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Shuping Xu
Jilin University
Key Laboratory for Supramolecular Structure

Abstract. Surface-enhanced Raman scattering (SERS) has recently
been a matter of keen interest from the points of both basic science

and Material of Ministry of Education and applications because by using the SERS effect one can obtain
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of this review paper is to discuss the potential of SERS in immunoas-
say. This paper consists of four parts work on the indirect and direct
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ratorial attempts on biomedical diagnostic applications of SERS.
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Introduction spectroscopy is often insufficient particularly for the quantita-

For the last three decades Raman spectroscopy has been efive analysis, and microanalysis of biological molecules with
tensively employed to investigate biological molecules and the low concentration.

materials, because it can provide rich structural information as ~ Surface-enhanced Raman scatteri8§RS has recently

well as quantitative and qualitative information about them, been a matter of keen interest because it can readily enhance
and moreover, it can be applied to aqueous samples andRa@man signals by a factor 40°~*%*~1°Since the success of
samples under physiological conditions in a nondestructive Raman measurements of single molecules by SERS,
manner:~® However, Raman spectroscopy has one serious SERS has attracted much greater attention than before from
disadvantage; the sensitivity of Raman spectroscopy is notthe points of both basic science and applications. Recent re-
enough for various biological or biomedical applications. Markable progress in the studies of the mechanism of SERS
Therefore, many trials have been made to improve or enhanceand its experimental techniques has broadened and strength-
the sensitivity of Raman spectroscopy. The use of resonanceened the potential of Raman spectroscopy in the applications
Raman effect is one of them. Recent marked progress in Ra-Of biology and medicine.

man instrumentation has improved largely the sensitivity of ~ SERS has three major advantages for bioanalytical
Raman spectroscopy. However, still the sensitivity of Raman applications*?° One is the enormous enhancement of the
Raman cross section of adsorbed molecules by a factor of
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one can achieve higher sensitivity and lower detection limit. Raman spectroscopy has been thought to hold considerable
The SERS effect becomes even more remarkable if the fre-promise for enzyme immunoassay because, showing abun-
quency of the excitation light is in resonance with a major dant, yet sharp and well-resolved bands, it contains much
absorption band of the adsorbed molecules being illuminated chemical information useful for enzyme immunoas¥ay®
surface-enhance resonance Raman scatté8&RRS. Sec- However, in general, the sensitivity of Raman spectroscopy is
ond, in SERS spectra there is a marked reduction in the fluo- not enough for immunoassay. In order to overcome this diffi-
rescence background that often interferes Raman scatteringculty, Cotton et af® utilized SERRS effect for Raman en-
from biological molecules. The third advantage is the surface zyme immunoassay. In their system, resonance dye,
selectivity that the SERS effect provides. This means that p-dimethylaminoazobenzene was covalently attached to an
only molecules or molecular segments on or very close to a antibody directed against human thyroid simulating hormone
metal surface can yield SERS signals. (TSH), and the resultant conjugate was used as the reported

Recently, a great number of SERS studies have been car-molecule in a sandwich immunoassay for TSH antigen. The
ried out by using noble metal colloid nanoparticles, which are intensity of the resultant SERRS signals showed a good cor-
small in size by comparison with the wavelength of the inci- relation with TSH antigen concentration over a range of from
dent light. The shape and size of single metal nanoaggregatest to 60 ulU/mL%° (equal to aboul0® mg/mL).
govern the overall enhanceméht? SERS of molecules ad- The SERS method has several advantages for enzyme im-
sorbed on colloidal Ag and Ag nanoaggregates in a solution munoassay over other spectroscopic techniques. First, a SERS
offers new and interesting possibilities as an analytical tool spectrum shows very specific and narrow Raman lines, mini-
for detecting various types of molecules at extremely low mizing the spectroscopic overlap of different labels. Second,
concentrations. unlike fluorescence probes SERS reporter groups do not self-

