Garcia  S., , Harel  E., , and Pines  A., “ Quantifying the diffusion of a fluid through membranes by double phase encoded remote detection magnetic resonance imaging. ,” J. Phys. Chem. B. 111, , 13929–13936  ((2007)).
Mujika  M., , Arana  S., , Castano  E., , Tijero  M., , Vilares  R., , and Ruano-Lopez  J. M., “ Magnetoresisitve immunosensor for the detection of escherichia coli O157:H7. ,” Biosens. Bioelectron.. 24, , 1253–1258  ((2009)).
Tamarin  O., , Comeau  S., , Dejous  C., , Moynet  D., , Riebre  D., , and Beziam  J., “ Design of a bacteriophage model using love acoustic waves. ,” Biosens. Bioelectron.. 18, , 755–763  ((2003)).
Godber  B., , Kevin  S. J., , Thompson  K. S. J., , Rehak  M., , Uludag  Y., , Kelling  S., , Sleptsov  M., , Frogley  M., , Wiehler  K., , Whalen  C., , and Cooper  J. M., “ Direct quantification of analyte concentration by resonant acoustic profiling. ,” Clin. Chem.. 51, , 1962–1972  ((2005)).
Leebeeck  A. D., , Kumar  L. K. S., , Lange  V. D., , Sinton  D., , Gordon  R., , and Frolo  A. G., “ On-chip surface-based detection with nanohole arrays. ,” Anal. Chem.. 79, , 4094–4100  ((2007)).
Ouellet  E., , Lausted  C., , Lin  T., , Yang  C. W. T., , Hood  L., , and Lagally  E. T., “ Parallel microfluidic surface plasmon resonance imaging arrays. ,” Lab Chip. 10, , 581–588  ((2010)).
Heideman  R. G., and Lambeck  P. V., “ Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system. ,” Sens. Actuators B. 61, , 100–127  ((1999)).
Chediak  J. A., , Lou  Z. S., , Seo  J., , Cheung  N., , Lee  L. P., , and Sands  T. D., “ Heterogeneous integration of CdS filters with GaN LEDs for fluorescence detection microsystems. ,” Sens. Actuators, A. 111, , 1–7  ((2004)).
Hsu  S. H., and Huang  Y. T., “ A novel Mach-Zehnder interferometer based on dual-ARROW structures for sensing applications. ,” J. Lightwave Technol.. 23, , 4200–4206  ((2005)).
Berney  H., and Oliver  K., “ Dual polarization interferometry size and density characterization of DNA immobilization and hybridization. ,” Biosens. Bioelectron.. 21, , 618–626  ((2005)).
Lillis  B., , Manning  M., , Berney  H., , Hurley  E., , Mathewson  A., , and Sheehan  M. M., “ Dual polarisation interferometry characterisation of DNA immobilisation and hybridisation detection on a silanised support. ,” Biosens. Bioelectron.. 21, , 1459–1467  ((2006)).
Strehle  K. R., , Cialla  D., , Rosch  P., , Henkel  T., , Kohler  M., , and Popp  J., “ A reproducible surface-enhanced Raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system. ,” Anal. Chem.. 79, , 1542–1547  ((2007)).
Piorek  B. D., , Lee  S. J., , Santiago  J. G., , Moskovits  M., , Banerjee  S., , and Meinhart  C. D., “ Free-surface microfluidic control of surface-enhanced Raman spectroscopy for the optimized detection of airborne molecules. ,” Proc. Natl. Acad. Sci. U.S.A. 104, , 18898–18901  ((2007)).
Tong  L., , Righini  M., , Gonzalez  M. U., , Quidant  R., , and Kall  M., “ Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis. ,” Lab Chip. 9, , 193–195  ((2008)).
Rudenko  M. I., , Holmes  M. R., , Measor  P., , Deamer  D. W., , Hawkins  A. R., , and Schmidt  H., “ Planar electro-optofluidic chip: integration of nanopore with optofluidics. ,” in  Conf. on Lasers and Electro-Optics (CLEO). , Jose  San,  California, article CTuJJ3 ,  Optical Society of America  ((2010)).
Erickson  D., , Rockwood  T., , Emery  T., , Scherer  A., , and Psaltis  D., “ Nanofluidic tuning of photonic crystal circuitry. ,” Opt. Lett.. 31, , 59–61  ((2006)).
Choi  C. J., and Cunningham  B. T., “ A 96-well microplate incorporating a replica molded microfluidic network integrated with photonic crystal biosensors for high throughput kinetic biomolecular interaction analysis. ,” Lab Chip. 7, , 550–556  ((2007)).
Chan  L. L., , Gosangari  S. L., , Watkin  K. L., , and Cunningham  B. T., “ Label-free imaging of cancer cells using photonic crystal biosensors and application to cytotoxicity screening of a natural compound library. ,” Sens. Actuators B. 132, , 418–425  ((2007)).
Schudel  B. R., , Choi  C. J., , Cunningham  B. T., , and Kenis  P. J. A., “ Microfluidic chip for combinatorial mixing and screening of assays. ,” Lab Chip. 9, , 1676–1680  ((2009)).
Kim  H. J., , Kim  S., , Jeon  H., , Ma  J., , Choi  S. H., , Lee  S., , Ko  C., , and Park  W., “ Fluorescence amplification using colloidal photonic crystal platform in sensing dye-labeled deoxyribonucleic acids. ,” Sens. Actuators B. 124, , 147–152  ((2007)).
Wu  J., , Day  D., , and Gu  M., “ A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal. ,” Appl. Phys. Lett.. 92, , 071108  ((2008)).
Loncar  M., , Scherer  A., , and Qiu  Y. M., “ Photonic crystal laser sources for chemical detection. ,” Appl. Phys. Lett.. 82, , 4648–4650  ((2003)).
Adams  M. L., , Loncar  M., , Scherer  A., , and Qiu  Y. M., “ Microfluidic integration of porous photonic crystal nanolasers for chemical sensing. ,” IEEE J. Sel. Areas Commun.. 23, , 1348–1354  ((2005)).
Hanumegowda  N. M., , White  I. M., , Oveys  H., , and Fan  X., “ Label-free protease sensors based on optical microsphere resonators. ,” Sens. Lett.. 3, , 315–319  ((2005)).
Noto  M., , Koshsima  M., , Keng  D., , Teraoka  I., , Kolchenko  V., , and Arnold  S., “ Molecular weight dependence of a whispering gallery mode biosensor. ,” Appl. Phys. Lett.. 87, , 223901  ((2005)).
Hanumegowda  N. M., , Stica  C. J., , Patel  B. C., , White  I. M., , and Fan  X., “ Refractometric sensors based on microsphere resonators. ,” Appl. Phys. Lett.. 87, , 201107  ((2005)).
Lin  Y., , Ilchenko  V. S., , Nadeau  J., , and Maleki  L., “ Biochemical detection with optical whispering-gallery resonators. ,” Proc. SPIE. 6452, , 64520U  ((2007)).
Westcott  S. L., , Zhang  J., , Shelton  R. K., , Bruce  N. M. K., , Gupta  S., , Keen  S. L., , Tillman  J. W., , Wald  L. B., , Strecker  B. N., , Rosenberger  A. T., , Davidson  R. R., , Chen  W., , Donovan  K. G., , and Hryniewicz  J. V., “ Broadband optical absorbance spectroscopy using a whispering gallery mode microsphere resonator. ,” Rev. Sci. Instrum.. 79, , 033106  ((2008)).
Arnold  S., , Ramjit  R., , Keng  D., , Kolchenko  V., , and Teraoka  I., “ Microparticle photophysics illuminates viral bio-sensing. ,” Faraday Discuss. 137, , 65–83  ((2008)).
Keng  D., , McAnanama  S. R., , Teraoka  I., , and Arnold  S., “ Resonance fluctuations of a whispering gallery mode biosensor by particles undergoing Brownian motion. ,” Appl. Phys. Lett.. 91, , 103902  ((2007)).
Eriksson  E., , Scrimgeour  J., , Enger  J., , and Goksor  M., “ Holographic optical tweezers combined with a microfluidic device for exposing cells to fast environmental changes. ,” Proc. SPIE. 6592, , 65920P  ((2007)).
Mushfique  H., , Leach  J., , Yin  H., , Leonardo  R. D., , Padgett  M. J., , and Cooper  J. M., “ 3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers. ,” Anal. Chem.. 80, , 4237–4240  ((2008)).
Wu  J., , Day  D., , and Gu  M., “ Shear stress mapping in microfluidic devices by optical tweezers. ,” Opt. Express. 18, , 7611–7616  ((2010)).
Hunt  D. F., , Yates  J. R.  III, , Shabanowitz  J., , Winston  S., , and Hauer  C. R., “ Protein sequencing by tandem mass spectrometry. ,” Proc. Natl. Acad. Sci. U.S.A. 83, , 6233–6237  ((1986)).
Cheng  S.-F., and Chau  L.-K., “ Colloidal gold-modified optical fiber for chemical and biochemical sensing. ,” Anal. Chem.. 75, , 16–21  ((2003)).
Chuang  Y., , Lee  C.-Y., , Lu  S.-H., , Wang  S.-C., , Chau  L.-K., , and Hsieh  W.-H., “ Using ac-field-induced electro-osmosis to accelerate biomolecular binding in fiber-optic sensing chips with microstructures. ,” Anal. Chem.. 82, , 1123–1127  ((2010)).
Hou  D., , Maheshwari  S., , and Chang  H.-C., “ Rapid bioparticle concentration and detection by combining a discharge driven vortex with surface enhanced Raman scattering. ,” Biomicrofluidics. 1, , 014106  ((2007)).
Ameling  R., , Langguth  L., , Hentschel  M., , Mesch  M., , Braun  P. V., , and Giessen  H., “ Cavity-enhanced localized plasmon resonance sensing. ,” Appl. Phys. Lett.. 97, , 253116  ((2010)).
Uchiyama  K., , Nakajima  H., , and Hobo  T., “ Detection methods for microchip separations. ,” Anal. Bioanal. Chem.. 379, , 375–382  ((2004)).
Yeung  S. H. I., , Seo  T. S., , Crouse  C. A., , Greenspoon  S. A., , Chiesl  T. N., , Ban  J. D., , and Mathies  R. A., “ Fluorescence energy transfer-labeled primers for high-performance forensic DNA profiling. ,” Electrophoresis. 29, , 2251–2259  ((2008)).
Ranasinghe  R. T., and Brown  T., “ Ultrasensitive fluorescence-based methods for nucleic acid detection: towards amplification-free genetic analysis. ,” Chem. Commun. (Cambridge). 47, , 3717–3735  ((2011)).
Bruck  R., , Melnik  E., , Muellner  P., , Hainberger  R., , and Lammerhofer  M., “ Integrated polymer-based Mach-Zehnder interferometer label-free streptavidin biosensor compatible with injection molding. ,” Biosens. Bioelectron.. 26, , 3832–3837  ((2011)).
Estrela  P., , Paul  D., , Song  Q.-F., , Stadler  L. K. J., , Wang  L., , Huq  E., , Davis  J. J., , Ferrigno  P. K., , and Migliorato  P., “ Label-free sub-picomolar protein detection with field-effect transistors. ,” Anal. Chem.. 82, , 3531–3536  ((2010)).
Endo  T., , Ikeda  D., , Yawakami  Y., , Yanagida  Y., , and Hatsuzawa  T., “ Fabrication of core-shell structured nanoparticle layer substrate for excitation of localized surface plasmon resonance and its optical response for DNA in aqueous conditions. ,” Anal. Chim. Acta. 661, , 200–205  ((2010)).
Choi  D., , Kang  T., , Cho  H., , Choi  Y., , and Lee  L. P., “ Additional amplifications of SERS via an optofluidic CD-based platform. ,” Lab Chip. 9, , 239–243  ((2009)).
Liang  W., , Huang  Y., , Xu  Y., , Lee  R. K., , and Yariv  A., “ Highly sensitive fiber Bragg grating refractive index sensors. ,” Appl. Phys. Lett.. 86, , 151122  ((2009)).
Markos  C., , Yuan  W., , Vlachos  K., , Town  G. E., , and Bang  O., “ Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers. ,” Opt. Express. 19, , 7790–7798  ((2010)).
White  I. M., , Oveys  H., , and Fan  X.-D., “ Liquid-core optical ring-resonator sensors. ,” Opt. Lett.. 31, , 1319–1321  ((2006)).
© 2011 Society of Photo-Optical Instrumentation Engineers (SPIE)

