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Investigation of light propagation models to determine
the optical properties of tissue from interstitial
frequency domain fluence measurements

Heping Xu
Thomas J. Farrell
Michael S. Patterson
Juravinski Cancer Centre
Department of Medical Physics
699 Concession Street
Hamilton, Ontario L8V 5C2 Canada

and
McMaster University
Department of Medical Physics and

Applied Radiation Sciences
1280 Main Street West
Hamilton, Ontario L8S 4K1 Canada
E-mail: Heping.Xu@hrcc.on.ca

Abstract. Four models, standard diffusion approximation �SDA�,
single Monte Carlo �SMC�, delta-P1, and isotropic similarity �ISM�, are
developed and evaluated as forward calculation tools in the estima-
tion of tissue optical properties. The inverse calculation uses the ratio
of the fluences and phase difference at two locations close to an in-
tensity modulated isotropic source to recover the reduced scattering
coefficient �s� and the absorption coefficient �a. Diffusion theory al-
lows recovery of optical properties �OPs� within 5% for media with
�s� /�a�10. The performance of the delta-P1 model is similar to SDA,
with limited enhanced accuracy. The collimation approximation may
limit the use of the delta-P1 model for spherical geometry, and/or the
fluence may not be accurately calculated by this model. The SMC
model is the best, recovering OPs within 10% regardless of the al-
bedo. However, the necessary restriction of the searched OPs space is
inconvenient. The performance of ISM is similar to that of diffusion
theory for media with �s� /�a�10, and better for 1��s� /�a�10, i.e.,
determines absorption within 5% and reduced scattering within 20%.
In practice, satisfactory estimates �within 5 to 10%� can be achieved
using SDA to recover �s� and ISM to recover �a for media with
�s� /�a�5. © 2006 Society of Photo-Optical Instrumentation Engineers.
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1 Introduction

A common goal in the application of light transport in medi-
cine is to determine the optical properties �OPs� of tissue,
typically the single scattering anisotropy factor, and the ab-
sorption and scattering coefficients. The relationship between
measured physical quantities such as fluence, reflectance, or
radiance and the OPs is established by linear transport theory
�expressed by the Boltzmann equation�. Generally speaking,
methods for solving the transport equation fall into two cat-
egories: analytical and numerical techniques. For methods in-
volving analytical techniques, the observed physical quanti-
ties cannot be explicitly expressed as elementary functions of
OPs except for very simple cases. Hence, various approxima-
tions are employed to simplify the mathematics. Even with
those simplifications, which render the explicit expression of
observed physical quantities as functions of OPs, it is often
the case that the reverse is not true, i.e., OPs cannot be ex-
plicitly expressed as elementary functions of observed physi-
cal quantities. A model that uses OPs as input to calculate the
measured physical quantities is called a forward method or
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forward model. Once an appropriate forward model is chosen,
a trial and error strategy is used to estimate OPs. Trial OPs are
repeatedly put into the forward model to generate values of
the observed quantities until preset criteria determine that val-
ues of the calculated quantities are sufficiently close to those
measured, and the resultant OPs are deemed to be the true
OPs. This entire process is called the inverse method or in-
verse model. Analytical methods are fast but cannot determine
the measured quantities accurately in cases where the approxi-
mations used to obtain analytical expressions fail. Methods
involving numerical techniques include Monte Carlo �MC�
simulation, the finite element method �FEM�,1,2 and those bor-
rowed from neutron transport theory such as the harmonic
expansion method �PN� and the discrete ordinates method.
Although MC is accurate and can be applied to many cases
where analytical methods fail, the associated computation
burden often prevents its use as a forward model. Other nu-
merical methods asymptotically approach true values of OPs
if the spatio-temporal mesh is fine enough �FEM� or the num-
ber of expansion terms is large enough �PN�.

Following the previous two routes, a number of investiga-
tors developed algorithms to determine OPs quickly and ac-
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curately. They include standard diffusion approximation
�SDA�,3,4 the delta-P1 model,5–9 path integral formalism,10

MC,11 and random walk method.12,13 In practice, no method is
superior in all cases, and the choice depends on the source and
detector geometry, experimental measuring instruments, er-
rors in OPs allowed, and range of OPs encountered.

This work focuses on comparing four models that are used
inversely to determine OPs from frequency domain measure-
ments. They are SDA, single Monte Carlo model �SMC�,
delta-P1 model, and isotropic similarity model �ISM�. The
geometry is as follows. A source fiber with an isotropic tip,
being regarded as an ideal point �for SDA, SMC, and ISM
models� or a finite sphere �for delta-P1 model�, is embedded
in an infinite homogeneous turbid medium. Two detectors are
located in the medium. The perturbation of the fluence by the
source and detector optical fibers was not accounted for in this
work, but will be addressed in future experimental studies.
The measured quantities are the ratio of the fluences and the
phase difference at the two detectors at known distances. This
particular geometry possesses clinical relevance in that it re-
sembles the instrument configuration of interstitial treatment
that may be clinically viable for photodynamic therapy �PDT�
treatment of prostate tumors, breast lesions, or other tumors
deeply seated in healthy tissues.