SERS holds great possibility for the investigations of bio- quench, so that the intensity of the signal can be enhanced by
logical materials from small molecules to tissues. SERS-basedincreasing the number of SERS reporter grotfiou et al>!
bioanalytical applications include the followingl) Mi- developed a new enzyme immunoassay based on SERS. In
croanalysis or trace analysis of simple biological compounds their system, antibody immobilized on a solid substrate reacts
such as amino acids, nucleotides, and biological with antigen, which binds with another antibody labeled with
pigments>-3¢ Because of the very high sensitivity of SERS, peroxidasgPOD). If this immunocomplex is subjected to the
one can obtain Raman spectra of biological molecules at con-reaction with orthophenylenediamine and hydrogen peroxide,
centrations down to~10"*mol/L. (2) DNA gene probes, azoaniline is generatéd This azocompound is adsorbed on a
gene diagnosis, quantitative assay of double-stranded DNA,Ag colloid, giving strong SERS signals. Porter efi> pro-
and studies of antitumor drug target compleXe4®(3) Assay posed an immunoassay readout method based on SERS in a
of thiol groups? (4) Enzyme immunoassay employing dual analyte sandwich assay. This method exploits SERS-
SERS®-%°(5) The SERS microprobe approach in the deter- derived signals from extrinsic three different reporter mol-
mination of the distribution of biological species and drug ecules that are coimmobilized with biospecific species on Au
within the living cell®°-2 colloids.

Immunoassay, which is based on a specific interaction be- We recently proposed a novel immunoassay based on
tween an antigen and a complementary antibody, is a power-SERS and immunogold labeling with Ag staining
ful analytical tool for biochemical analyses, clinical diagnosis, enhancemerit Immunoreactions between immunogold col-
and environmental monitoring, and is one of the most prom- loids modified by Raman-active probe moleculés.g.,
ising fields in the applications of SERS. The purpose of this 4-mercaptobenzoic aci¢MBA)] and antigens, which were
review paper is to discuss the potential of SERS in immunoas- captured by antibody-assembled chips, were deteeiad
say. Many analysis methods, such as surface plasmonSERS signals of Raman-active probe molecules. The immu-
resonancé&®%¢ atomic force microscopy "> (AFM), and noassay was performed by a sandwich structure. After Ag
quartz crystal microbalancé;’* electrochemical detectiof, staining enhancement, the antigen is identified by a SERS
have been developed for a direct measurement of the antigenspectrum of MBA. A working curve of the intensity of a
binding to antibody molecules immobilized on a substrate. To SERS signal at 1585 cm due to thevg, aromatic ring vibra-
increase the detection sensitivity of analytes, many kinds of tion of MBA versus the concentration of antigen was obtained
conventional labelling immunoassay techniques, e.g., and the nonoptimized detecting limit for the Hepatitis B virus
enzyme-linked immunosorbent  as&y  (ELISA), surface antigen(Antigen) was found to be as low a$§
fluorescencé®’™ and chemiluminescend®;®® have widely X 10 *mg/mL.%®
been applied. Recently, metallic colloid nanoparticles have  This review paper consists of four parts. The first part is
also been successfully applied to the label techniques in im- concerned with the enzyme immunoassay based on the indi-
munoassay because of their easily controllable-size distribu-rect SERS method proposed by Dou et'dh this immunoas-
tion, long-term stability, and friendly biocompatibility with  say, antibody immobilized on a solid substrate reacts with
antibodies, antigen proteins, DNA, and RN&®* Many antigen, which binds with another antibody labeled with
novel methods using metallic colloid nanoparticles have been POD3>! The second part reports a near-infra(@iR) SERS
developed, such as colloidal Au labeling immunoassay sys- technique that directly detects the immune reaction on the Au
tems detected with transmission electron micros€omyr colloidal nanoparticles without any procedure for bound/free
scanning electron microscofyeven by nakedey®, **imag- (B/F) separatior?® The third part describes the new immu-
ing of gold colloidal particles by conjugating the immune noassay using probe-labeling immunogold with Ag staining
complexes on conductive substrates with scanning tunnelingenhancementia SERS technique, which has been used for
microscop€ and so on. the quantitative detection of Antigen by means of a sort of

Journal of Biomedical Optics 031112-2 May/June 2005 « Vol. 10(3)



Xu et al.: Surface-enhanced Raman scattering studies . . .