Citation

Jing Wu and Min Gu
"Microfluidic sensing: state of the art fabrication and detection techniques", J. Biomed. Opt. 16(8), 080901 (August 04, 2011). ; http://dx.doi.org/10.1117/1.3607430


Figures

Graphic Jump LocationF1 :

Illustrations of the typical fabrication procedures by the prototyping techniques (hot embossing, inject molding, and soft lithography).

Graphic Jump LocationF2 :

Illustrations of the typical fabrication procedures by the direct fabrication techniques: (a) laser micromachining, (b) photolithography/optical lithography, and (c) x-ray lithography. The “metal mask insertion” step in x-ray lithography is usually realized by electroplating.

Graphic Jump LocationF3 :

Typical optical methods. (a) Fluorescence (in this case, fluorescent resonance energy transfer/FRET), (b) absorbance, (c) luminescence, and (d) surface plasmon resonance-based optical detection methods. GFP: green fluorescent protein; YFP: yellow fluorescent protein; GS: glass substrate.

Graphic Jump LocationF4 :

(a) Result of a three-dimensional photonic crystal optofluidic sensor for refractive index detection. The fluid refractive index in the microchannel above the photonic crystal was detected by the bandgap position shift. Transmittance spectrum of the whole system that reveals a bandgap around 4.3 μm (left inset). An illustration of the sensor (right inset and see Ref. 138). (b) Demonstration of the shear stress mapping inside a microfluidic device by optical tweezers (top sketch). Theoretical calculated results by the pure fluidic model and the experimental measured results of the fluid velocity and shear stress along y direction in the microfluidic device (bottom and see Ref. 150).

Graphic Jump LocationF5 :

Three types of electrochemical detection methods for microfluidics: (a) amperometric, (b) potentiometric, and (c) conductometic (capacitively coupled conductivity detector) detection.