Although a turbid medium such as tissue usually is de-
scribed by three interaction parameters, the anisotropy factor
�g�, the absorption ��a�, and the scattering ��s� coefficients,
it is often the case that use of two parameters, �a and the
reduced scattering coefficient ��s�= �1−g��s�, are convenient
and sufficiently accurate for characterization. Therefore, the
OPs that were sought for this study are the absorption ��a�
and reduced scattering ��s�� coefficients.

Since the basic parameters of the diffusion model are �a

and �s�, the two measurements �fluence ratio and phase differ-
ence� can determine them uniquely.14 In contrast, the SMC
model and delta-P1 model need three parameters ��a ,�s ,g�
to complete forward calculations, and these cannot be
uniquely determined by two measurements when the inverse
calculation is performed. This situation is tempered by noting
that fluence in media with high g �g�0.8� such as tissue is
relatively insensitive to the exact value of g.15,16 In this work,
a priori assumption of g=0.9 will be used for SMC and delta-
P1 models.

The SDA model is mathematically simple and has proven
to be effective when modeling light transport in tissues in
many practical situations. Several authors have used measure-
ments of phase and amplitude and the frequency domain dif-
fusion equation to deduce the optical properties of turbid
media.17–19 However, it is well known that the model fails to
give satisfactory results when 1. detecting positions are close
to the source, 2. detecting positions are close to a boundary, 3.
the absorption coefficient is comparable to the reduced scat-
tering coefficient, and 4. the modulation frequency is too high.
Hence, other methods have been proposed to overcome these
limitations.

Monte Carlo simulation �MC� is considered a gold stan-
dard for solving light transport in turbid media. It can easily
incorporate irregularly shaped boundaries, anisotropic sources
and detector response, heterogeneity, etc. The main deterrent

for MC to be used as a forward model is the computation
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time. However, several papers have proposed a concept called
single MC �or condensed MC� to get around the
problem.15,16,20–22 The basic idea is that the various scored
quantities for different OPs are actually related to each other
through scaling relationships. Hence MC needs to be run only
once, and the scored quantities for a given set of OPs are
obtained according to the scaling relationships. Graaff et al.
showed that diffuse reflectance and transmittance could be
obtained using single MC when a pencil beam was incident
on a semi-infinite medium and a slab medium in steady
state.20 However, the reflectance and transmittance could only
be obtained for various albedos while the total interaction
coefficient had to remain unchanged. The work by Pifferi et
al., who extended the method proposed by Kienle and Patter-
son �see later in this paragraph�, showed the recovery of OPs
in semi-infinite and slab geometry in a time-domain setup.16

The work by Sassaroli et al. developed a MC procedure to
study photon migration through highly scattering nonhomoge-
neous media.21 Using two scaling relationships from astro-
physics research, they could image defects embedded in a
diffuse slab. In the work by Kienle and Patterson,15 they cal-
culated the time-resolved diffuse reflectance for a semi-
infinite medium and indicated that diffuse reflectance in fre-
quency domain can be obtained by Fourier transform of the
time-domain data. The reference reflectance was obtained in a
conservative medium, i.e., �a=0. Reflectance for nonconser-
vative media was obtained using Beer’s law �i.e., multiplying
the reflectance by the factor exp�−�avt�, where v and t are
the speed of light in the medium and time, respectively�. The
same logic can be applied to the estimation of fluence. This
method assumes that reflectance �fluence� can be factored into
two terms, which depend on the scattering and absorption
coefficients, respectively. In the present study, the reference
fluence was obtained in a nonconservative medium without
using Beer’s law. We show that the proposed method is equ-
valent to the method based on Beer’s law, and computation
time is similar for both methods.

Biological tissues typically scatter light predominantly in
the forward direction. Hence an improvement over diffusion
theory may result by including a delta function into the phase
function, which can effectively account for the forward scat-
tering that is not well described by diffusion theory. Usually,
the phase function takes the form of the sum of a delta func-
tion and the Eddington phase function. When the resulting
delta Eddington phase function is substituted into the trans-
port equation, the radiance is naturally separated into two
parts: the collided and uncollided components. The collided
part can be calculated using the P1 approximation similar to
the mathematics used in the standard diffusion theory. The
usefulness of this delta-P1 approximation has been shown by
several investigators.5–9 Venugopalan et al. discussed the for-
mulas in steady state for infinite and semi-infinite geometry
with collimated beams of various profiles.7,8 Hayakawa et al.
used the delta-P1 approximation as a forward model to re-
cover OPs in turbid media in an infinite geometry.23 The re-
sults showed that the delta-P1 approximation estimated the
irradiance and reflectance reasonably well close to the source
for reduced single scattering albedo a� ranging from 0.248 to
0.997. It is also possible to recover the anisotropy factor using

the delta-P1 model. Most of the calculations to date, including
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the inverse method based on delta-P1 approximation, have
been in the steady state, except the recent paper by You, Hay-
akawa, and Venugopalan, who did the forward calculation in
the frequency domain. This work generalizes this approxima-
tion to the frequency domain and evaluates its ability to cal-
culate fluence and phase.