5000

A
*) o-Phenylenediamine (A)
. 4000
. j<}
(Enzyme Reaction) §
£ 3900
Laser Excitation 2
2
£ 2000
el 10600
Antigen -Silver Colloid
o
Antibody SERS Spectrum 3000 2500 2000 1500 1009 500
Wavenumber (cm™)
| Solid Phase |
2000
(B) (8)
NH, ? 1500 w g
e Oy b T
H.0, == = £ 1000
O-Plicaylenodiamine 2o N a §
Axoaniline 2 »
5
Fig. 1 (a) Enzyme immunoassay based upon indirect SERS method 500
and (b) enzyme reaction investigated. K
o .‘-—-
self-assembled sandwich structure immobilized on a silicon or 3000 2500 2000 1500 2000 500
quartz substrat® The last part discusses the improvement of Wavenumber (cm™)

the immunogold nanolabeling and Ag staining enhancement _, .
thod d ibed in the third p&Fe In the i d Fig. 2 (a) A normal Raman spectrum of the reaction product (azoa-

metno escribe .m e third part.= In e Improve niline) of the enzyme reaction shown in Fig. 1. (b) A SERS spectrum of

method, the Au/Ag immunocoreshell nanoparticles instead of the enzyme-substrate mixture after the reaction.

the immunogold nanoparticles are used as the labels in this

sandwich immunoassay system and the procedure of Ag stain-

ing enhancement is avoided. . . s o
tion mixture of 10°°mol/L orthophenylenediamine, 0.1%

. POD, and 0.136% hydrogen peroxide after the enzyme
Part 1—Enzyme Immunoassay bX Indirect reaction>! Note that the spectrum shows strong fluorescent
Surface-Enhanced Raman Scattering Method background. A SERS spectrum of the reaction mixture of the
Dou et al* proposed an enzyme immunoassay utilizing indi- above three compounds is shown in Figb)?' Before we
rect SERS method. The detection limit of this system was applied the SERS method to the enzyme reaction mixture,
found to be aboutl0 " mg/mL, which was lower by one-  SERS spectra had been measured1for® mol/L orthophe-
order than that of the system employed by Cotton & @he nylenediamine, 0.1% POD, and 0.136% hydrogen peroxide,
proposed system is illustrated in Fig>4ln this system, an-  separately' and we had confirmed that no peak was observed
tibody immobilized on a solid substrate reacts with antigen in the obtained spectra expect for a weak feature around 1650
which binds with another antibody labeled with POD. When cm™ due to water. Therefore, there is little doubt that the
this immunocomplex is reacted with orthophenylenediamine SERS signals in the spectrum of Figbparise from the en-
and hydrogen peroxide, azoaniline is generated as a reactioreyme product generated by the oxidation-condensation reac-
product(Fig. 1). SERS signals from azoaniline absorbed on tion of orthophenylenediamine. Of particular importance is
Ag colloid are measured to estimate the concentration of an-that only the enzyme reaction product yields strong SERS
tigen [mouse-Immunoglobulin GlgG)]. The SERS reporter  signals and that the enzyme or substrate itself does not show
group of this system is a simple and stable dye that show very any detectable SERS peak. In other words, the concentration
strong Raman bands due to the=N and C=C stretching of the product can be monitored selectively without any inter-
modes. Moreover, the selectivity is extremely high because ference. It is also noted that the strong fluorescent background
only the dye yields SERS signals. Of note in this system is is markedly reduced in the SERS spectricompare Figs.
that the concentration of antigen is determined indirectly via 2(a) and 2b)]. Bands at 1582 and 1442 ctare due to the
the SERS signals of the reaction product. Therefore, the sen-C=C and N=N stretching modes, respectively.
sitivity of the method is free from the Raman scattering inten- SERS spectra of azoaniline produced by the enzyme reac-
sity of the label directly attached to antibody. This method tion of orthophenylenediamine with peroxide and the immu-
was named the indirect SERS methdd. nocomplex labeled by POD are displayed in Fig! Ihe
Figure Z2a) shows a normal Raman spectrum of the reac- concentration of the antigen was changed frdlrb75
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Fig. 3 SERS spectra of the reaction product of orthophenylenediamine
with the immunocomplex labeled with POD. The concentration of
antigen was 2.50 (a), 0.625 (b), 0.315 (c), and 0.1575 (d) ng/mL. The
trace (e) is the spectrum of water.