Graphic Jump LocationF6 :

First generation NEMS-MS system developed by Roukes's group (a), the NEMS mass spectrometry for a gold nanoparticles dispersion (b), and the real-time records of single-molecule adsorption events from their experiments (Ref. 110).

Graphic Jump LocationF7 :

Density of active catalyst and flow map imaging by the hyperpolarization enhanced NMR spectroscopy reported by Pines’ group. MRI images [field of view (FOV) (x to z): 2.3 mm by 7.0 mm; pixel size: 20 μm by 60 μm] of a tightly packed catalyst bed (catalyst layer thickness is ∼5 mm) are shown. The picture shows the flow map in the xz plane with the use of polarized propane. The orientation of the arrows represents direction of the velocity, and their length represents its magnitude. The SNR of thermally polarized propylene was insufficient to generate a velocity map. The resolution of the flow map is intentionally decreased by retaining only one of every 16 arrows to avoid excessive overlap of the arrows (Ref. 116).

Tables

Table Grahic Jump Location
Microfluidic fabrication techniques.
Table Grahic Jump Location
Optofluidic sensing techniques.

References

Berg  A., , Craighead  H. G., , and Yang  P.-D., “ From microfluidic applications to nanofluidic phenomena. ,” Chem. Soc. Rev.. 39, , 899–900  ((2010)).
Tian  W.-C., and Finehout  E., Chapter 11 in  Current and Future Trends in Microfluidics within Biotechnology Research. , Lee  A. P. and Lin  G., Eds.,  Springer ,  New York  ((2008)).
Whitesides  G. M., “ The origins and the future of microfluidics. ,” Nature. 442, , 368–373  ((2006)).
Stroock  A. D., , Dertinger  S. K. W., , Ajdari  A., , Mezic  I., , Stone  H. A., , and Whitesides  G. M., “ Chaotic mixer for microchannels. ,” Science. 295, , 647–651  ((2002)).
Husband  B., , Bu  M., , Evans  A. G. R., , and Melvin  T., “ Investigation for the operation of an integrated peristaltic micropump. ,” J. Micromech. Microeng.. 14, , S64–S69  ((2004)).
Unger  M. A., , Chou  H. P., , Thorsen  T., , Scherer  A., , and Quake  S. R., “ Monolithic microfabricated valves and pumps by multilayer soft lithography. ,” Science. 288, , 113–116  ((2000)).
Thorsen  T., , Maerkl  S. J., , and Quake  S. R., “ Microfluidic large-scale integration. ,” Science. 298, , 580–584  ((2002)).
Balslev  S., , Bilenberg  B., , Geschke  O., , Jorgensen  A. M., , Kristensen  A., , Kutter  J. P., , Mogensen  K. B., , and Snakenborg  D., “ Fully integrated optical system for lab-on-a-chip applications. ,” in  Proc. IEEE Int. Conf. on Micro Electro Mechanical Systems, MEMS. , 25–29 Jan. 2004, pp. 89–92 ,  Maastrict ,  the Netherlands  ((2004)).
Armani  A. M., , Kulkarni  R. P., , Fraser  S. E., , Flagan  R. C., , and Vahala  K. J., “ Label-free, single-molecule detection with optical microcavities. ,” Science. 317, , 783–787  ((2007)).
Sirbuly  D. J., , Tao  A., , Law  M., , Fan  R., , and Yang  P.-D., “ Multifunctional nanowire evanescent wave optical sensors. ,” Adv. Mater.. 19, , 61–66  ((2007)).
Krishnan  M., , Mojarad  N., , Kukura  P., , and Sandoghdar  V., “ Geometry-induced electrostatic trapping of nanometric objects in a fluid. ,” Nature. 467, , 692–695  ((2010)).
Cui  X.-Q., , Lee  L. M., , Heng  X., , Zhong  W.-W., , Sternberg  P. W., , Psaltis  D., , and Yang  C.-H., “ Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging. ,” Proc. Natl. Acad. Sci. U.S.A.. 105, , 10670–10675  ((2008)).
Zheng  G., , Lee  S. A., , Yang  S., , and Yang  C.-H., “ Sub-pixel resolving optofluidic microscope for on-chip cell imaging. ,” Lab Chip. 10, , 3125–3129  ((2010)).
Mandal  S., and Erickson  D., “ Nanoscale optofluidic sensor arrays. ,” Opt. Express. 16, , 1623–1631  ((2008)).
Park  S.-M., , Huh  Y. S., , Szeto  K., , Joe  D. J., , Kameoka  J., , Coates  G. W., , Edel  J. B., , Erickson  D., , and Craighead  H. G., “ Rapid prototyping of nanofluidic systems using size-reduced electrospun nanofibers for biomolecular analysis. ,” Small. 6, , 2420–2426  ((2011)).
Li  J.-L., , Day  D., , and Gu  M., “ Design of a compact microfludic device for controllable cell distribution. ,” Lab Chip. 10, , 3054–3057  ((2010)).
Yager  P., , Edwards  T., , Fu  E., , Helton  K., , Nelson  K., , Tam  M. R., , and Weigl  B. H., “ Microfluidic diagnostic technologies for global public health. ,” Nature. 442, , 412–418  ((2006)).
Moon  S. J., , Keles  H. O., , Ozcan  A., , Khademhosseini  A., , Haeggstrom  E., , Kuritzkes  D., , and Demirci  U., “ Integrating microfluidics and lensless imaging for point-of-care testing. ,” Biosens. Bioelectron.. 24, , 3208–3214  ((2009)).
Seo  S., , Su  T.-W., , Tseng  D. K., , Erlinger  A., , and Ozcan  A., “ Lensfree holographic imaging for on-chip cytometry and diagnostics. ,” Lab Chip. 9, , 777–787  ((2009)).
Horowitz  V. R., , Awschalom  D. D., , and Pennathur  S., “ Optofluidics: field or technique?. ” Lab Chip. 8, , 1856–1863  ((2008)).
Fainman  Y., , Lee  L., , Psaltis  D., , and Yang  C.-H.,  Optofluidics: Fundamentals, Devices, and Applications. ,  McGraw-Hill ,  New York  ((2009)).
Groisman  A., , Enzelberger  M., , and Quake  S. R., “ Microfluidic memory and control devices. ,” Science. 300, , 955–958  ((2003)).
Hong  J. W., , Studer  V., , Hang  G., , Anderson  W. F., , and Quake  S. R., “ A nanoliter scale nucleic acid processor with parallel architecture. ,” Nat. Biotech.. 22, , 435–439  ((2004)).
Tian  B., , Cohen-Karni  T., , Qing  Q., , Duan  X.-J., , Xie  P., , and Lieber  C. M., “ Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. ,” Science. 319, , 830–834  ((2010)).
Tao  X., , Lee  A., , Limapichat  W., , Dougherty  D. A., , and MacKinnon  R., “ A gating charge transfer center in voltage sensors. ,” Science. 328, , 67–73  ((2010)).
Yang  M., , Li  C.-W., , and Yang  J., “ Cell docking and on-chip monitoring of cellular reactions with a controlled concentration gradient on a microfluidic device. ,” Anal. Chem.. 74, , 3991–4001  ((2002)).