It has long been recognized by investigators in light propa-
gation modeling that the replacement of real optical coeffi-
cients by artificial, but equivalent, coefficients can offer ad-
vantages in radiation transport calculations. By equivalent, we
mean that the observed quantities �fluence, reflectance, etc.�
are invariant under the transformation of one set of OPs to
another set of OPs. Wyman, Patterson, and Wilson proved
that, strictly speaking, one radiance corresponds to one and
only one set of OPs.24 Hence any use of similarity relations
invariably involves some kind of approximation. However,
this does not detract from their usefulness. Van de Hulst and
and Grossman showed that replacement of an anisotropic
phase function by an equivalent isotropic phase function gen-
erally simplifies both analytical and numerical computation.25

Wyman, Patterson, and Wilson showed that MC particle trans-
port simulation could be accelerated by replacing �t with an
equivalent smaller value.26 Although the idea of similarity re-
lations is appealing, several authors have found that it is not
more useful than diffusion theory. Pronounced differences
near the boundary between calculation results for anisotropic
scattering and the isotropic scattering transport approximation
have been observed even if the reduced single scattering al-
bedo is low.27 Graaff et al. showed that the similarity relation
holds well in turbid media with a value of g in the range of
0.9 to 1 in an unbound medium with a broad parallel beam
serving as a source.28 Van de Hulst and Graaff later provided
a sound basis for these observations.29 In this work, we ascer-
tain the validity of the similarity relations for calculating flu-
ence in the frequency domain in infinite geometry.

2 Theory
This section discusses the theoretical aspects of the four mod-
els: diffusion model �SDA�, single Monte Carlo simulation
�SMC�, delta-P1 model, and isotropic similarity model �ISM�,
and the associated inversion schemes using these models.

2.1 Diffusion Model
The diffusion equation for the fluence rate �strictly speaking,
the diffuse photon density wave, but we use the term fluence
interchangeably� in the frequency domain reads:

��2 − kd
2���r�,�� = − S�r�,�� , �1�

where kd is the complex effective attenuation coefficient

kd = ���a − i�/v�/D�1/2

with Re�kd��0, v is the light speed in tissue, � is the product
of 2� and modulation frequency, D is the diffusion coefficient
equal to 1/ �3��s�+�a��, and r� is the position relative to the
source. When the source term S�r� ,�� is a sinusoidally modu-
lated isotropic point source with strength S0, the solution is

given by:
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��r�,�� =
S0exp�− kdr�

4�Dr
. �2�

Note that ��r� ,�� is complex, so that the phase of the AC
fluence relative to the source S�r� ,�� is given by

� = tan−1�Im���/Re���� , �3�

and the amplitude A is

A = �Re2��� + Im2����1/2. �4�

The steady-state solution is obtained by setting the modula-
tion frequency to zero.

2.2 Single Monte Carlo Simulation

For the basics of Monte Carlo simulation, refer to the paper
by Jacques and Wang.11 This section shows how the fluences
resulting from different OPs are related each other and what
scored quantities are needed.

To exploit the spherical symmetry of the geometry, the
scoring volumes are concentric shells centered at the origin.
The fluence as a function of time and radius then is propor-
tional to the photon weights deposited in the shell, as ex-
pressed by the equation:

��t,r� =
1

�a

Wabs�t,r�
	V

, �5�

where �a is the absorption coefficient, Wabs is the absorbed
photon weight in 	V, and 	V is the differential volume
4�r2dr. Now we need to calculate Wabs. In the Monte Carlo
simulation, if N photons were launched at the origin, the total
absorbed weight is:

Wabs�t,r� =
1

N�
k=1

P ��s

�t
�nk��a

�t
� , �6�

where P is the total number of launched photons that interact
with the medium at the space-time point �t ,r�, nk is the num-
ber of scattering events the photon suffers before it reaches
the space-time point �t ,r�, and �s, �a, and �t are the scatter-
ing, absorption, and total interaction coefficients, respectively.
It should be noted that P and nk are functions of space-time.
The fluence can be calculated by substituting Wabs into
Eq. �5�:

