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Abstract. Accurate data on in vivo tissue optical properties in the
ultraviolet A (UVA) to visible (VIS) range are needed to elucidate light
propagation effects and to aid in identifying safe exposure limits for
biomedical optical spectroscopy. We have performed a preliminary
study toward the development of a diffuse reflectance system with
maximum fiber separation distance of less than 2.5 mm. The ultimate
objective is to perform endoscopic measurement of optical properties
in the UVA to VIS. Optical property sets with uniformly and randomly
distributed values were developed within the range of interest: ab-
sorption coefficients from 1 to 25 cm−1 and reduced scattering coef-
ficients from 5 to 25 cm−1. Reflectance datasets were generated by
direct measurement of Intralipid-dye tissue phantoms at l=675 nm
and Monte Carlo simulation of light propagation. Multivariate calibra-
tion models were generated using feed-forward artificial neural net-
work or partial least squares algorithms. Models were calibrated and
evaluated using simulated or measured reflectance datasets. The most
accurate models developed—those based on a neural network and
uniform optical property intervals—were able to determine absorption
and reduced scattering coefficients with root mean square errors of
62 and 63 cm−1, respectively. Measurements of ex vivo bovine liver
at 543 and 633 nm were within 5 to 30% of values reported in the
literature. While our technique for determination of optical properties
appears feasible and moderately accurate, enhanced accuracy may be
achieved through modification of the experimental system and pro-
cessing algorithms. © 2003 Society of Photo-Optical Instrumentation Engineers.
[DOI: 10.1117/1.1559487]
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1 Introduction
Extensive efforts are being made to develop minimally inva-
sive optical diagnostic devices that improve patient care. To
maximize the impact of novel techniques, such as
fluorescence-based detection of neoplastic lesions, it is nece
sary to consider the effects of tissue optics phenomena. Accu
rate measurements ofin situ tissue optical properties in the
ultraviolet A ~UVA, 320 to 400 nm! and visible~VIS, 400 to
750 nm! ranges are necessary to enable characterization o
light propagation effects in tissue during fluorescence spec
troscopy. This information is also essential to quantify fluence
and energy deposition distributions in tissue—information
that can be used to elucidate the mechanisms of optical de
vices and identify safe exposure levels for internal tissues.

The three properties that are most important for describing
the propagation of light in tissue are the absorption(ma),
scattering(ms), and anisotropy~g! coefficients, although to
reduce complexity, the latter two parameters are often lumpe
into a reduced scattering coefficient$ms85ms(12g)%. This
equation is useful for calculating optically equivalent pairs of
ms andg and is valid for many biological tissues.1 Although
the literature contains a wealth of data onex vivotissue opti-
cal properties, there is a lack of information regardingin situ
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optical properties of human tissue, particularly for orga
such as the lungs and colon that are accessible by mo
endoscopic instruments.

Determination of tissue optical properties using diffuse
flectance is well established, however, approaches for sig
detection and data processing have varied widely.2 A common
approach that has been shown to be highly successful in
mating optical properties involves development of a pred
tive empirical model through three essential steps: 1. gen
tion of steady-state spatially resolved reflectance data
model calibration through modeling or experimental a
proaches, 2. development of an inverse model by multivar
calibration, and 3. application of the trained model to u
known samples to predict the optical properties. Popular
merical methods for simulating reflectance profiles for mo
calculations include the diffusion approximation to the tran
port equation,3 and the Monte Carlo method.4,5 Alternatively,
reflectance can be measured in well-characterized tissue p
toms over a range of optical properties.6 Reflectance measure
ments are typically performed with multiple-channel fiber o
tic bundles, which deliver light to the tissue surface a
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Reflectance-Based Determination . . .
collect reflectance at two or more well-defined distances from
the source fiber. The source-collection separation distance
used in prior studies range from several millimeters to
centimeters.7–9 Empirical modeling has been performed using
a variety of multivariate calibration techniques including neu-
ral networks ~NN!,3,4,10 fuzzy logic,5 and regression.6 The
method of partial least squares~PLS! has seen widespread
application to tissue for quantification of tissue
constituents11–14 and was recently shown to be effective in
determining tissue optical properties from frequency-domain
measurements.15 Thus, PLS may provide an alternative means
for estimating optical properties from steady-state, spatially
resolved reflectance that is as accurate as neural networks, a
has the additional benefit of generating loading vectors, which
provide quantitative insight into a model.