X 10" " mg/mL[Fig. 3(d)] to 2.5 10~ ® mg/mL[Fig. 3@)]. A
good straight line was obtained between the intensity of the
band at 1442 cmt versus the concentration of antigen. The
correlation coefficienfR) between them was calculated to be
0.999 for the concentration range froin58<10 7 to 2.5

% 10”8 mg/mL.>* The detection limit of this SERS enzyme
immunoassay method was found to be abb0t’ mg/mL,
which was lower by one order of magnitude than that found
for a previously reported method employing SEREven
higher sensitivity might be expected if one could find more
proper enzyme reaction system containing immunocomplexes
because the sensitivity of this method is not controlled by
Raman intensity of reporter molecules covalently bounded
with antibody.

Part 2—Detection of Immune Reaction Without
Bound/Free Antigen Separation by Near-
Infrared Surface-Enhanced Raman Scattering

Almost all immunoassays currently being employed are so-
called heterogeneous immunoassays that request a procedur
for the separation of B/F antigens. However, the B/F separa-
tion is a rather cumbersome procedure and reagent consum
ing. We showed that NIR SERS spectroscopy holds consider-
able promise in detecting the immune reaction on the Au
colloid particles without any procedure for the B/F
separation® The procedure for this method is illustrated in
Figs. 4a) and 4b).%® Antibody and immune complex are ad-
sorbed on Au colloid particles. In the system free antigens
cannot be adsorbed on the Au colloid surface, because the
surface of the Au colloid particles is blocked by bovine serum
albumin (BSA). A SERS spectrum of antimouse 1gG a2

X 108 mol/L adsorbed on the Au colloid particles shows a
number of Raman bands due to amide groups and aromatic
acid residues of antimouse 1gG. A SERS spectrum of the same
system atl.9x 10" °mol/L does not give any SERS signal.

\ i

g antibody \ & antigen : immune complex

Fig. 4 (a) Antibody adsorbed on Au colloid particle. (b) Immune com-
plex on Au colloid particle.

sorbed on the Au colloid particles, respectivélyThe spec-
trum of antimouse 1gG has an appearance fairly different from
that of a typical protein Raman spectrifHowever, bands
due to the amide group&l645 and 1261 cm) and those
assignable to tryptopharp) residues1467, 1112, and 880
cm b are clearly identified in the SERS spectrum of Fig.
5(b). Table 1 summarizes the frequencies and assignments of
observed Raman bands. It is noted that the bands due to Trp
are enhanced largely. According to previous SERS studies of
proteins without a prosthetic grodp?®-1% pands due to
amide | and Il are relatively weak in the SERS spectra of
proteins, but those due to Trp and tyrosine residlgs) ap-
pear strongly. It is also important to point out that the SERS
spectra of proteins vary markedly with experimental condi-
tions. For example, a SERS spectrum of BSA adsorbed on a
Ag electrode with the potential corresponding to zero charge
for Ag is different from that of BSA adsorbed on colloidal Ag
at pH 8.0%81%|n this study, a 0.01 mol/L phosphate-crtrate
buffer (pH=7.0) containing a 0.005 mol/L NaCl solution has
employed throughout the experiments, and all the SERS spec-
tra were obtained under such experimental conditions.

The spectrum in Fig. () provides very interesting infor-
mation about the adsorption of the protein on the Au

Intensity

1648

(b)
(2)

2200 1700 1200

Wavenumber (cm™')

700

However, Raman bands again appeared after the reaction of

antimouse 1gG afl.9x 10 mol/L with the antigen on the
Au colloid particles?®

Figures %a) and 5b) show NIR—-SERS spectra of the Au
colloid solution and antimouse 1gG &.2x 10~ mol/L ad-

Journal of Biomedical Optics 031112-

Fig. 5 (a) A NIR SERS spectrum of the Au colloid solution. (b) A NIR
SERS spectrum of antimouse 1gG of 2.2X 10~ 8 mol/L adsorbed on Au
colloid particles. Radiation of 1064 nm from an Nd:yttrium-
aluminum-—garnet laser was used as the excitation source, and the
power at the sample point was typically 100 mW.
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Table 1 Wave numbers and assignments of SERS bands observed for
antimouse IgG on the Au colloid particles (see Ref. 53).