��t,r� =
1

	V · �t
·

1

N�
k=1

P ��s

�t
�nk

. �7�

Strictly speaking, nk is not the same for every photon
launched at the origin, but if we assume that nk can be re-
placed by the average n, we get:

n =
1

P�
P

nk, �8�

k=1
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��t,r� =
1

	V · �t

P
N��s

�t
�n

. �9�

In Eq. �9� the space-time dependent variables P and n can be
obtained by using Monte Carlo simulation only once. Flu-
ences due to different values of �a and �s can be obtained
from Eq. �9� as follows. In Monte Carlo simulation, the path-
length �equivalently the time� a photon travels is generated by
a random number according to −1/�tln�x�, where x is a ran-
dom number uniformly distributed between 0 and 1. This
shows that pathlengths �or time� are linear with respect to
1/�t. This prompts us to think that any variable associated
with time or pathlengths must be scaled accordingly, which
leads to the final result for calculating fluence for any set of
absorption and scattering coefficients:

��t,r� = ���tn

�t
t,

�tn

�t
r� = ��tn

�t
�4

·
1

	V · �tn · N
· P��tn

�t
t,

�tn

�t
r�

· ��sn

�tn
�n��tn

�t
t,

�tn

�t
r�

, �10�

where n in the subscript denotes the new set of optical prop-
erties, and the prefactor with the power of four contains both
spatial and temporal dimensions because of the scoring geom-
etry, and because we are dealing with the fluence rate.

In Eq. �9�, the fluence rate is proportional to the total num-
ber of interactions modified by the weight related to the al-
bedo. The accuracy of this algorithm depends on the replace-
ment of a series of numbers nk for different photons by one
number n. MC simulation is a statistical technique, and the
probability of one photon arriving at �t ,r� is obtained by sam-
pling N identical photons, each of them contributing to the
sought probability with equal importance. Mathematically,

X =
1

N�
i=1

N

Xi,

where X denotes the sought probability for one photon, and Xi
denotes the probability for the simulated ith photon. The cen-
tral limit theorem tells us that X converges to the normal
distribution regardless of the shape of individual distributions
Xi, provided N is sufficiently large. Hence we can assume that
the interaction history for a photon reaching �t ,r� follows a
normal distribution. The simulation data show that the width
is usually small, so that the spread exerted by the medium is
negligible. The transition from Eq. �7� to Eq. �9� implies that
we can use one universal number of interactions for all pho-
tons. The determination of this universal number still requires
Monte Carlo simulation. The advantage of this replacement is
that the albedo is decoupled from the number of interactions,
and the single Monte Carlo simulation can be scaled as a
result of this decoupling.

Equation �9� indicates that the fluence rate is related to the
photon interaction density �P/N� and the scattering history n.
The photon interaction density is a measure of how often a
photon visits a particular differential volume in a particular
time interval. The proportionality of this quantity to the flu-
ence rate is reasonable, since we expect that the fluence rate at
a position will be larger if photons have more chances to “hit”

that position. Scattering history is a measure of how many
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scatterings a photon undergoes just before it reaches a particu-
lar space-time point. It is clear that more scatterings will cer-
tainly reduce the fluence rate at a position, because fewer
photons will arrive at that position. The quantitative relation-
ship between the fluence rate and the scattering history is,
however, not linear but is given by a power law, with the
albedo coming into play as the base. The previous analysis
shows that determining the fluence rate is equivalent to deter-
mining the photon interaction density and scattering history.
This equivalence can also be applied to other geometries such
as semi-infinite and slab geometries.

Furthermore, we point out that n is independent of the
position for a given value of time and is proportional to time,
with the proportionality constant being the product of the
scattering coefficient ��s� and the speed of light �v� in the
medium. The reason is straightforward. The distance traversed
by a photon between two successive scatterings is v ·	t,
where 	t is the time elapsed between the two scatterings. The
total distance traveled is vt after n scatterings. On average,
that distance is n divided by �s. Combining the two equations
results in the statement at the beginning of this paragraph.
This observation offers convenience in calculating n in in-
verse computation, since one simple equation allows us to get
the scattering history for arbitrary position and time, and it is
not necessary to parameterize the SMC data.

An alternative method follows the paper by Kienle and
Patterson.15 From the results of a MC simulation performed
for a conservative medium characterized by �sr, fluence can
be obtained for arbitrary �s and �a using Beer’s law and
scaling relations:

��t,r� = � �s

�sr
�3

�r�t
�s

�sr
,r

�s

�sr
�exp�− �avt� . �11�

The scaling constant here is the scattering coefficient instead
of the total interaction coefficient. Comparing Eq. �11� with
Eq. �10�, it can be seen that photon interaction density is
equivalent to the reference fluence in a conservative medium,
and the exponential decay in the form of Beer’s law is equiva-
lent to the scattering history.

The proposed method, which has two parameters to fit,
looks more complicated than the previous method,15 which
has one parameter to fit the fluence rate data. Actually, the
computation burden for both methods is essentially the same,
because the proposed method does not need a look-up table
for calculating scattering history, which is just the product of
light speed and travel time. Look-up tables must be built for
interaction density in the proposed method, and fluence rate in
conservative medium in the previous method.15

Time-resolved data are transformed to frequency domain
data using Fourier transform as shown in Appendix A in
Sec. 5.