The present investigation is distinguished from prior stud-
ies in its combined use of an optical property range relevant t
light-tissue interaction in the UVA to VIS and an illumination/
collection geometry involving small fiber separation dis-
tances. Limited data in the literature indicate that for gas-
trointestinal mucosal tissues in the UVA to VIS,ma ranges
from 0.3 to 25cm21 andms8 ranges from 5 to 20cm21.16–19

These values, especially forma , are significantly higher than
the optical properties studied in many previous fiber-base
optical property studies, which were geared toward photon
migration or other applications that involve wavelengths in
the upper visible to near-infrared range. Given the high leve
of attenuation in the wavelength range most relevant to fluo
rescence spectroscopy, the large source-detector separat
distances used in previous studies are not very practical. An
other constraint is the size of the instrument channel throug
which an endoscopic probe is delivered. Gastroscope instru
ment channel diameters are typically 2.0 to 2.8 mm~Olym-
pus, Karl Storz!, which complicates the implementation of
large fiber separation distances.

The goal of the study presented here is to examine th
performance of two multivariate calibration techniques, par-
tial least squares~PLS! and the more well-established neural
network~NN! approach for predicting optical properties. This
is carried out using an endoscope-compatible geometry ove
an optical property range that is consistent within vivo tissue
in the UVA to VIS. This process involves performing Monte
Carlo simulations, creating data processing algorithms base
on the NN and PLS techniques, and measuring reflectance
tissue phantoms and biological tissue. Experimental and com
putational results are analyzed and discussed in regards to t
accuracy of specific models and the optimization of our ap
proach to optical property determination.

2 Methods
This investigation followed the three general steps mentione
in Sec. 1: generation of calibration data, development of in
verse models, and estimation of optical properties from reflec
tance data. We studied all permutations of four sets of cali
bration data, two processing approaches, and four evaluatio
datasets~identical to the calibration datasets!.

2.1 Optical Property Sets
The first task in this study was to generate radial reflectanc
distributions for a large number of optical property(ma ,ms8)
s
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combinations. Two lists, each containing 30 optical prope
pairs, were developed: a ‘‘uniform’’ list includingma values
of 1, 5, 10, 15, 20, and 25cm21 andms8 values of 5, 10, 15,
20, and 25cm21; as well as a ‘‘random’’ list generated usin
a uniform random distribution over ama range of 1 to 25
cm21 and ams8 range of 5 to 25cm21. One simulated and one
experimentally determined radial distribution were genera
for each optical property pair. The resulting 120 distributio
were divided into four datasets labeled by how the opti
property pair and the radial distribution were develop
~simulated uniform, simulated random, measured uniform
measured random!.

2.2 Simulation of Reflectance Data
A weighted photon Monte Carlo model of light transport w
developed to calculate radial reflectance distributions
given optical property pairs(ma ,ms8).

3,4 A brief overview of
the Monte Carlo method is provided here, while excelle
detailed coverage is available elsewhere.20,21 This technique
involves the repeated generation of random numbers and
culation of stochastic relations to simulate the random walk
a large number of individual photons as they propag
through tissue. These relations are used to calculate pa
eters such as the angle and location of photon launch, the
size between scattering events, the angle of scatter, refrac
reflection at surfaces, and photon termination. Photons w
launched in a uniform distribution over all positions on
circle representing the fiber face, as well as in a uniform d
tribution over all angles within the cone specified byNA
5nisinu, where NA is the numerical aperture,ni is the index
of refraction of the tissue, andu is the exit angle~measured
from the normal to the tissue surface!. To replicate the condi-
tions of the tissue phantom measurements, simulations in
porated a fiber NA of 0.22 and a fiber index of refraction
1.45. It should also be noted that the index of refraction
water (ni51.37) was used both because of the high wa
content of the Intralipid solutions and to approximate the
dex of refraction of liver tissue.22 For all simulations, thems

value used in Monte Carlo algorithms was calculated fromms8
and ag of 0.9. This value ofg is within the range that is
relevant for tissue. Photons exiting the tissue at the surf
were subjected to a similar angular restriction prior to det
tion. The location of ‘‘detected’’ photons were recorded
radial bins 0.025 mm in width.

