Research Papers: General

On involvement of transcription factors nuclear factor kappa-light-chain-enhancer of activated B cells, activator protein-1 and signal transducer and activator of transcription-3 in photodynamic therapy-induced death of crayfish neurons and satellite glial cells

[+] Author Affiliations
Elena Berezhnaya, Marya Neginskaya, Vera Kovaleva, Svetlana Sharifulina, Irina Ischenko, Maxim Komandirov, Mikhail Rudkovskii, Anatoly B. Uzdensky

Southern Federal University, Academy of Biology and Biotechnology, 194/1 Stachky Prospect, Rostov-on-Don 344090, Russia

J. Biomed. Opt. 20(7), 075004 (Jul 09, 2015). doi:10.1117/1.JBO.20.7.075004
History: Received March 18, 2015; Accepted June 8, 2015
Text Size: A A A

Abstract.  Photodynamic therapy (PDT) is currently used in the treatment of brain tumors. However, not only malignant cells but also neighboring normal neurons and glial cells are damaged during PDT. In order to study the potential role of transcription factors—nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), activator protein (AP-1), and signal transducer and activator of transcription-3 (STAT-3)—in photodynamic injury of normal neurons and glia, we photosensitized the isolated crayfish mechanoreceptor consisting of a single sensory neuron enveloped by glial cells. Application of different inhibitors and activators showed that transcription factors NF-κB (inhibitors caffeic acid phenethyl ester and parthenolide, activator betulinic acid), AP-1 (inhibitor SR11302), and STAT-3 (inhibitors stattic and cucurbitacine) influenced PDT-induced death and survival of neurons and glial cells in different ways. These experiments indicated involvement of NF-κB in PDT-induced necrosis of neurons and apoptosis of glial cells. However, in glial cells, it played the antinecrotic role. AP-1 was not involved in PDT-induced necrosis of neurons and glia, but mediated glial apoptosis. STAT-3 was involved in PDT-induced apoptosis of glial cells and necrosis of neurons and glia. Therefore, signaling pathways that regulate cell death and survival in neurons and glial cells are different. Using various inhibitors or activators of transcription factors, one can differently influence the sensitivity and resistance of neurons and glial cells to PDT.

Figures in this Article
© 2015 Society of Photo-Optical Instrumentation Engineers

Citation

Elena Berezhnaya ; Marya Neginskaya ; Vera Kovaleva ; Svetlana Sharifulina ; Irina Ischenko, et al.
"On involvement of transcription factors nuclear factor kappa-light-chain-enhancer of activated B cells, activator protein-1 and signal transducer and activator of transcription-3 in photodynamic therapy-induced death of crayfish neurons and satellite glial cells", J. Biomed. Opt. 20(7), 075004 (Jul 09, 2015). ; http://dx.doi.org/10.1117/1.JBO.20.7.075004


Access This Article
Sign in or Create a personal account to Buy this article ($20 for members, $25 for non-members).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Related Book Chapters

Topic Collections

PubMed Articles
Advertisement
  • Don't have an account?
  • Subscribe to the SPIE Digital Library
  • Create a FREE account to sign up for Digital Library content alerts and gain access to institutional subscriptions remotely.
Access This Article
Sign in or Create a personal account to Buy this article ($20 for members, $25 for non-members).
Access This Proceeding
Sign in or Create a personal account to Buy this article ($15 for members, $18 for non-members).
Access This Chapter

Access to SPIE eBooks is limited to subscribing institutions and is not available as part of a personal subscription. Print or electronic versions of individual SPIE books may be purchased via SPIE.org.