2.3 Delta-P1 Model
This section first briefly reviews the derivation following the
paper by Venugopalan, You, and Tromberg.7 This is extended
to obtain the exact solution for a finite spherical source, and it
is shown that the previously obtained analytical solution7 is
approximate and valid only when the dimension of the source

is small. The collimation approximation in the derivation is

July/August 2006 � Vol. 11�4�4



Xu, Farrell, and Patterson: Investigation of light propagation models¼
also discussed. The solution has been generalized to the fre-
quency domain �FD�, where the functional form resembles its
steady-state solution.

2.3.1 Delta-Eddington phase function

As noted earlier, the scattering phase function is replaced by
the delta-Eddington phase function, which takes the form:

P
−E�ŝ, ŝ�� =
1

4�
��1 − f��1 + 3g*·�ŝ · ŝ��� + 2f
�1 − ŝ · ŝ��	 ,

�12�

where f is the fraction of light directly scattered forward and
is between 0 and l, and g* is the scattering anisotropy factor
for the Eddington phase function and is a counterpart to g in
the Henyey-Greenstein phase function. The relationship be-
tween them can be obtained by matching the first and second
moments of the two phase functions, as the paper by
Wiscombe30 indicated. Substituting the delta-Eddington phase
function �Eq. �12�� into the well-known Boltzmann equation:

1

v

�L�r�, ŝ,t�
�t

+ ŝ · �L�r�, ŝ,t� + �tL�r�, ŝ,t�

= �s

4�

L�r�, ŝ�,t�p�ŝ, ŝ��d� + S�r�, ŝ,t� , �13�

results in:

1

v

�L�r�, ŝ,t�
�t

+ ŝ · �L�r�, ŝ,t� + �t
*L�r�, ŝ,t�

= �s
*


4�

L�r�, ŝ�,t�pE�ŝ, ŝ��d� + S�r�, ŝ,t� , �14�

where �s
*=�s�l− f�, �t

*=�a+�s
*, and pE�ŝ , ŝ�� is the Edding-

ton phase function given by:

pE�ŝ, ŝ�� =
1

4�
�1 + 3g* · �ŝ · ŝ��� . �15�

2.3.2 Decomposition of radiance

The radiance is approximated by the sum of two parts: the
uncollided component �pointed in ŝ0, the unit vector collinear
with the direction of the uncollided component�, denoted by
Lc�r� , ŝ , t� and the diffusion component denoted by Ld�r� , ŝ , t�.
The uncollided component can be written as:

Lc�r�, ŝ,t� =
1

2�
P�r�, ŝ,t�
�1 − ŝ · ŝ0� , �16�

where P�r� , ŝ , t� is the characteristic “irradiance” for the
source, i.e., the integral of the uncollided component
Lc�r� , ŝ , t� over 4�. Here P�r� , ŝ , t� refers to a general source.
The diffusion component satisfies the following equation:
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1

v

�Ld�r�, ŝ,t�
�t

+ ŝ · �Ld�r�, ŝ,t� + �t
*Ld�r�, ŝ,t�

= �s
*


4�

Ld�r�, ŝ�,t�pE�ŝ, ŝ��d� + �s
*P�r�, ŝ0,t�pE�ŝ, ŝ��

−
1

2�v

�P�r�, ŝ,t�
�t


�1 − ŝ · ŝ0� . �17�

It is worthwhile to note that the following approximation has
been used in the derivation of the previous equation:

ŝ · �Lc�r�, ŝ,t� = − �t
*Lc�r�, ŝ,t� . �18�

This is strictly correct for exponentially decreasing uncollided
radiance, but not for the uncollided radiance Lc�r� , ŝ , t� given
by:

Lc�r�, ŝ,t� = P�r�, ŝ,t�

�1 − ŝ · r̂�

2�
exp�− i�t�

=
exp�− �t

*�r − r0��
4�r2


�1 − ŝ · r̂�
2�

exp�− i�t� ,

�19�

where r0 is the radius of the source, and r̂ is r� /r. The gradient
of this radiance projected in r̂ is −��t

*+2/r�Lc�r� , ŝ , t�. Hence,
Eq. �18� is valid for r�1/ �2�t

*�.

2.3.3 Boundary condition

To solve the integro-differential equation �Eq. �17�� concern-
ing the diffuse part, the boundary conditions must be speci-
fied. In our geometry, a spherical source with radius of r0 is
embedded the medium at the origin. We quote the results of
the boundary conditions obtained by Venugopalan, You, and
Tronberg:7

�d�r�� − � 2Ahv
2v − 3i�h

�r̂ · ��d�r��

=
− 6Ahv

2v − 3i�h
�g*�s

* +
i�

v
� 1

4�r0
2 , �20�

�d�r� → 0 for r → � , �21�

where �d is the diffuse fluence, h=1/�t�, A= �1+R2� / �1
−R1�, R1=2�0

1rF�0�0d0, and R2=3�0
1rF�0�0

2d0. 0 is
the cosine of the angle between the photon direction and sur-
face normal and rF�0� is the Fresnel coefficient. Boundary
conditions for the steady state are obtained by setting � to
zero.