2.3 Tissue Phantoms Measurements
Diagrams of the experimental setup and fiber optic probe u
to perform diffuse reflectance measurements are presente
Fig. 1. For all tissue phantom measurements, the source w
temperature-controlled, 675-nm laser diode~Edmund Indus-
trial Optics, Barrington, New Jersey! with a power level of 5
mW. This source was used due to its low cost, stability, a
ease of comparison with prior studies. For the phantom m
surements, actual wavelength is much less important than
optical property range, which was made to correspond to b
logical tissues in the UVA to VIS range. The input power w
adjusted with neutral density filters. A custom-designed fi
optic probe~FiberTech Optica, Ontario, Canada! was used to
deliver light from the source to the sample and guide diffu
reflectance from the sample to the detector. All fibers ha
Journal of Biomedical Optics d April 2003 d Vol. 8 No. 2 207
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Pfefer et al.
Fig. 1 Diagram of (a) experimental setup and (b) fiber optic probe
face. Illumination and collection fibers on probe face are represented
by shaded and nonshaded circles, respectively.
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core diameter of 0.2 mm and an NA of 0.22. The source leg o
the probe consisted of a single fiber, while the detection leg
consisted of six fibers spaced at center-to-center distances
0.23, 0.67, 1.12, 1.57, 2.01, and 2.46 mm from the sourc
fiber ~labeledn51 to n56!. The remaining area of the probe
face was blackened to minimize reflections. The probe wa
submersed in liquid phantom material contained in a cuvett
that was large enough to provide a semi-infinite medium—no
change in reflectance was produced when larger cuvette siz
were used. The detection leg terminated at an inverted micro
scope~Diavert, Leitz, Germany! with the output imaged onto
a CCD camera~Model CH250, Photometrics, Tuscon, Ari-
zona!. Images were acquired and stored on a personal com
puter. The linearity of the CCD images was verified using a
power meter~Labmaster, Coherent, Incorporated, Santa Clara
California!.

Tissue phantoms were generated for each of the 60 optic
property pairs on the uniform and random lists. These phan
toms were created by combining varying concentrations of a
scatterer~Intralipid®, Baxter Healthcare Corporation, Deer-
field, Illinois!, an absorber~N-4754, Water Soluble Nigrosin,
Sigma Chemical Company, Saint Louis, Missouri!, and dis-
tilled water. Absorption coefficients were determined based on
a ma of 34 cm21 for a stock nigrosin solution at 675 nm, as
determined from transmission measurements. Scattering coe
ficients were determined through linear scaling given ams8 of
18 cm21 at 675 nm for a 15% concentration of the stock 10%
Intralipid, as calculated from spectrophotometer measure
ments and the inverse adding doubling technique,23 assuming
that g50.72.24

It should be noted that whileg50.72 represents a highly
forward-scattering medium, it is outside the range ofg values
208 Journal of Biomedical Optics d April 2003 d Vol. 8 No. 2
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(g>0.9) indicated by Graff et al.1 for validity with the simi-
larity relation. In a prior study, Kienle et al.4 evaluated the
validity of invoking the similarity relation1 for Liposyn
samples for which ag of 0.8 was measured by performin
Monte Carlo calculations using differentg values but the
samems8 . In this prior study, the maximum difference in re
flectance between theg50.8 case andg50.95 cases was
found to be 8%. We performed results that indicated excel
agreement between reflectance distributions calculated
g50.9 and 0.72 over most of the optical property range a
for all fibers. These results are consistent with a prior stu
that analyzed distributions for values ofg from 0.7 to 0.99.9

2.4 Development of Inverse Models
Raw reflectance data from computational or experimental
sults were preprocessed as follows:

Sn52 log~Rn /R1!, ~1!

whereRn is the reflectance intensity collected by fiber numb
n ~from 1 to 6!. This formulation was used to convert absolu
data to normalized profiles, reduce variation from several
ders of magnitude to less than one, and ensure that all va
were positive. Distributions ofS were used to calibrate mod
els for estimating optical parameters. PLS and NN approac
were used to develop these inverse solution models. Calc
tions were performed using the MATLAB® software packa
~The MathWorks, Incorporated, Natick, Massachusetts! with
Neural Networks and Chemometrics toolbox routines.