SERS/cm™! Assignments
1645 Amide l+water
1467 Trp
1261 Amide Il
1112 Trp
1058

925 Trp
880 Trp
850 Tyr
837 Tyr
672 Trp or C-S
549

483

417 Trp

colloids>3 The amide | and Ill bands appear at 1645 and 1261
cm 1, respectively, which are typical frequencies fehelix
structure of a proteifl, However, IgG hag3 sheet-rich struc-

ture, and, in fact, their amide | and Ill bands are observed at

1673 and 1239 cit in the normal Raman specttd1%?
Therefore, it seems that the bands due todHeelix parts of
the antimouse IgG are particularly enhanced in the SER
spectrum. This indicates that thehelix parts are closer to the
surface of Au colloid particles®

Figure 8a) shows a NIR SERS spectrum of antimouse 1gG
of 1.9x10 *®mol/L adsorbed on the Au colloid particlé.

Intensity

2200 1700 1200 700 200

Wavenumber / cm’™!

Fig. 6 () A NIR SERS spectrum of antimouse IgG of 1.9
%1079 mol/L adsorbed on Au colloid particles. (b) A NIR SERS spec-
trum of IgG-antimouse 1gG complex on Au colloid particles.
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The Raman bands observed in the SERS spectrum of @p. 5
disappear completely probably because the concentration of
antimouse IgG was diluted by 100 times. Figufe)&epicts

a NIR SERS spectrum of IgG—antimouse 1gG complex on the
Au colloid particles’®> Raman bands again emerge, although
they are weak. Note that the frequencies of those bands are
very close of those of the Raman bands in the spectrum
shown in Fig. Bb). It seems that all the observed bands arise
from the antibody part of IgG—antimouse IgG complexes ad-
sorbed on the Au colloid particléS.In the system shown in
Fig. 4 the only antibody part can be adsorbed directly on the
Au surface, giving the SERS signals. Bound and free antigens
do not show significant Raman bands since free antigen mol-
ecules are blocked by BSA molecules and bound antigen mol-
ecules are adsorbed indirectly on the Au surface. The pro-
posed method allows one to detect a trace amount of immune
complex on Au colloid particles without any need for the B/F
separation. It was also concluded from the earlier study that
the configuration of antimouse IgG is modified significantly
upon the reaction of antigen with antimouse 1gG on the col-
loid particles, emerging intense SERS sigrals.

Part 3—Immunoassay Using Probe-Labeling
Immunogold Nanoparticles With Ag
Staining Enhancement via Surface-Enhanced
Raman Scattering

We recently proposed a novel immunoassay based on SERS
and immunogold labeling with Ag staining enhancenint.
This is also an indirect SERS method. Immunoreactions be-
tween immunogold colloids modified by a Raman-active
probe moleculge.g., MBA) and antigens, which were cap-
tured by antibody-assembled chips such as silicon or quartz,

g were detectedvia SERS signals of Raman-active probe

molecules® It was found that the nonoptimized detection
limit for Antigen is as low a5x 10~ 4 mg/mL.>°

Figure 7 illustrates the proposed system. The immunoassay
is performed by a sandwich structure consisting of three lay-
ers. The first layer is composed of immobilized antibody mol-
ecules of mouse polyclonal antibody against Hepatitis B virus
surface antiger{fPAb) on a silicon or quartz substrate. The
second layer is the complementary Antigen molecules cap-
tured by PAb on the substrate. The third layer consists of the
probe-labeling immunogold nanoparticles, which have been
modified by mouse monoclonal antibody against Hepatitis B
virus surface antigefiMAb) and MBA as the Raman-active
probe on the surface of Au colloids. After Ag staining en-
hancement, Antigen is identified by a SERS spectrum of
MBA.

In this system, all the self-assembled steps were subjected
to the measurements of AFM to monitor the formation of a
sandwich structure onto a substrétéFigure 8 shows AFM
height images of each immobilized step on silicon
microchips®® These AFM images suggest that the Antigen
molecules execute the immuno-identification with the PAb
molecules and are firmly captured by th€-amino-
propyltrimethoxysilang APTMS)-glutaraldehyddGA)-PAb-
Antigen substrate. The immunogold nanoparticles are also
strongly bound to the surface through the immuno-
identification. After Ag staining, a layer of Ag film covers the
surface of the sandwich self-assembled multilayer.

May/June 2005 * Vol. 10(3)
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Fig. 7 The process of self-assembled sandwich structure immobilized on a silicon or quartz substrate using MBA-labeling immunogold nanopar-

ticles with the Ag staining en

hancement method.