2.3.4 Mathematical equations

To summarize the previous results, the physical problem re-

duces to solving the following equation,
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��2 − 3�a�t� +
3�2

v2 +
3��a + �t��

v
i��d�r�,��

= �− 3�s
*�t� +

3�2

v2 −
3i���t� − �s

*�
v

P�r�, ŝ0,��

+ 3�g*�s
* +

i�

v
�ŝ0 · �P�r�, ŝ0,�� , �22�

with Eqs. �20� and �21� as boundary conditions. The unit iso-
tropic source P�r� , ŝ ,�� is given by Eq. �19�.

2.3.5 Solution of the equations
First we obtain the exact solution for the steady-state equa-
tion. We omit the detailed calculation here, but it may be
found in Appendix B in Sec. 6. The steady-state solution is as
follows:

�d�r� = �d1�r� + �d2�r� , �23�

where

�d1�r� =
3�s

*��t
* + g*�a�exp��t

*r0�
8��effr

��E1��t
*r0 − �effr0�

− E1��t
*r − �effr� − E1��t

*r0 + �effr0�

−
2g*sinh��effr0�

r0��* + g*�a�exp��*r0�exp�− �effr�

t t

provided the first-order similarity relation holds:
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+ E1��t
*r + �effr�exp��effr�� , �24�

and

�d2�r� = − C̃0
3�s

*��t
* + g*�a�

8�effr

�exp��t
*r0 − �effr�E1��t

*r0 + �effr0�

+ C̃0
3�s

*g*

8�effrr0
exp�− �effr − �effr0� . �25�

Compared to the results obtained previously by Venugopalan,
You, and Tromberg,7 our solution includes an extra term. This
term comes from Green’s function. It is shown in Sec. 3 that
the contribution of this extra term is negligibly small unless
the source dimension is large. This also demonstrates that
Green’s function for an infinite medium is a good approxima-
tion for Green’s function in our semi-infinite spherical geom-
etry in steady state, as long as the source is small. We use
this approximation in the frequency domain to simplify the
calculation.

Following the same procedure used in steady state, we
obtain the diffuse component of the fluence in the frequency
domain:
�d�r,�� =
3��s

*��t
* + g*�a� − �2/v2 + i���a + �t��/v�exp��t

*r0�
8�kr

��E1��t
*r0 − kr0� − E1��t

*r − kr� − E1��t
*r0 + kr0��exp�− kr�

+ E1��t
*r + kr�exp�kr�	 −

3�g*�s
* + i�/v�sinh�kr0�

4�krr0
exp�− kr� , �26�
where k= �3��a�t�−�2 /v2− i���a+�t�� /v�	1/2 with Re�k�
�0.

The calculation involves complex numbers and can easily
be dealt with using MatLab. The magnitude and phase of the
fluence can then be calculated from the complex fluence
�d�r ,��. The uncollided component in the frequency domain
is the Fourier transform of the integration of Eq. �16� over
4�:

�c�r,�� =
exp�− �t

*�r − r0��
4�r2 exp�i

�

v
�r − r0� . �27�

The total fluence is the sum of the uncollided component and
diffuse component.

2.4 Isotropic Similarity Model
We assume that the fluence distribution is invariant when a
triplet ��a ,�s ,g� is replaced by another triplet ��a

n ,�s
n ,gn�,

26
�a��a + �1 − g��s� = �a
n��a

n + �1 − gn��s
n� . �28�

In our case, to further simplify the calculation, the absorption
coefficient was chosen to be fixed and gn was chosen to be
zero. Hence we replace a highly forward scattering medium
by an equivalent isotropic scattering medium. The basis of
this assumption is purely empirical and is discussed in Sec. 3.

Consider the real medium with OPs ��a ,�s ,g� replaced by
the equivalent medium with OPs ��a ,�s� ,0�, where �s�= �1
−g��s. The transport equation for the equivalent medium in
the frequency domain is given by:

ŝ · ���r�, ŝ� + �̃t��r�, ŝ� =
�s�

4�
��r�� + S�r�� , �29�

where the isotropic phase function defined as p�ŝ , ŝ��=1/4�
has been used, �̃t=�t�− i� /v, and ��r��=�4���r� , ŝ�dŝ is the
fluence. The source term is S�r��=
�r�� /4�. First, we get the

steady-state solution for Eq. �29� by setting the frequency to
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zero. The solution has been found by Case, de Hoffmann, and
Placzek:31

��r� =
�t�

4�r� �k0
2

�c
exp�− a0�t�r� +


0

1

g�c,��exp�− �t�r/��
d�

�2 ,

�30�

where c is the albedo, defined as �s� /�t�; the real parameter a0
is the root of the equation c=a0 / tanh−1a0; the parameter k0 is
imaginary and is defined as k0= ia0; and the functional form
of g�c ,�� is 1 / ��1−c� tanh−1��2+ ��c� /2�2�.