The method of PLS has been reviewed previously.11,12This
approach involves the determination of a calibration matrixB,
by regression between the two matricesX and Y that repre-
sent the reflectance and corresponding optical property m
ces, respectively. The matrixX containsm55 columns of
reflectance data~representing five fiber locations!. The matrix
Y contains p52 columns ~the two optical properties tha
characterize each sample!. The PLS algorithm employs a sin
gular value decomposition function to iteratively decompo
the optical property and reflectance data and form a mo
matrix B:

Y
n3p

5 X
n3m

B
m3p

, ~2!

such that then rows of X andY contain information aboutn
samples. The elements ofB describe the linear PLS mode
relating the distribution ofS to absorption and scattering co
efficients. The steps used to calculateB are detailed by
Malinowski.25 Cross-validation of the algorithm was then pe
formed to evaluate its performance and select the approp
number of factors for the model. In all cases, either three
four factors were identified and subsequently used in
model. The use of additional factors did not significantly im
prove prediction accuracy.

The NN algorithm involved a feed-forward backpropag
tion network based on a Levenburg-Marquardt traini
function.26,27The input layer had five nodes, corresponding
the five nonzeroS values, and the output layer contained tw
nodes, one for each of the two optical properties predicted
hyperbolic tangent sigmoid transfer function was used in
hidden layer and a linear transfer function in the outer lay
Training of the network necessitated dividing the calibrati
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Table 1 Evaluation of optical property estimation models generated using a neural network (NN) ap-
proach. The root mean square error (true versus predicted values) for absorption and reduced scattering
coefficients is presented for all 16 combinations of calibration and validation data sets.

Case # Calibration dataset Validation dataset Model type
RMSE-

ma (cm−1)
RMSE-

ms8 (cm−1)

1 Simulated-uniform Self-validation NN 0.66 1.23

2 Simulated-random NN 0.54 1.95

3 Measured-uniform NN 2.30 3.44

4 Measured-random NN 1.58 2.35

5 Simulated-random Simulated-uniform NN 1.50 2.53

6 Self-validation NN 0.98 1.91

7 Measured-uniform NN 1.61 4.17

8 Meausred-random NN 1.32 2.68

9 Measured-uniform Simulated-uniform NN 1.77 2.91

10 Simulated-random NN 1.19 2.31

11 Self-validation NN 1.37 2.88

12 Measured-random NN 1.35 2.87

13 Measured-random Simulated-uniform NN 1.25 3.61

14 Simulated-random NN 0.87 2.44

15 Measured-uniform NN 1.42 2.96

16 Self-validation NN 0.94 1.61
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data into three subsets. Approximately half of the calibration
data was used for the training set, a quarter for the validatio
set, and a quarter for the testing set. The algorithm employe
a validation set to terminate training early if the model per-
formance failed to improve over several iterations, and used
testing set to verify that the network was generalizing well.
Typically, algorithm training was terminated when improve-
ments in model performance slowed to a minimal level.

2.5 Measurements of Ex Vivo Tissue
Further evaluation of our approach to optical property deter
mination was performed usingex vivo biological tissue
samples. Bovine liver samples were interrogated due to the
relative homogeneity and evidence that their optical proper
ties would be within the range of interest.28,29 Measurements
were performed on fresh tissue purchased from a local marke
and were approximately 48-h post mortem at the time of use
The tissue was refrigerated and wrapped in plastic to mini
mize water and blood loss. The experimental setup was iden
tical to that shown in Fig. 1, with the exception that two
different sources were used: helium neon lasers at wave
lengths of 543 and 633 nm~Models 1508 and 1653, JDS
r

t
.

-

-

Uniphase, San Jose, California!. Laser power delivered to the
tissue was 0.3 mW at 543 nm and 0.05 mW at 633 nm.
each wavelength, two measurements were taken at eac
three different locations. Reflectance data were processe
described previously. For each measurement, the distribu
S was then used as input to the NN model developed fr
simulated reflectance data with uniform optical propert
~Table 1, cases 1 to 4!. Optical property estimations wer
compared to corresponding data from the literature.

