Display Formula
$\mathcal{F}1=F21(\u22121+2p\u2212\alpha 4p,\u22121+2p+\alpha 4p;1\u221212p;nc\u2212nsnc)$
Display Formula$\mathcal{F}2=F21(1+2p\u2212\alpha 4p,1+2p+\alpha 4p;1+12p;nc\u2212nsnc)$
Display Formula$\mathcal{F}3=F21(\u22121+6p+\alpha 4p,\u22121+6p\u2212\alpha 4p;2\u221212p;nc\u2212nsnc)$
Display Formula$\mathcal{F}4=F21(1+6p\u2212\alpha 4p,1+6p+\alpha 4p;2\u221212p;nc\u2212nsnc)$
Display Formula$\mathcal{F}5=F21(1+2p\u2212\alpha 4p,1+6p\u2212\alpha 4p;1+12p;nc\u2212nsnc)$
Display Formula$\mathcal{F}6=F21(\u22121+6p+\beta 4p,1+6p\u2212\beta 4p;2\u221212p;nc\u2212nsnc)$
Display Formula$\mathcal{F}7=F21(1+6p\u2212\beta 4p,1+6p+\beta 4p;2+12p;nc\u2212nsnc)$
Display Formula$\mathcal{F}8=F21(1+2p\u2212\beta 4p,1+2p+\beta 4p;1+12p;nc\u2212nsnc)$
Display Formula$\mathcal{F}9=F21(\u22121+2p+\beta 4p,\u22121+2p\u2212\beta 4p;1\u221212p;nc\u2212nsnc)$
Display Formula$\mathcal{F}10=F21(\u22121+2p\u2212\beta 4p,\u22121+2p+\beta 4p;1\u221212p;nc\u2212nsnc)$
Display Formula$\gamma 1=nc\u2212nsnc(1+2p)2\u2212\alpha 28p+4$
Display Formula$\gamma 2=nc\u2212nsnc(1\u22122p)2\u2212\alpha 28p\u22124$
Display Formula$\gamma 3=nc\u2212nsnc(1+2p)2\u2212\beta 28p+4$
Display Formula$\gamma 4=nc\u2212nsnc(1\u22122p)2\u2212\beta 28p\u22124$
Display Formula$AGRIN=ns[\gamma 4Ta(\gamma 1\mathcal{F}4+\mathcal{F}5)\mathcal{F}6+\gamma 2Tp\mathcal{F}3(\gamma 3\mathcal{F}7+\mathcal{F}8)]TaTp[\gamma 2\mathcal{F}2\mathcal{F}3\u2212\mathcal{F}1(\gamma 1\mathcal{F}4+\mathcal{F}5)]$
Display Formula$Aa=\gamma 4Ta\mathcal{F}2\mathcal{F}6+Tp\mathcal{F}1(\gamma 3\mathcal{F}7+\mathcal{F}8)Tp[\mathcal{F}1(\gamma 1\mathcal{F}4+\mathcal{F}5)\u2212\gamma 2\mathcal{F}2\mathcal{F}3]$
Display Formula$Ap=\gamma 2Tp\mathcal{F}3\mathcal{F}8+Ta(\gamma 1\mathcal{F}4+\mathcal{F}5)\mathcal{F}9Ta[\mathcal{F}1(\gamma 1\mathcal{F}4+\mathcal{F}5)\u2212\gamma 2\mathcal{F}2\mathcal{F}3]$
Display Formula$Ad=Tp\mathcal{F}1\mathcal{F}8+Ta\mathcal{F}2\mathcal{F}9(\mathcal{F}1\gamma 1\mathcal{F}4+\mathcal{F}5)\u2212\gamma 2\mathcal{F}2\mathcal{F}3$
Display Formula$Bf=\u2212Ta\mathcal{F}10(\gamma 1\mathcal{F}4+\mathcal{F}5)+\gamma 2Tp\mathcal{F}3\mathcal{F}8Ta(\gamma 2\mathcal{F}2\mathcal{F}3\u2212\gamma 1\mathcal{F}1\mathcal{F}4\u2212\mathcal{F}1\mathcal{F}5)+ns\u2212naqunsRaTa\mathcal{F}10\mathcal{F}2+Tp\mathcal{F}1\mathcal{F}8\gamma 2\mathcal{F}2\mathcal{F}3\u2212\gamma 1\mathcal{F}1\mathcal{F}4\u2212\mathcal{F}1\mathcal{F}5$