The solution for the frequency domain is more compli-
cated and has not been published to our knowledge. We derive
the solution by making use of reasonable approximations for
the mathematics to be tractable. We first obtain a particular
solution �p�r�� of Eq. �29�.

�p�r�� =
 ��s���r��� + 
�r����
exp�− �̃t�r� − r����

4��r� − r���2
d3r��. �31�

Taking the Fourier transform of the previous equation with
respect to r�, we can express the fluence in spatial frequency
space explicitly:

�p�k�� =
tan−1�k/�̃t�

k − �s�tan−1�k/�̃t�
, �32�

where k is the magnitude of k�. The inverse Fourier transform
yields the fluence in position space:

�p�r�� =
1

�2��3 
 �p�k��exp�ik� · r��d3k� . �33�

We exploit the following approximation to reduce the integral
in Eq. �33� to a simpler form. If we are dealing with a turbid
medium with a reduced total interaction coefficient much
larger than the modulation frequency divided by the light
speed in the medium, then the inverse tangent function in Eq.
�32� can be Taylor expanded with respect to k. This is reason-
able, since the reduced total interaction coefficient in biologi-
cal tissues is typically larger than 0.1 mm−1 and the modula-
tion frequency we are using is around 100 MHz. The
relationship that �t��� /v is readily satisfied. Physically, this
approximation states that the frequency of photon interaction
with the medium is much greater than the modulation fre-
quency. Hence, we have:

tan−1� k

�̃t
� = tan−1� k

�t�
+

i�k

�t�
2v
�

= tan−1� k

�t�
� +

i�k

�t�
2v

·
1

1 + �k/�t��
2 + O��2� .

�34�

Substituting the previous expression into Eq. �33� allows us to

get the approximate fluence:
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�p�k̄� =
M + iN + O��2�

Q − iN�s� + O��2�
�

M

Q
+ i

N

Q2 + O��2� , �35�

where

M =
1

k
tan−1� k

�t�
�, N =

�

v
·

1

k2 + ��t
2 ,

and Q=1−M�s�. It can be seen that the real part of �p�k̄� is
the same as the fluence for the steady-state situation. Hence

we need to calculate only the imaginary part of �p�k̄�. The
imaginary part of the fluence in position space is expressed as
follows, after changing k into the dimensionless quantity k�
�equal to k /�t��:

Im��p�r�� =
1

2�r
·

�

v
· F�r� , �36�

where

F�r� =
1

2�i



−�

+� k�

k�2 + 1
·

exp�ik��t�r�
�1 − �c/k�� · tan−1k��2dk�.

�37�

Detailed evaluation of this integral is included in Appendix C
in Sec. 7. The general solution that satisfies the boundary
conditions �i.e., fluence vanishes at infinity� is proved to be
equal to the particular solution in the book by Case, de Hoff-
mann, and Placzek.31

The approximations employed in deriving Eqs. �34� and
�35� need further comment. In Eq. �34� second- and higher-
order terms are lumped into O��2�, which really is O�T�2�,
where T is a function of spatial frequency, optical properties,
and speed of light. It can be shown that this coefficient T is
substantially less than the coefficient in the first-order term for
all k, provided �t��� /v. Thus the approximation used here
is reasonable. The validity of the approximation used in Eq.
�35� becomes less predictable, since other coefficients, which
are functions of spatial frequency and optical properties, con-
tribute to the coefficient of �2, and due to the unknown mag-
nitude of that coefficient, �2 may not be small compared to
the first-order term. Hence Eq. �36�, resulting from the prior
approximations, may not be correct for certain values of OPs.
An alternative method to obtain the fluence and phase is to
evaluate the Fourier-type integral �Eq. �33�� directly in the
complex domain using a proper numerical method. We per-
formed evaluations using the double exponential formula.32

These two methods are compared in Sec. 3.

2.5 Inversion Scheme
The fluence and phase data were generated using our conven-
tional MC program in steady state and in the frequency do-
main with modulation frequency of 100 MHz. The geometry
in the simulation program was the same as that described in
the Introduction in Sec. 1. This program allowed for aniso-
tropic light scattering by utilizing the Henyey-Greenstein
�HG� phase function. Isotropic light scattering can also be
simulated using the same HG phase function by setting the
anisotropy factor to zero. For the source, light was emitted in

all directions with equal probability �isotropic�. It was a point
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object except for the delta-P1 model, where the light emitting
tip was spherical, and the index of refraction �1.33� of the tip
was assumed to be matched to the medium. The radial dis-
tance ranged from 0.1 to 100 mm with an increment of
0.1 mm for scoring.