The spectral features of MBA in SERS spectra can confirm 7, and their SERS spectra are shown in Fig&)-99(h),
the selective immunoassays. Figure 9 shows SERS spectra ofespectively. Strong SERS bands at 1585 and 1076'cm
MBA adsorbed on the immunogold nanoparticles after the are assigned tovg, and v;, aromatic ring vibrations,
Ag staining enhancemerit The Antigen solutions with differ- respectively'®* Figure 10 illustrates the relationship between
ent concentrations of 0, 0.5, 1, 2, 10, 20, 40, ab@d the intensity of the peak at 1585 ¢mand the concentration
X 10~ 3 mg/mL were examined by the method depicted in Fig. of Antigen. We developed a calibration model that predicts

00 -

3.0 m-

LT

13.0mm

0.0 -

0.0 m

10.0 ™

0.0 m

Fig. 8 AFM height images of one by one immobilized steps on silicon microchips. (a) an APTMS-GA surface; (b) an APTMS-GA-PAb surface; (c) an
APTMS-GA-PAb-Antigen surface, where the concentration of the Antigen was 100 ug/mL; (d) an APTMS-GA-PAb-Antigen-Immunogold surface,

where the concentration of the Antigen was 0.1 mg/mL; (e

mmX2 pm.

Journal of Biomedical Optics

), the same as (d), but after Ag staining enhancement; (a) 1.5 umX1.5 um; (b)—(e) 2
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Fig. 9 SERS immunoassay using MBA-labeling nanoparticles with the
Ag staining enhancement method. Antigen with concentrations of 0,
0.5, 1, 2, 10, 20, 40, and 50 X103 mg/mL was detected by this
method, and their SERS spectra from 1800 to 400 cm™" are shown in
(@), (b), (), (), (e), (f), (g), and (h), respectively. All the spectra were
dealt with the normalized operations assuming the intensity of the
peak at 520 cm™ due to silicon as the intensity of 10 000.

the concentration of Antigen in the range df—40
X 103 mg/mL. The inset of Fig. 10 depicts the model; tRe

and standard deviation are 0.68=5) and 214, respectively,
and the unoptimized detecting limit of Antigen is as low as

5% 10 *mg/mL.

One must notice in Fig. (8) that the SERS signals of
MBA show unusually strong when the Antigen concentration

1000

Intensity (counts)
5

2000 1800 1600 1400 1200 1000 800 600 400 200
Raman Shift cm™

Fig. 11 SERS spectra of MBA in immunoassay using the MBA-labeling
immunogold nanopatrticles. (a) before and (b) after the Ag staining
enhancement. The detection limit of Antigen was as low as 0.5
X107 mg/mL. The spectra were dealt with the normalized opera-
tions assuming the intensity of the peak at 520 cm™" due to silicon as
the intensity of 10 000.

onto the surface after the Ag staining. The large aggregates
can remarkably enhance the SERS signals much more
strongly than a single nanoparticle according to the electronic
field theory of SERS% Therefore, the SERS signal increase
remarkably in Figs. @) and 10.

Figure 11 shows SERS spectra of MBA on the APTMS-
GA-PAb-Antigen-immunogold substrate where the concentra-
tion of Antigen is as low a$x 10~ * mg/mL before (a) and
after (b) the Ag staining enhancemetitAfter the Ag staining
enhancement, the Raman signals are increased by 10-100
times, thereby improving the detection sensitivity of this im-
munoassay method.

This method has combined the advantages of the SERS

is 5X 10~ *mg/mL. This is probably because at a high con- technique with those of the nanolabeling metfd@he ad-
centration, there are more immunogold nanoparticles on thevantages of the immunogold nanoparticles, such as their eas-
slide surface due to the immunoreaction. Therefore, many im- ily controllable-size distribution, long-term stability, and
munogold nanoparticles lead to a great deal of Ag aggregatesfriendly biocompatibility confirm the reproducibility of the
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Fig. 10 The relationship between the intensity of the SERS signal at
1585 cm™' and the concentration of Antigen. Inset: a calibration
model that predicts the concentration of Antigen in the range from 1
to 40 X103 mg/mL.
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immunoassay.