Terry  S. C., , Jerman  J. H., , and Angell  J. B., “ A gas chromatographic air analyzer fabricated on a silicon wafer. ,” IEEE Trans. Electron Devices. 26, , 1880–1886  ((1979)).
Harrison  S. J., , Fluri  K., , Seiler  K., , Fan  Z.-H., , Effenhauser  C. S., , and Manz  A., “ Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. ,” Science. 261, , 895–897  ((1993)).
Raley  N. F., , Davidson  J. C., , and Balch  J. W., “ Examination of glass-silicon and glass-glass bonding techniques for microfluidic systems. ,” Proc. SPIE. 2639, , 41–45  ((1995)).
Kopp  M. U., , Mello  A. J. D., , and Manz  A., “ Chemical amplification: continuous-flow PCR on a chip. ,” Science. 280, , 1046–1048  ((1998)).
Stjernstrom  M., and Roeraade  J., “ Method for fabrication of microfluidic systems in glass. ,” J. Micromech. Microeng.. 8, , 33–38  ((1998)).
Bings  N., , Wang  C., , Skinner  C., , Colyer  K., , Harrison  D., , Li  J., , and Thibault  P., “ Microfluidic devices connected to glass capillaries with minimal dead volume. ,” Anal. Chem.. 71, , 3292–3296  ((1999)).
Ruano  J. M., , Benoit  V., , Aitchison  J. S., , and Cooper  J. M., “ Flame hydrolysis deposition of glass on silicon for the integration of optical and microfluidic devices. ,” Anal. Chem.. 72, , 1093–1097  ((2000)).
Grover  W. H., , Skelley  A. M., , Liu  C. N., , Lagally  E. T., , and Mathies  R. A., “ Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices. ,” Sens. Actuators B. 89, , 315–323  ((2003)).
Jia  Z.-J., , Fang  Q., , and Fang  Z.-L., “ Bonding of glass microfluidic chips at room temperatures. ,” Anal. Chem.. 76, , 5597–5602  ((2004)).
Cheng  Y., , Sugioka  K., , and Midorikawa  K., “ Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing. ,” Opt. Lett.. 29, , 2007–2009  ((2004)).
Bu  M.-Q., , Melvin  T., , Ensell  G. J., , Wilkinson  J. S., , and Evans  A. G. R., “ A new masking technology for deep glass etching and its microfluidic application. ,” Sens. Actuators B. 115, , 476–482  ((2004)).
Allen  P. B., and Chiu  D. T., “ Calcium-assisted glass-to-glass bonding for fabrication of glass microfluidic devices. ,” Anal. Chem.. 80, , 7153–7157  ((2008)).
Vulto  P., , Huesgen  T., , Albrecht  B., , and Urban  G. A., “ A full-wafer fabrication process for glass microfluidic chips with integrated electroplated electrodes by direct bonding of dry film resist. ,” J. Micromech. Microeng.. 19, , 077001  ((2009)).
Li  P. C. H., and Harrison  D. J., “ Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects. ,” Anal. Chem.. 69, , 1564–1568  ((1997)).
Waters  L. C., , Jacobson  S. C., , Kroutchinina  N., , Khandurina  J., , Foote  R. S., , and Ramsey  J. M., “ Microchip device for cell lysis, multiplex PCR amplification, and electrophoretic sizing. ,” Anal. Chem.. 70, , 158–162  ((1998)).
Ichiki  T., , Ujiie  T., , Shinbashi  S., , Okuda  T., , and Horiike  Y., “ Immunoelectrophoresis of red blood cells performed on microcapillary chips. ,” Electrophoresis. 23, , 2029–2034  ((2002)).
Lee  H., , Sun  E., , Ham  D., , and Weissleder  R., “ Chip-NMR biosensor for detection and molecular analysis of cells. ,” Nat. Med.. 14, , 869–874  ((2008)).
Qu  B.-Y., , Wu  Z.-Y., , Fang  F., , Bai  Z.-M., , Yang  D.-Z., , and Xu  S.-K., “ A glass microfluidic chip for continuous blood cell sorting by a magnetic gradient without labeling. ,” Anal. Bioanal. Chem.. 392, , 1317–1324  ((2008)).
Jacobson  S. C., , Koutny  L. B., , Hergenroder  R., , Moore  A. W., , and Ramsey  J. M., “ Microchip capillary electrophoresis with an integrated postcolumn reactor. ,” Anal. Chem.. 66, , 3472–3476  ((1994)).
Liang  Z.-H., , Chiem  N., , Ocvirk  G., , Tang  T., , Fluri  K., , and Harrison  D. J., “ Microfabrication of a planar absorbance and fluorescence cell for integrated capillary electrophoresis devices. ,” Anal. Chem.. 68, , 1040–1046  ((1996)).
Fluri  K., , Fitzpatrick  G., , Chiem  N., , and Harrison  D. J., “ Integrated capillary electrophoresis devices with an efficient postcolumn teactor in planar quartz and glass chips. ,” Anal. Chem.. 68, , 4285–4290  ((1996)).
Jacobson  S. C., , Culbertson  C. T., , Daler  J. E., , and Ramsey  J. M., “ Microchip structures for submillisecond electrophoresis. ,” Anal. Chem.. 70, , 3476–3480  ((1998)).
Ujiie  T., , Ichiki  T. K., , and Horiike  Y., “ Fabrication of quartz microcapillary electrophoresis chips using plasma etching. ,” Jpn. J. Appl. Phys.. 39, , 3677–3682  ((2000)).
Lee  T. M. H., , Hsing  I.-M., , Lao  A. I. K., , and Carles  M. C., “ A miniaturized DNA amplifier: its application in traditional chinese medicine. ,” Anal. Chem.. 72, , 4242–4247  ((2000)).
Deng  Y.-Z., , Zhang  H.-W., , and Henion  J., “ Chip-based quantitative capillary electrophoresis/mass spectrometry determination of drugs in human plasma. ,” Anal. Chem.. 73, , 1432–1439  ((2001)).
Gottschlich  N., , Jacobson  S. C., , Culbertson  C. T., , and Ramsey  J. M., “ Two-dimensional electrochromatography/capillary electrophoresis on a microchip. ,” Anal. Chem.. 73, , 2669–2674  ((2001)).
Omasu  F., , Nakano  Y., , and Ichiki  T., “ Measurement of the electrophoretic mobility of sheep erythrocytes using microcapillary chips. ,” Electrophoresis. 26, , 1163–1167  ((2005)).
Mukhopadhyay  R., “ When PDMS isn't the best. ,” Anal. Chem.. 79, , 3248–3253  ((2007)).
Becker  H., and Heim  U., “ Hot embossing as a method for the fabrication of polymer high aspect ratio structures. ,” Sens. Actuators, A. 83, , 130–135  ((2000)).
Qi  S.-Z., , Liu  X.-Z., , Ford  S., , Barrows  J., , Thomas  G., , Kelly  K., , McCandless  A., , Lian  K., , Goettert  J., , and Soper  S. A., “ Microfluidic devices fabricated in poly(methyl methacrylate) using hot-embossing with integrated sampling capillary and fiber optics for fluorescence detection. ,” Lab Chip. 2, , 88–95  ((2002)).