3 Results
3.1 Light Transport Simulations
A Monte Carlo simulation was performed for each of the
optical property pairs in the uniform and random sets. S
lected results from the uniform set are presented in Fig. 2
illustrate the effect of absorption and scattering coefficients
radial reflectance distributions. In these graphs, the effec
each optical property—ma in Fig. 2~a! andms8 in Fig. 2~b!—is
isolated by holding the other optical property constant a
moderate level. Characteristic changes are evident for bothma

andms8 . As ma increased, there was a monotonic increase
Journal of Biomedical Optics d April 2003 d Vol. 8 No. 2 209
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Fig. 2 Selected radial reflectance results from simulations. Graphs il-
lustrate the effect of optical properties on radial reflectance. Graph (a)
demonstrates the effect of ma when ms8510 cm−1, whereas (b) dem-
onstrates the effect of ms8 when ma510 cm−1.
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S at all fiber positions and the slope of the curve increased
dramatically. The magnitude of changes inS due toma was
relatively constant asma increased. Distributions ofS were
more weakly influenced by changes inms8 . At n52 ~r50.67!,
ms8 had minimal influence onS, whereas the other collection
fibers showed variations inS that increased with distance
from the source fiber. The magnitude of these changes wa
greatest at higherms8 levels. Whilems8 caused an increase in
slope, this change was smaller in magnitude than that pro
duced forma .

3.2 Optical Property Estimation Models
Each of the four datasets were implemented in NN and PLS
routines to calibrate models that were, in turn, evaluated usin
the same four datasets. Prediction error for each calibration
validation pair was quantified using the root mean square o
the residuals, or the root mean square error~RMSE!:

RMSE5F 1

m (
i 51

m

~mpred,i2m true,i !
2G1/2

,

wherepred refers to the model’s prediction,true refers to the
actual optical property value, andm indicates the total number
210 Journal of Biomedical Optics d April 2003 d Vol. 8 No. 2
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of data points in a set~in this case,m530!. For each calibra-
tion dataset, a single self-validation and three other vali
tions were performed. Tables that summarize the model ev
ation results are provided for both PLS~Table 2! and NN
~Table 1! approaches. Several trends in the accuracy of opt
property estimations are evident in these tables: 1. predic
accuracy was greater forma thanms8 ~the average RMSE for
all models was 1.46 forma and 3.10 forms8); 2. NN models
were more accurate than PLS models; and 3. the RMSE
ues of self-validation cases tended to be relatively low,
was often not the lowest for any particular calibration datas

Detailed examination of prediction results for individu
models~Figs. 3 and 4! provides additional insights into the
optical property estimation process. Cases 1 and 4 in the t
of NN results~Table 1! represent the self-validation case an
independent evaluation against experimental data for on
the most accurate models developed in this study. The gra
of case 1 results in Figs. 3~a! and 3~b! reveal minimal levels
of error throughout thema range, but greater inaccuracy fo
ms8 , especially atms8525 cm21. Case 4 results in Figs. 3~c!
and 3~d! also indicate thatms8 was more difficult to predict
than ma . Figure 3~c! contains two obviously erroneous pre
dictions of negativema values. Poor estimates were not u
common for samples with true optical properties near
edge of the calibration range. The graphs in Fig. 4 illustr
ms8 results for cases~a! 16 and~b! 15, respectively, in Table 1
Both of these graphs contain points that represent poor e
mations by the model. The true optical properties of the o
lier in Fig. 4~a! werema522.8 cm21, ms8523.6 cm21, and
for the two apparent outliers in Fig. 4~b!, ma525 cm21, ms8
55 cm21, andma51 cm21, ms8525 cm21. Each of these
three optical property pairs is near the edge of the calibra
range. These inaccuracies indicate that for optical estimat
the range of calibration values should be significantly grea
than the range of expected optical property values and
estimated values near the edge or outside the prediction r
should either be discarded or regarded as being of ques
able validity.

Results from reflectance measurements forex vivosamples
of bovine liver are graphed in Fig. 5 as individual points. Th
figure shows the mean and standard deviation ofS for liver at
532 and 633 nm. SixS distributions measured at each wav
length were used to calculate six sets of optical propert
from which the mean and standard deviation were de
mined: for 543 nm, ma514.563.5 cm21 and ms857.2
63.7 cm21; for 633 nm,ma54.761.7 cm21 and ms856.7
63.4 cm21. Monte Carlo reflectance distributions using th
average estimated optical property values for each wavele
are also displayed in Fig. 5. These results indicate a 20 to 5
uncertainty in prediction of optical properties. Graphical r
sults show a slight disagreement between measured re
tance profiles and theoretical results at 543 nm. This may
due to inaccurate measurements at large separation dista
~very low light levels!, which resulted in an overestimation o
light intensity.