Part 4—Immunoassay Using Probe-Labeling Au/
Ag Immunocoreshell Nanoparticles via
Surface-Enhanced Raman Scattering

In the immunoassay described in Part 3, the Ag staining
method plays an important role; it can remarkably enhance
Raman signals by several decuples, improving the detecting
sensitivity of the immunoassay. However, the reduced Ag
film covers the surface of the APTMS-GA-PAb-Antigen-
immunogold substrate, and thus the bioactivity of the antibod-
ies and antigens may be destroyed significantly. Therefore, we
developed a new label that possesses both SERS enhancing
ability and good biocompatibility. We used the Au/Ag immu-
nocoreshell nanoparticles instead of the immunogold nanopar-
ticles as the labels in the above sandwich immunoassay
systen’>%

The experimental procedure in Part 4 is mostly the same as
that mentioned in Part 3. The immunoassay was also per-
formed by a sandwich structure consisting of three layers. It
should be pointed out that the third layer is composed of the

May/June 2005 * Vol. 10(3)
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] o added each 5 min. The coreshell nanoparticles used have a
30.0k 4 o 13-nm-diameter Au core that is coated by an 8-nm-thick Ag
| shell. Second, 4L of MBA in methanol (1x 102 mol/L)
250k - was added as the Raman-active probe to 1.0 mL of Au/Ag
1 core-shell colloids. After 12 h standing under stirring, the
% 20.0k ~ MBA modified Au/Ag core-shell colloids were purified by
< T - © centrifugation and resuspended with 1.0 mL borate bufer
£ 15.0k4 & 2 mM, pH=9). As the third step, fuL of MAb (2.0 mg/mL)
1 - N PBS buffer solution (a PBS buffer solution;
10.0k+ 5 = KH,PO, /K,HPO,, pH=7.4) was added to 1.0 mL MBA-
SDk: labeling Au/Ag coreshell colloid. The amount of MAb we
T added into the MBA-labeling Au/Ag coreshell colloid was
0.0 ' . ' . . ' . ' ' 50% more than the minimum amount for coating the unmodi-
2000 1800 1600 1400 1200 fied portion of the colloid surface. Finally, to assure that no
Raman Shift /em” space around the surface of coreshell colloids was lefjyl10

of BSA (2% m/m solution was added to the mentioned
MBA-labeling Au/Ag coreshell colloid, to occupy the un-
coated place.

Figure 12 shows a SERS spectrum of MBA measured
MBA-labeling Au/Ag immunocoreshell nanoparticles. The when MBA was added into the Au/Ag coreshell colloid. From

MBA-labeling Au/Ag immunocoreshell nanoparticles were Fi9- 12, one can see that the Au/Ag coreshell nanoparticles
i i have strong SERS activity® We again used AFM to confirm
prepared by the following four steps. First, the Au/Ag g ve ag
coreshell nanoparticles were prepared according the the self-assembled stepee Fig. 1R It can be seen from the
literature?®® In a typical process, 5 mL ol0 3mol/L Au section analysis of AFM images in Fig. 13 that the biomol-
colloids was diluted to 95 mL, and then 1.0 mL of a 1% ecules and the Au/Ag immunocoreshell nanoparticles form
trisodium citrate solution was added to the earlier solution. many compacted islands on the silica substrate. The height
After heating the solution to boil temperature, 5.0 mL of 0.01 and diameter of the islands change obviously at each immo-
mol/L AgNO; was added under continuous stirring to pro- bilized step. It is clear that the Au/Ag immunocoreshell nano-
duce the desired final bimetallic colloids. To prevent the for- particles have been successfully immobilized onto the surface
mation of separate Ag particles, 0.5 MigNO; solution was of APTMS-GA-PAb-Antigen by the immunoreaction.

Fig. 12 A SERS spectrum of MBA added into the Au/Ag coreshell
colloid.

o™ Section Amalysic  m Section Analysis nm Ssotlon Analysis
e Py
=
2-
-
o
i
o 0 ]
?-1 ¥ ' 3 [l | o ' ]
o 1.00 2.00 Q0 1.00 2,00 'o 1.00 2.00
wm wm * wm

Fig. 13 AFM height images of one by one immobilized steps on silicon microchips. (a) A surface after the PAb immobilized on the APTMS-GA
substrate, with the horizontal distance between two triangle symbol is 43.0 nm and the vertical distance is 2.3 nm; (b) a surface after the Antigen
captured by PAb of the substrate, with the horizontal distance is 39.0 nm and the vertical distance is 5.7 nm; (c) a sandwich structure composed
of the PAb, Antigen, and the Au/Ag immuno-coreshell nanoparticles with MBA-labeling, with the horizonal distance is 70.3 nm and the vertical
distance is 6.1 nm. (a)—(c) 2 umX2 pm.
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5000 strong Raman band enhancing ability. Another important dif-
ference is that the Ag staining enhancement is avoided in the
experimental procedure in Part 4. The advantages of the pro-

4000 - . s .