Chien  R.-D., “ Micromolding of biochip devices designed with microchannels. ,” Sens. Actuators, A. 128, , 238–247  ((2006)).
Attia  U. M., , Marson  S., , and Alcock  J. R., “ Micro-injection moulding of polymer microfluidic devices. ,” Microfluid. Nanofluid.. 7, , 1–28  ((2009)).
McDonald  J. C., , Duffy  D. C., , Anderson  J. R., , Chiu  D. T., , Wu  H.-K., , Schueller  O. J. A., , and Whitesides  G. M., “ Fabrication of microfluidic systems in poly(dimethylsiloxane). ,” Electrophoresis. 21, , 27–40  ((1999)).
Rossier  J., , Reymond  F., , and Michel  P. E., “ Polymer microfluidic chips for electrochemical and biochemical analyses. ,” Electrophoresis. 23, , 858–867  ((2002)).
Cao  H., , Tegenfeldt  J. O., , Austin  R. H., , and Chou  S. Y., “ Gradient nanostructures for interfacing microfluidics and nanofluidics. ,” Appl. Phys. Lett.. 81, , 3058–3060  ((2002)).
Mappes  T., , Achenbach  S., , and Mohr  J., “ X-ray lithography for devices with high aspect ratio polymer submicron structures. ,” Microelectron. Eng.. 84, , 1235–1239  ((2007)).
Odom  T. W., , Love  J. C., , Wolfe  D. B., , Paul  K. E., , and Whitesides  G. M., “ Improved pattern transfer in soft lithography using composite stamps. ,” Langmuir. 18, , 5314–5320  ((2002)).
Hua  F., , Sun  Y.-G., , Gaur  A., , Meitl  M. A., , Bilhaut  L., , Rotkina  L., , Wang  J.-F., , Geil  P., , Shim  M., , and Rogers  J. A., “ Polymer imprint lithography with molecular-scale resolution. ,” Nano Lett.. 4, , 2467–2471  ((2004)).
Xu  Q.-B., , Mayers  B. T., , Lahav  M., , Vezenov  D. V., , and Whitesides  G. M., “ Approaching zero: using fractured crystals in metrology for replica molding. ,” J. Am. Chem. Soc.. 127, , 854–855  ((2005)).
Li  Z.-W., , Gu  Y.-N., , Wang  L., , Ge  H.-X., , Wu  W., , Xia  Q.-F., , Yuan  C.-S., , Cheng  Y.-F., , Cui  B., , and Williams  R. S., “ Hybrid nanoimprint-soft lithography with sub-15 nm resolution. ,” Nano Lett.. 9, , 2306–2310  ((2009)).
Beebe  D. J., , Mensing  G. A., , and Walker  G. M.: “ Physics and applications of microfluids in biology. ,” Annu. Rev. Biomed. Eng.. 4, , 261–286  ((2002)).
Stone  H. A., , Stroock  A. D., , and Ajdari  A., “ Engineering flows in small devices: microfluidics toward a lab-on-a-chip. ,” Annu. Rev. Fluid Mech.. 36, , 381–411  ((2004)).
Baharudin  L., “ Microfluidics: fabrications and applications. ,” Instru. Sci. Tech.. 36, , 222–230  ((2008)).
Mogensen  K. B., , Klank  H., , and Kutter  J. P., “ Recent developments in detection for microfluidic systems. ,” Electrophoresis. 25, , 3498–3512  ((2004)).
Liu  A. Q., , Huang  H. J., , Chin  L. K., , Yu  Y. F., , and Li  X. C., “ Label-free detection with micro optical fluidic systems (MOFS): a review. ,” Anal. Bioanal. Chem.. 391, , 2243–2452  ((2008)).
Siegel  A. C., , Tang  S. K. Y., , Nijhuis  C. A., , Hashimoto  M., , Phillips  S. T., , Dickey  M. D., , and Whitesides  G. M., “ Co-fabrication: a strategy for building multi-component microsystems. ,” Acc. Chem. Res.. 43, , 518–528  ((2010)).
Bornhop  D. J., and Swinney  K., “ Detection in capillary electrophoresis: a review. ,” Electrophoresis. 21, , 1239–1250  ((2000)).
Ross  D., , Gaitan  M., , and Locascio  L. E., “ Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye. ,” Anal. Chem.. 73, , 4117–4123  ((2001)).
Dumais  P., , Callender  C. L., , Noad  J. P., , and Ledderhof  C. J., “ Integrated optical sensor using a liquid-core waveguide in a Mach-Zehnder interferometer. ,” Opt. Express. 16, , 18164–18172  ((2008)).
Kim  I. T., and Kihm  K. D., “ Label-free visualization of microfluidic mixture concentration fields using SPR reflectance imaging. ,” Exp. Fluids. 41, , 905–916  ((2006)).
Park  T., , Lee  S., , Seong  G. H., , Choo  J., , Lee  E. K., , Kim  Y. S., , Ji  W. H., , Hwang  S. Y., , Gweon  D. G., , and Lee  S., “ Highly sensitive signal detection of duplex dye-labelled DNA oligonucleotides in a PDMS microfluidic chip: confocal surface-enhanced Raman spectroscopic study. ,” Lab Chip. 5, , 437–442  ((2005)).
Lien  V., and Vollmer  F., “ Microfluidic flow rate detection based on integrated optical fiber cantilever. ,” Lab Chip. 7, , 1352–1356  ((2007)).
Chang-Yen  D. A., and Gale  B. K., “ An integrated optical oxygen sensor fabricated using rapid-prototyping techniques. ,” Lab Chip. 3, , 297–301  ((2003)).
Sinton  D., , Gordon  R., , and Brolo  A. G., “ Nanohole arrays in metal films as optofluidic elements: progress and potential. ,” Microfluid. Nanofluid.. 4, , 107–116  ((2008)).
Ridgeway  W. K., , Seitaridou  E., , Phillips  R., , and Williamson  J. R., “ RNA-protein binding kinetics in an automated microfluidic reactor. ,” Nucleic Acids Res.. 37, , e142  ((2009)).
Santiago  J. G., , Wereley  S., , Meinhart  C. D., , Beebe  D. J., , and Adrian  R. J., “ A micro-particle image velocimetry system. ,” Exp. Fluids. 25, , 316–319  ((1998)).
Olsen  M. G., , Bauer  J. M., , and Beebe  D. J., “ Particle imaging technique for measuring the deformation rate of hydrogel microstructures. ,” Appl. Phys. Lett.. 76, , 3310–3312  ((2000)).
Minas  G., , Martins  J. S., , Ribeiro  J. C., , Wolffenbuttel  R. F., , and Correia  J. H., “ Biological microsystem for measuring uric acid in biological fluids. ,” Sens. Actuators, A. 110, , 33–38  ((2004)).
Duggan  M. P., , McCreedy  T., , and Aylott  J. W., “ A non-invasive analysis method for on-chip spectrophotometric detection using liquid-core waveguiding within a 3D architecture. ,” Analyst (Cambridge, U.K.). 128, , 1336–1340  ((2003)).
Petersen  N. J., , Mogensen  K. B., , and Kutter  J. P., “ Performance of an in-plane detection cell with integrated waveguides for UV/Vis absorbance measurements on microfluidic separation devices. ,” Electrophoresis. 23, , 3528–3536  ((2002)).