4 Discussion
4.1 Validity and Accuracy
The primary goal of this study was to evaluate the feasibi
of our approach to optical property determination in high
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Table 2 Evaluation of optical property estimation models generated using a partial least squares (PLS)
approach. The root mean square error (true versus predicted values) for absorption and reduced scatter-
ing coefficients is presented for all 16 combinations of calibration and validation data sets. In all cases,
either three or four factors were used.

Case # Calibration dataset Validation dataset Model type
RMSE-

ma (cm−1)
RMSE-

ms8 (cm−1)

1 Simulated - uniform Self-validation PLS 1.42 2.75

2 Simulated-random PLS 1.12 2.11

3 Measured-uniform PLS 1.94 6.00

4 Measured-random PLS 2.43 5.67

5 Simulated-random Simulated-uniform PLS 1.46 2.92

6 Self-validation PLS 1.08 1.89

7 Measured-uniform PLS 1.90 5.85

8 Measured-random PLS 2.64 5.79

9 Measured-uniform Simulated-uniform PLS 1.78 3.45

10 Simulated-random PLS 1.22 2.58

11 Self-validation PLS 1.71 3.27

12 Measured-random PLS 1.65 4.02

13 Measured-random Simulated-uniform PLS 1.42 2.69

14 Simulated-random PLS 1.12 1.74

15 Measured-uniform PLS 1.90 4.03

16 Self-validation PLS 1.29 2.65
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attenuating biological media. The computational and experi
mental~phantom and biological tissue! results presented here
all provide strong evidence that this approach is both valid
and can achieve at least a moderately high level of accurac
An initial indication of the validity of the model development
algorithms is provided by self-validation results. These case
consistently predicted optical property values with a high
level of accuracy, indicating that our MATLAB codes were
effective at generating well-calibrated models. An evaluation
of the ability of the model to generalize the relationship be-
tweenSand optical properties beyond the data of the calibra
tion set is provided in the non-self-validation cases, in which
simulation data were used for both calibration and evaluation
In these cases, prediction accuracy was good and sometim
even better than for the self-validation case. This indicate
that the models were not overly specific to the calibration set
however, other factors, such as the range of the calibratio
and evaluation dataset may have played a role in determinin
the RMSE values calculated.

Estimation of tissue phantom optical properties varied sig
nificantly with calibration and validation set. As shown in
.

s

Tables 1 and 2, cases developed with simulation data
evaluated using phantom data tended to have larger RM
values than those evaluated with simulation data. This is
an unexpected result, since even small experimental er
may have significant impact on the radial reflectance distri
tion. However, several cases, particularly those develo
with the NN approach, indicated low levels of error, a
proaching61 cm21 for ma and62 cm21 for ms8 . This level
of accuracy provides additional evidence for the validity
this technique and approaches a level that might be adeq
to perform highly valuablein vivo measurements.

Since the long-term goal of this research is clinical optic
property estimation, data collected on biological tissue p
vide a reality check that is not possible with computation
simulations or tissue phantom measurements. Optical p
erty estimates using our approach andex vivo bovine liver
samples(ma514.563.5 cm21 and ms857.263.7 cm21 at
543 nm;ma54.761.7 cm21 andms856.763.4 cm21 at 633
nm! were found to compare favorably with the limited an
varied data in the literature. While we are not aware of a
Journal of Biomedical Optics d April 2003 d Vol. 8 No. 2 211
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212 Journal o
Fig. 3 (a,b) Self-validation and (c,d) evaluation of a neural network model trained on simulation data
with uniform optical properties (cases 1 and 4 in Table 1). Evaluation was performed using a dataset
comprised of experimental measurements of tissue phantoms with random optical properties. Absorption
coefficient data are presented in graphs (a) and (c), whereas reduced scattering results are presented in
graphs (b) and (d). Corresponding root mean square errors (from Table 1) are (a) 0.66, (b) 1.23, (c) 1.58,
and (d) 2.35 cm−1. Line with a slope of 1 (estimated value equals true value) is shown to facilitate the
evaluation of data.
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data onma for bovine liver at 543 nm, the literature reports a
ma value of 10.9cm21 for 532 nm and values of 12.0 and 7.9
cm21 for porcine liver at 543 and 532 nm, respectively.28,29

Given these data, the high blood content of liver, and the 20%
increase in blood absorption from 532 to 543 nm,30 it is likely
that the truema of bovine liver at 543 nm is only about 10%
less than our mean measured value of 14.5cm21. At 633 nm,
the literature indicatesma values of 3.0cm21 ~Ref. 4! and 3.2
cm21 for bovine liver,28 and ama of 5.0 cm21 for porcine
liver.29 The bovine liver values are about 30% lower than that
obtained by our method, though the porcine liver value is
almost in exact agreement with our results.