1583 cedure without the Ag staining enhancement step are the sim-
. plification of the experiment procedure as well as the prolon-
& 3000 1384 gation of bioactivity of the biomolecules after the SERS
ch detection.
i
2000 4 970
® Conclusion
1000 The application of SERS to immunoassay is one of the most
) promising topics among the SERS applications and has at-
0 tracted a number of researchers. In this review paper, we
present three immunoassay methods and one improvement via
— T T T T 1T T 1T v T T+ T 7 SERS. Table 2 compares the three SERS immunoassay meth-
2000 1800 1600 1400 1200 1000 800 600

ods investigated. Compared with the ELISA method having
the detection limit of ng/mL to pg/mE® the methods by Dou
et al®>3described in Parts 1 and 2 do not show any superi-

Raman shiftf rm’™

Fig. 14 SERS immunoassay with two kinds of the labeled methods. (a)

using MBA-labeling Au/Ag immunocoreshell nanopatrticles, (b) using
the MBA-labeling immunogold nanoparticles with Ag staining en-
hancement.

ority on the detection limit. However, both methods have pro-
vided new immunoassay methods by SERS. Their advantages
are mainly based on the characteristics of SERS. For example,

the detection of the Part 1 method does rely on the concen-
tration of the azodye, which is not covalently bound with the
Figure 14a) depicts SERS signals of MBA in this sand- antibody. In other words, the concentration of antigen is de-
wich immunoassay system where the concentration of Anti- termined indirectly via the SERS signals of the reaction prod-
gen is 0.02 mg/mL. Most of strong SERS bands are assigneduct, the azodye. Therefore, the sensitivity of the method is
to MBA. Figure 14b) shows a SERS spectrum of MBA mea- free from the Raman scattering intensity of the label directly
sured by using the method mentioned in Part 3 with the sameattached to antibody. The Part 2 method can provide the evi-
concentration of Antigeri0.02 mg/mL. Comparison of both dence for a slight modification of the configuration of anti-
spectra in Figs. 14) and 14b) reveals that the MBA-labeling  mouse IgG on the formation of an immune complex. This
Au/Ag immunocoreshell nanoparticles used as labels are asNIR SERS method holds considerable promise in detecting
useful as the Ag staining method in terms of the SERS en- the immune reaction without any procedure for the B/F sepa-
hancement. Note that the procedure method is simpler thanration. These are the useful complements for the ELISA
the method described in Part 3. method. However, none of the SERS immunoassay methods
The major difference between these two methods is that proposed has been realized yet. The immunoassay methods
the Au/Ag coreshell nanopatrticles are used to prepare the im-using SERS reported in this review have been carried out only
munolabels instead of the Au nanoparticles. The SERS signalsin laboratories. Further development of the studies on SERS
of MBA indicate that this Au/Ag coreshell nanoparticles have mechanism, Raman instrumentation, nanotechnology, and

Table 2 Comparison of the three SERS immunoassay methods.

Methods Detection limit Characteristic features Limitations Ref.
SERS ~1077 mg/mL Multiple label-based The narrow 51
(indirect detections measurement
method) range
NIR SERS ~107* mg/mL* Providing more Higher 53
(direct method) structural information detection limit
about the antibodies.
No need for B/F
separation.

Direct detection.
SERS 5X 1074 mg/mL Utilization of the Higher 58, 59, 95, 96
(indirect metallic nano labels detection limit
method) both in remarkable

Raman-enhanced
ability and in
friendly biocompatibility

* An approximate datum according to the amount of (1.9x 1074 mol/L) antimouse IgG.
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novel ideas should make SERS real practical techniques not
only in immunoassay but also various bioassay, clinical diag- 2°-
nosis, and environmental monitoring.
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