Filanoski  B., , Rastogi  S. K., , Cameron  E., , Mishra  N. N., , Maki  W., , and Maki  G., “ A novel homogeneous bioluminescence resonance energy transfer element for biomolecular detection with CCD camera or CMOS device. ,” Luminescence. 23, , 22–27  ((2008)).
Hofmann  O., , Miller  P., , Sullivan  P., , Jones  S. T., , deMello  J. C., , Bradley  D. D. C., , and deMello  A. J., “ Thin-film organic photodiodes as inte- grated detectors for microscale chemiluminescence assays. ,” Sens. Actuators B. 106, , 878–884  ((2005)).
Jorgensen  A. M., , Mogensen  K. B., , Kutter  J. P., , and Geschke  O., “ A biochemical microdevice with an integrated chemiluminescence detector. ,” Sens. Actuators B. 90, , 1–3  ((2003)).
Zhu  J.-Z., , Zhu  Z.-Q., , Lai  Z.-S., , Wang  R., , Guo  X.-M., , Wu  X.-Q., , Zhang  G.-X., , Zhang  Z.-R., , Wang  Y.-T., , Chen  Z.-Y., “ Planar amperometric glucose sensor based on glucose oxidase immobilized by chitosan film on prussian blue layer. ,” Sensors. 2, , 127–136  ((2002)).
Cha  W., , Tung  Y.-C., , Meyerhoff  M. E., , and Takayama  S., “ Patterned electrode-based amperometric gas sensor for direct nitric oxide detection within microfluidic devices. ,” Anal. Chem.. 82, , 3300–3305  ((2010)).
Fanguy  J. C., and Henry  C. S., “ The analysis of uric acid in urine using microchip capillary electrophoresis with electrochemical detection. ,” Electrophoresis. 23, , 767–773  ((2002)).
Cai  X. X., , Klauke  N., , Glidle  A., , Cobbold  P. H., , Smith  G. L., , and Cooper  J. M., “ Ultra-low-volume, real-time measurements of lactate from the single heart cell using microsystems technology. ,” Anal. Chem.. 74, , 908–914  ((2002)).
Ohgami  N., , Upadhyay  S., , Kabata  A., , Morimoto  K., , Kusakabe  H., , and Suzuki  H., “ Determination of the activities of glutamic oxaloacetic transaminase and glutamic pyruvic transaminase in a microfluidic system. ,” Biosens. Bioelectron.. 22, , 1330–1336  ((2007)).
Suzuki  H., and Matsugi  Y., “ Microfabricated flow system for ammonia and creatinine with an air-gap structure. ,” Sens. Actuators B. 98, , 101–111  ((2004)).
Liu  R. H., , Yang  J.-N., , Lenigk  R., , Bonanno  J., , and Grodzinski  P., “ Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. ,” Anal. Chem.. 76, , 1824–1831  ((2004)).
Grabowska  I., , Sajnoga  M., , Juchniewicz  M., , Chudy  M., , Dybko  A., , and Brzozka  Z., “ Microfluidic system with electrochemical and optical detection. ,” Microelectron. Eng.. 84, , 1741–1743  ((2007)).
Galloway  M., , Stryjewski  W., , Henry  A., , Ford  S. M., , Llopis  S., , McCarley  R. L., , and Soper  S. A., “ Contact conductivity detection in poly(methyl methacylate)-based microfluidic devices for analysis of mono- and polyanionic molecules. ,” Anal. Chem.. 74, , 2407–2415  ((2002)).
Zuborova  M., , Demianova  Z., , Kaniansky  D., , Masar  M., , and Stanislawski  B., “ Zone electrophoresis of proteins on a poly(methyl methacrylate) chip with conductivity detection. ,” J. Chromatogr. A. 990, , 179–188  ((2003)).
Lago  C. L., , Silva  H. D. T., , Neves  C. A., , Brito-Neto  J. G. A., , and Silva  J. A. F., “ A dry process for production of microfluidic devices based on the lamination of laser-printed polyester films. ,” Anal. Chem.. 75, , 3853–3858  ((2003)).
Huang  X.-H., , Zare  R. N., , Sloss  S., , and Ewing  A. G., “ End-column detection for capillary zone electrophoresis. ,” Anal. Chem.. 63, , 189–192  ((1991)).
Wu  Z.-Y., , Fang  F., , Josserand  J., , and Girault  H. H., “ On-column conductivity detection in capillary-chip electrophoresis. ,” Electrophoresis. 28, , 4612–4619  ((2007)).
Hoffmann  E., and Stroobant  V.,  Mass Spectrometry: Principles and Application. , 3rd ed.,  Wiley ,  New York  ((2007)).
Schultz  G. A., , Corso  T. N., , Prosser  S. J., , and Zhang  S., “ A fully integrated monolithic microchip electrospray device for mass spectrometry. ,” Anal. Chem.. 72, , 4058–4063  ((2000)).
Licklider  L., , Wang  X. Q., , Desai  A., , Tai  Y. C., , and Lee  T. D., “ A micromachined chip-based electrospray source for mass spectrometry. ,” Anal. Chem.. 72, , 367–375  ((2000)).
Kameoka  J., , Orth  R., , Ilic  B., , Czaplewski  D., , Wachs  T., , and Craighead  H. G., “ An electrospray ionization source for integration with microfluidics. ,” Anal. Chem.. 74, , 5897–5901  ((2002)).
Miliotis  T., , Kjellstrom  S., , Nilsson  J., , Laurell  T., , Edholm  L. E., , and Marko-Varga  G., “ Capillary liquid chromatography interfaced to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using an on-line coupled piezoelectric flow-through microdispenser. ,” J. Mass Spectrom.. 35, , 369–377  ((2000)).
Liu  J., , Tseng  K., , Garcia  B., , Lebrilla  C. B., , Mukerjee  E., , Collins  S., , and Smith  R., “ Electrophoresis separation in open microchannels. A method for coupling electrophoresis with MALDI-MS. ,” Anal. Chem.. 73, , 2147–2151  ((2001)).
Mok  M. L., , Hua  L., , Phua  J. B., , Wee  M. K., , and Sze  N. S., “ Capillary isoelectric focusing in pseudo-closed channel coupled to matrix assisted laser desorption/ioization mass spectrometry for protein analysis. ,” Analyst (Cambridge, U.K.). 129, , 109–110  ((2004)).
Naik  A. K., , Hanay  M. S., , Hiebert  W. K., , Feng  X. L., , and Roukes  M. L., “ Towards single-molecule nanomechanical mass spectrometry. ,” Nat. Nanotechnol.. 4, , 445–450  ((2009)).
Hardouin  J., , Duchateau  M., , Joubert-Caron  R., , and Caron  M., “ Usefulness of an integrated microfluidic device (HPLC-Chip-MS) to enhance confidence in protein identification by proteomics. ,” Rapid Commun. Mass Spectrom.. 20, , 3236–3244  ((2006)).
Armenta  J. M., , Dawoud  A. A., , and Lazar  L. M., “ Microfluidic chips for protein differential expression profiling. ,” Electrophoresis. 30, , 1145–1156  ((2009)).
Horvatovich  P., , Govorukhina  N. I., , Reijmers  T. H., , van der Zee  A. G. J., , Suits  F., , and Bischoff  R., “ Chip-LC-MS for label-free profiling of human serum. ,” Electrophoresis. 28, , 4493–4505  ((2007)).
