Paper
25 October 1999 Analysis of bone protein and mineral composition in bone disease using synchrotron infrared microspectroscopy
Lisa M. Miller, David Hamerman, Mark R. Chance, Cathy S. Carlson
Author Affiliations +
Abstract
Infrared (IR) microspectroscopy is an analytical technique that is highly sensitive to the chemical components in bone. The brightness of a synchrotron source permits the examination of individual regions of bone in situ at a spatial resolution superior to that of a conventional infrared source. At Beamlines U10B and U2B at the National Synchrotron Light Source, we are examining the role of bone chemical composition in bone disease. In osteoarthritis (OA), it has been demonstrated that the bone underlying the joint cartilage (subchondral bone) becomes thickened prior to cartilage breakdown. Using synchrotron infrared microspectroscopy, we have examined the chemical composition of the subchondral bone in histologically normal and OA monkeys. Results demonstrate that the subchondral bone of OA monkeys is significantly more mineralized than the normal bone, primarily due to an increase in carbonate concentration in the OA bone. High resolution analysis indicates that differences in carbonate content are uniform throughout the subchondral bone region, suggesting that high subchondral bone carbonate may be a marker for OA. Conversely, increases in phosphate content are more pronounced in the region near the marrow space, suggesting that, as the subchondral bone thickens, the bone also becomes more mineralized. Osteoporosis is a disease characterized by a reduction in bone mass and a skeleton that is more susceptible to fracture. To date, it is unclear whether bone remodeled after the onset of osteoporosis differs in chemical composition from older bone. Using fluorescence-assisted infrared microspectroscopy, we are comparing the composition of monkey bone remodeled at various time points after the onset of osteoporosis (induced by ovariectomy). We find that the chemical composition of bone remodeled one year after ovariectomy and one year prior to necropsy is similar to normal bone. On the other hand, bone remodeled two years after ovariectomy is less mature, indicated by lower mineral/protein ratios and higher acid phosphate content. This immature bone may also be a symptom of slower bone formation rates related to estrogen deficiency.
© (1999) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Lisa M. Miller, David Hamerman, Mark R. Chance, and Cathy S. Carlson "Analysis of bone protein and mineral composition in bone disease using synchrotron infrared microspectroscopy", Proc. SPIE 3775, Accelerator-based Sources of Infrared and Spectroscopic Applications, (25 October 1999); https://doi.org/10.1117/12.366634
Lens.org Logo
CITATIONS
Cited by 9 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Bone

Infrared radiation

Carbonates

Minerals

Proteins

Synchrotrons

Cartilage

Back to Top