Reduced scattering coefficients of 11.9cm21 for bovine
liver at 532 nm,28 and porcine liver values of 10.8cm21 ~at
543 nm! and 11.7cm21 ~at 532 nm!,29 have been determined
in prior studies. These values are remarkably consistent an
indicate that our measured values may be about 30% lowe
than expected. Reduced scattering coefficients at 633 nm ha
been found to be 5.2cm21 for bovine liver28 and 6.4cm21 for
porcine liver.29 While these values are in good agreement
without ms8 predictions for bovine liver, both predictions for
ms8 must be viewed as moderately suspect due to their prox
f Biomedical Optics d April 2003 d Vol. 8 No. 2
d
r
e

imity to the lower end of the calibration range. On the who
our results provide sufficient agreement with the literature
to warrant further evaluation of this technique as a resea
tool, and after further modification it may be useful for impl
mentationin vivo. However, the present accuracy of this a
proach is not likely sufficient for many medical diagnost
applications.

One weakness of the present approach is the apparen
crepancy in accuracy between predictions ofma andms8 . The
higher RMSE values forms8 ~Tables 1 and 2! may be ex-
plained by the trends seen in Fig. 2. In these graphs i
shown that changes inma have an effect onS that is of greater
magnitude than the effect produced byms8 . Therefore, when
the inverse problem of predicting optical properties fromS is
considered, it follows that any error inS would produce a
greater level of error in the estimation ofms8 than for ma .
However, improvements in estimation ofms8 may be possible.
Computational modeling results~not shown here! indicated
that the intensity of light detected by the first fiber(n51) is
much more highly dependent onms8 than onma . By normal-
izing to the intensity at the first fiber~to minimize error due to
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Fig. 4 (a) Self-validation of a neural network model trained on experi-
mental data with random optical properties (case 16 in Table 1) and
(b) evaluation of the model with experimental-uniform data (case 15
in Table 1). Poorly fitting data points (identified with arrows) corre-
spond to optical property pairs that were near the edge of the optical
property range over which the model was calibrated.
e

i
f

e

l
a

-

y.
me
er-
ts

on
ri-
ere
n-

ro-
th
the
on-
n-
l er-
ve

ed.
n-
rty
ber-
u-
n to
use
rors
variations in illumination intensity!, some ability to detect
variation inms8 is lost. While performing absolute reflectance
measurements with an acceptable level of error may be mor
difficult than our present normalization approach, future re-
search is warranted to evaluate the potential benefits and l
abilities of the former technique and optimize the accuracy o
ms8 estimations.

4.2 Evaluation and Optimization of Model
Development
To make progress toward our goal of a clinically useful tech-
nique for endoscopic measurement of optical properties in th
UVA to VIS region, it is useful to evaluate model performance
in terms of the primary independent variables: model type
~NN or PLS!, data generation approach~modeling or mea-
surement!, and optical property distribution~uniform or ran-
dom!. Analysis of the strengths and weaknesses of individua
models should lead to advances in experimental and analytic
methods.

Estimation accuracy of inverse solution models was depen
dent on several parameters. Tables 1 and 2 indicate that th
most important variable was the type of algorithm used in
model generation and calibration. In almost every case, NN
-

l

e

models produced lower RMSE values than PLS models, in
cating that an NN approach may be a better choice for de
mination of optical properties. This may be due to the fact t
the NN model development algorithm incorporated validati
checks using training, testing, and validation sets to av
overfitting, whereas the PLS code did not contain su
checks. Furthermore, PLS develops a linear solution,
therefore may not adequately account for the nonlinear r
tionships inherent to light transport problems. Calibration
PLS models with independent data points is necessary to
ate robust models without artifactual correlations. Howev
our results for PLS model calibration with uniform datase
did not indicate a significant reduction in model qualit
While unexpected, this result may be an indication that so
factor other than calibration data format—possibly the inh
ently linear nature of PLS—is the primary factor that limi
the efficacy of PLS in this application.