Webb  A., “ Nuclear magnetic resonance of mass-limited samples using small RF coils. ,” Anal. Bioanal. Chem.. 388, , 525–528  ((2007)).
Webb  G. A.,  Nuclear Magnetic Resonance. ,  The Royal Society of Chemistry ,  Cambridge  ((2003)).
Bouchard  L.-S., , Burt  S. R., , Anwar  M. S., , Kovtunov  K. V., , Koptyug  I. V., , and Pines  A., “ NMR imaging of catalytic hydrogenation in microreactors with the use of para-hydrogen. ,” Science. 319, , 442–445  ((2008)).
Anwar  M. S., , Hilty  C., , Chu  C., , Bouchard  L.-S., , Pierce  K. L., , and Pines  A., “ Spin Coherence Transfer in Chemical Transformations Monitored by Remote Detection NMR. ,” Anal. Chem.. 79, , 2806–2811  ((2007)).
Telkki  V.-V., , Hilty  C., , Garcia  S., , Harel  E., , and Pines  A., “ Quantifying the diffusion of a fluid through membranes by double phase encoded remote detection magnetic resonance imaging. ,” J. Phys. Chem. B. 111, , 13929–13936  ((2007)).
Mujika  M., , Arana  S., , Castano  E., , Tijero  M., , Vilares  R., , and Ruano-Lopez  J. M., “ Magnetoresisitve immunosensor for the detection of escherichia coli O157:H7. ,” Biosens. Bioelectron.. 24, , 1253–1258  ((2009)).
Tamarin  O., , Comeau  S., , Dejous  C., , Moynet  D., , Riebre  D., , and Beziam  J., “ Design of a bacteriophage model using love acoustic waves. ,” Biosens. Bioelectron.. 18, , 755–763  ((2003)).
Godber  B., , Kevin  S. J., , Thompson  K. S. J., , Rehak  M., , Uludag  Y., , Kelling  S., , Sleptsov  M., , Frogley  M., , Wiehler  K., , Whalen  C., , and Cooper  J. M., “ Direct quantification of analyte concentration by resonant acoustic profiling. ,” Clin. Chem.. 51, , 1962–1972  ((2005)).
Leebeeck  A. D., , Kumar  L. K. S., , Lange  V. D., , Sinton  D., , Gordon  R., , and Frolo  A. G., “ On-chip surface-based detection with nanohole arrays. ,” Anal. Chem.. 79, , 4094–4100  ((2007)).
Ouellet  E., , Lausted  C., , Lin  T., , Yang  C. W. T., , Hood  L., , and Lagally  E. T., “ Parallel microfluidic surface plasmon resonance imaging arrays. ,” Lab Chip. 10, , 581–588  ((2010)).
Heideman  R. G., and Lambeck  P. V., “ Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system. ,” Sens. Actuators B. 61, , 100–127  ((1999)).
Chediak  J. A., , Lou  Z. S., , Seo  J., , Cheung  N., , Lee  L. P., , and Sands  T. D., “ Heterogeneous integration of CdS filters with GaN LEDs for fluorescence detection microsystems. ,” Sens. Actuators, A. 111, , 1–7  ((2004)).
Hsu  S. H., and Huang  Y. T., “ A novel Mach-Zehnder interferometer based on dual-ARROW structures for sensing applications. ,” J. Lightwave Technol.. 23, , 4200–4206  ((2005)).
Berney  H., and Oliver  K., “ Dual polarization interferometry size and density characterization of DNA immobilization and hybridization. ,” Biosens. Bioelectron.. 21, , 618–626  ((2005)).
Lillis  B., , Manning  M., , Berney  H., , Hurley  E., , Mathewson  A., , and Sheehan  M. M., “ Dual polarisation interferometry characterisation of DNA immobilisation and hybridisation detection on a silanised support. ,” Biosens. Bioelectron.. 21, , 1459–1467  ((2006)).
Strehle  K. R., , Cialla  D., , Rosch  P., , Henkel  T., , Kohler  M., , and Popp  J., “ A reproducible surface-enhanced Raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system. ,” Anal. Chem.. 79, , 1542–1547  ((2007)).
Piorek  B. D., , Lee  S. J., , Santiago  J. G., , Moskovits  M., , Banerjee  S., , and Meinhart  C. D., “ Free-surface microfluidic control of surface-enhanced Raman spectroscopy for the optimized detection of airborne molecules. ,” Proc. Natl. Acad. Sci. U.S.A. 104, , 18898–18901  ((2007)).
Tong  L., , Righini  M., , Gonzalez  M. U., , Quidant  R., , and Kall  M., “ Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis. ,” Lab Chip. 9, , 193–195  ((2008)).
Rudenko  M. I., , Holmes  M. R., , Measor  P., , Deamer  D. W., , Hawkins  A. R., , and Schmidt  H., “ Planar electro-optofluidic chip: integration of nanopore with optofluidics. ,” in  Conf. on Lasers and Electro-Optics (CLEO). , Jose  San,  California, article CTuJJ3 ,  Optical Society of America  ((2010)).
Erickson  D., , Rockwood  T., , Emery  T., , Scherer  A., , and Psaltis  D., “ Nanofluidic tuning of photonic crystal circuitry. ,” Opt. Lett.. 31, , 59–61  ((2006)).
Choi  C. J., and Cunningham  B. T., “ A 96-well microplate incorporating a replica molded microfluidic network integrated with photonic crystal biosensors for high throughput kinetic biomolecular interaction analysis. ,” Lab Chip. 7, , 550–556  ((2007)).
Chan  L. L., , Gosangari  S. L., , Watkin  K. L., , and Cunningham  B. T., “ Label-free imaging of cancer cells using photonic crystal biosensors and application to cytotoxicity screening of a natural compound library. ,” Sens. Actuators B. 132, , 418–425  ((2007)).
Schudel  B. R., , Choi  C. J., , Cunningham  B. T., , and Kenis  P. J. A., “ Microfluidic chip for combinatorial mixing and screening of assays. ,” Lab Chip. 9, , 1676–1680  ((2009)).
Kim  H. J., , Kim  S., , Jeon  H., , Ma  J., , Choi  S. H., , Lee  S., , Ko  C., , and Park  W., “ Fluorescence amplification using colloidal photonic crystal platform in sensing dye-labeled deoxyribonucleic acids. ,” Sens. Actuators B. 124, , 147–152  ((2007)).
Wu  J., , Day  D., , and Gu  M., “ A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal. ,” Appl. Phys. Lett.. 92, , 071108  ((2008)).
Loncar  M., , Scherer  A., , and Qiu  Y. M., “ Photonic crystal laser sources for chemical detection. ,” Appl. Phys. Lett.. 82, , 4648–4650  ((2003)).
Adams  M. L., , Loncar  M., , Scherer  A., , and Qiu  Y. M., “ Microfluidic integration of porous photonic crystal nanolasers for chemical sensing. ,” IEEE J. Sel. Areas Commun.. 23, , 1348–1354  ((2005)).
Hanumegowda  N. M., , White  I. M., , Oveys  H., , and Fan  X., “ Label-free protease sensors based on optical microsphere resonators. ,” Sens. Lett.. 3, , 315–319  ((2005)).
Noto  M., , Koshsima  M., , Keng  D., , Teraoka  I., , Kolchenko  V., , and Arnold  S., “ Molecular weight dependence of a whispering gallery mode biosensor. ,” Appl. Phys. Lett.. 87, , 223901  ((2005)).
Hanumegowda  N. M., , Stica  C. J., , Patel  B. C., , White  I. M., , and Fan  X., “ Refractometric sensors based on microsphere resonators. ,” Appl. Phys. Lett.. 87, , 201107  ((2005)).
Lin  Y., , Ilchenko  V. S., , Nadeau  J., , and Maleki  L., “ Biochemical detection with optical whispering-gallery resonators. ,” Proc. SPIE. 6452, , 64520U  ((2007)).
Westcott  S. L., , Zhang  J., , Shelton  R. K., , Bruce  N. M. K., , Gupta  S., , Keen  S. L., , Tillman  J. W., , Wald  L. B., , Strecker  B. N., , Rosenberger  A. T., , Davidson  R. R., , Chen  W., , Donovan  K. G., , and Hryniewicz  J. V., “ Broadband optical absorbance spectroscopy using a whispering gallery mode microsphere resonator. ,” Rev. Sci. Instrum.. 79, , 033106  ((2008)).
Arnold  S., , Ramjit  R., , Keng  D., , Kolchenko  V., , and Teraoka  I., “ Microparticle photophysics illuminates viral bio-sensing. ,” Faraday Discuss. 137, , 65–83  ((2008)).
Keng  D., , McAnanama  S. R., , Teraoka  I., , and Arnold  S., “ Resonance fluctuations of a whispering gallery mode biosensor by particles undergoing Brownian motion. ,” Appl. Phys. Lett.. 91, , 103902  ((2007)).
Eriksson  E., , Scrimgeour  J., , Enger  J., , and Goksor  M., “ Holographic optical tweezers combined with a microfluidic device for exposing cells to fast environmental changes. ,” Proc. SPIE. 6592, , 65920P  ((2007)).
Mushfique  H., , Leach  J., , Yin  H., , Leonardo  R. D., , Padgett  M. J., , and Cooper  J. M., “ 3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers. ,” Anal. Chem.. 80, , 4237–4240  ((2008)).
Wu  J., , Day  D., , and Gu  M., “ Shear stress mapping in microfluidic devices by optical tweezers. ,” Opt. Express. 18, , 7611–7616  ((2010)).
Hunt  D. F., , Yates  J. R.  III, , Shabanowitz  J., , Winston  S., , and Hauer  C. R., “ Protein sequencing by tandem mass spectrometry. ,” Proc. Natl. Acad. Sci. U.S.A. 83, , 6233–6237  ((1986)).
Cheng  S.-F., and Chau  L.-K., “ Colloidal gold-modified optical fiber for chemical and biochemical sensing. ,” Anal. Chem.. 75, , 16–21  ((2003)).
Chuang  Y., , Lee  C.-Y., , Lu  S.-H., , Wang  S.-C., , Chau  L.-K., , and Hsieh  W.-H., “ Using ac-field-induced electro-osmosis to accelerate biomolecular binding in fiber-optic sensing chips with microstructures. ,” Anal. Chem.. 82, , 1123–1127  ((2010)).
Hou  D., , Maheshwari  S., , and Chang  H.-C., “ Rapid bioparticle concentration and detection by combining a discharge driven vortex with surface enhanced Raman scattering. ,” Biomicrofluidics. 1, , 014106  ((2007)).
Ameling  R., , Langguth  L., , Hentschel  M., , Mesch  M., , Braun  P. V., , and Giessen  H., “ Cavity-enhanced localized plasmon resonance sensing. ,” Appl. Phys. Lett.. 97, , 253116  ((2010)).
Uchiyama  K., , Nakajima  H., , and Hobo  T., “ Detection methods for microchip separations. ,” Anal. Bioanal. Chem.. 379, , 375–382  ((2004)).
Yeung  S. H. I., , Seo  T. S., , Crouse  C. A., , Greenspoon  S. A., , Chiesl  T. N., , Ban  J. D., , and Mathies  R. A., “ Fluorescence energy transfer-labeled primers for high-performance forensic DNA profiling. ,” Electrophoresis. 29, , 2251–2259  ((2008)).
Ranasinghe  R. T., and Brown  T., “ Ultrasensitive fluorescence-based methods for nucleic acid detection: towards amplification-free genetic analysis. ,” Chem. Commun. (Cambridge). 47, , 3717–3735  ((2011)).
Bruck  R., , Melnik  E., , Muellner  P., , Hainberger  R., , and Lammerhofer  M., “ Integrated polymer-based Mach-Zehnder interferometer label-free streptavidin biosensor compatible with injection molding. ,” Biosens. Bioelectron.. 26, , 3832–3837  ((2011)).
Estrela  P., , Paul  D., , Song  Q.-F., , Stadler  L. K. J., , Wang  L., , Huq  E., , Davis  J. J., , Ferrigno  P. K., , and Migliorato  P., “ Label-free sub-picomolar protein detection with field-effect transistors. ,” Anal. Chem.. 82, , 3531–3536  ((2010)).
Endo  T., , Ikeda  D., , Yawakami  Y., , Yanagida  Y., , and Hatsuzawa  T., “ Fabrication of core-shell structured nanoparticle layer substrate for excitation of localized surface plasmon resonance and its optical response for DNA in aqueous conditions. ,” Anal. Chim. Acta. 661, , 200–205  ((2010)).
Choi  D., , Kang  T., , Cho  H., , Choi  Y., , and Lee  L. P., “ Additional amplifications of SERS via an optofluidic CD-based platform. ,” Lab Chip. 9, , 239–243  ((2009)).
Liang  W., , Huang  Y., , Xu  Y., , Lee  R. K., , and Yariv  A., “ Highly sensitive fiber Bragg grating refractive index sensors. ,” Appl. Phys. Lett.. 86, , 151122  ((2009)).
Markos  C., , Yuan  W., , Vlachos  K., , Town  G. E., , and Bang  O., “ Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers. ,” Opt. Express. 19, , 7790–7798  ((2010)).
White  I. M., , Oveys  H., , and Fan  X.-D., “ Liquid-core optical ring-resonator sensors. ,” Opt. Lett.. 31, , 1319–1321  ((2006)).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Related Book Chapters

Topic Collections

Advertisement
  • Don't have an account?
  • Subscribe to the SPIE Digital Library
  • Create a FREE account to sign up for Digital Library content alerts and gain access to institutional subscriptions remotely.
Access This Article
Sign in or Create a personal account to Buy this article ($20 for members, $25 for non-members).
Access This Proceeding
Sign in or Create a personal account to Buy this article ($15 for members, $18 for non-members).
Access This Chapter

Access to SPIE eBooks is limited to subscribing institutions and is not available as part of a personal subscription. Print or electronic versions of individual SPIE books may be purchased via SPIE.org.