The calibration dataset type also had a strong effect
model quality. In estimating the optical properties of expe
mental data, NN models calibrated with measured data w
slightly more accurate than their simulation-calibrated cou
terparts. However, self-validation with simulated data p
duced slightly lower RMSE values than self-validation wi
experimental data, likely due to experimental error. Since
results found with experimental data calibration were not c
sistently and significantly better than results for simulatio
based calibration, and given the presence of experimenta
ror, we believe that the optimal approach would invol
simulation-based calibration.

Several sources of experimental error have been identifi
For in vitro measurements, tissue inhomogeneity likely co
tributed to the variation in the final estimated optical prope
values. Another source of error may have been the large fi
to-fiber variation in light intensity, which affected the acc
racy of CCD camera measurements. In the future, we pla
homogeneize light levels incident at the CCD through the
of neutral density filters. These and other measurement er

Fig. 5 Reflectance data measured in ex vivo bovine liver at wave-
lengths of 543 and 633 nm (points) along with Monte Carlo modeling
results (solid curves). Optical properties used to generate simulated
reflectance distributions (ma514.5 cm−1, ms857.2 cm−1 for 543 nm
and ma54.7 cm−1, ms856.7 cm−1 for 633 nm) correspond to mean
values predicted from the measured data using a neural network
model calibrated with uniform optical properties.
Journal of Biomedical Optics d April 2003 d Vol. 8 No. 2 213
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were amplified by the normalization of the radial intensity
distributions to the first fiber reading, which may be mini-
mized by using a nonnormalized approach, in which the inci-
dent light intensity is strictly regulated and/or determined with
a high degree of accuracy.

In general, models calibrated with uniform data produced
lower RMSE values than random sets, whereas models val
dated with uniform datasets produced slightly higher RMSE
values than did random sets. This is likely due to the fact tha
the random dataset included fewer values at the very edge
the ma and ms8 ranges than the uniform set. As a result, in-
creased errors were produced when the model had to evalua
data points that were slightly outside the range it had bee
trained on. Since the model is most accurate over a restricte
range, testing that involves data within this range would pro-
duce results more representative of its true accuracy.

One of the most significant limitations of this technique in
regards to its eventual usein vivo is its inability to account for
layered tissues with different optical properties. If the presen
techniques were applied to multilayer tissues, such as thos
found in mucosal tissues of the cervix and esophagus, erro
due to different path lengths and relative sampling of the dif-
ferent layers may make it difficult even to obtain accurate
estimations of bulk tissue optical properties. However, it may
be possible to modify our steady-state reflectance for two
layer tissues, especially if it can be combined with a technique
such as optical coherence tomography to provide data on s
perficial layer thickness.31

5 Conclusions
This study represents a significant preliminary step toward
development of an experimental numerical approach to endo
scopic determination of tissue optical properties in the UVA to
VIS regime. Radial reflectance profiles were calculated using
Monte Carlo simulations for absorption coefficients from 1 to
25 cm21 and reduced scattering coefficients of 5 to 25cm21.
Similar profiles were measured for the same optical propert
range using a fiber optic probe and tissue phantoms at a wav
length of 675 nm. These data were used to calibrate NN an
PLS models for estimation of optical properties from reflec-
tance distributions. Models were evaluated using simulation
data as well as experimental reflectance measurements fro
tissue phantoms. The optical properties ofex vivobovine liver
samples were then calculated from reflectance measuremen
at 543 and 633 nm to provide further verification of this tech-
nique. Our results indicate the feasibility of a small fiber sepa
ration approach to optical property determination and the abil
ity to achieve optical property measurements with a moderat
level of accuracy. Given the range of optical properties of the
tissue phantoms and liver, which were measured at 543, 63
and 675 nm, our results provide strong support for the poten
tial use of this technique for mucosal tissue in the UVA to VIS
region. In general, models were able to estimatema with a
greater degree of accuracy thanms8 ~62 versus63 cm21).
The use of an NN approach tended to produce more accura
models than PLS. While the best estimation of optical prop-
erties from experimental reflectance data was produce
through NN model calibration with experimental data, the use
of computational results for calibration provided surprisingly
accurate results.
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