Figure 1 shows the generic inversion scheme. Fluence
and/or phase data and trial OPs were used to calculate �2

using the selected forward model. The trial OPs were adjusted
until ���prev

2 −�cur
2 � /�cur

2 � �10−15, where �cur
2 and �prev

2 refer
to the values for the current and previous iterations. The value
of 10−15 was selected because further reduction yielded insig-
nificant change in estimated OPs. �2 is defined as:

�2 = �Rm − Rc


Rm
�2

+ ��m − �c


�m
�2

,

where R ��� is the ratio of the fluences �phase difference� at
two known distances; 
R �
�� is the intrinsic fluctuation of
the MC simulation, or the appropriate values of the standard
deviation of the fluence and phase when the noise was added
to test robustness of the algorithm; and m and c denote mea-
sured and calculated, respectively. The Levenberg-Marquardt
optimization algorithm33 was chosen to minimize �2.

In SMC, the photon interaction density �P /N� and scatter-
ing history �n̄� were obtained by MC code with OPs
��a ,�s ,g�= �0.01 mm−1,10 mm−1,0.9�. The raw MC data
are discrete in position and time. The discreteness has to be
extrapolated to continuity before the inverse algorithm can be
applied, otherwise the inversion will terminate prematurely
with totally unacceptable estimated optical properties. In other
words, data in both n̄ and P have to be parameterized. The
scattering history is independent of position and is linearly
related to time. The proportionality constant, although in prin-
ciple equal to the scattering coefficient times the light speed in
the medium as discussed in Sec. 2 was found by using linear
regression to be 2.1457/sec. The calculation of interaction
density is more subtle in that it does not appear to be a simple
mathematical function of space and time. A practical way to
solve this problem is to fit the MC generated interaction den-
sity as a function of time to a 20-deg polynomial at each fixed
position. The data for other points can be interpolated using
the MatLab function polyval. Although in principle SMC can

Fig. 1 Schematic representation of
use any optical properties to calculate phase and fluence at

Journal of Biomedical Optics 041104-
any position, the reduction of dynamic range due to the scal-
ing effects limits its use for large optical coefficients at large
distances. Hence a limit of �t=25 mm−1 was set to prevent
the algorithm from searching the parameter space where large
coefficients lie. For low total interaction coefficients �around
1.00 mm−1�, the data developed previously were not used,
since the scaling factor of 10 severely reduces the valid range
of the fitting algorithm. Hence a dataset using 1.00 mm−1 as a
reference total interaction coefficient was developed, follow-
ing the same procedure described before.

3 Results and Discussion
3.1 Verification of Single Monte Carlo
The verification of the theory of SMC was performed in two
steps: validation of interaction history and that of scaling re-
lations. To validate the replacement of a series nk by one
universal number n̄, we chose four space-time points at dif-
ferent distances from the source, as shown in Table 1. We
tracked 30,000 photons for each point to get sufficient statis-
tics. The arithmetic mean number of interactions before a
photon reaches the chosen point is virtually identical to the
fitted Gaussian mean. The spread measured by �gau decreases
steadily to less than 5%. The reduced �2 is between 0.64 and
2, indicating it is highly likely that nk is normally distributed,
although a small deviation occurs for a position very close to
the source. Satisfactory agreement was also seen when the

nonlinear optimization algorithm.

Table 1 Data for testing universality of scattering history n̄. �ari and
�gau denotes the arithmetic and Gaussian mean, respectively. X2 /v
denotes the reduced chi squared.

Position
�mm�

Time
�ps� �ari �gau �gau X2/v

0.5 10 24.l 24.2 4.7 2.08

5 100 216.4 216.4 14.7 0.8054

10 500 1074.9 1074.9 32.2 0.9595

20 800 1717.2 1717.2 41.5 0.6450
generic
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corresponding frequency histograms were drawn compared to
the fitted curves �not shown here in the interest of space�.

To test the scaling relationships, we chose three represen-
tative points at 1, 10, and 40 mm from the source. Figure 2
shows the comparison between the fluence rates in the time
domain with �a=0.01 mm−1 and �s�=1.00 mm−1 using tra-
ditional Monte Carlo �TMC� simulation and SMC at all three
distances. Also shown is the fluence rate calculated by diffu-
sion theory. In Figs. 2�a� and 2�b�, where the points are not far
from the source, the diffusion theory differs from SMC and

Fig. 2 Comparison of the fluence rates in time domain obtained from
diffusion model �dotted line�, TMC �solid line�, and SMC �dashed line�
at distances of �a� 1, �b� 10, and �c� 40 mm from the source for �a
=0.01 mm−1, �s�=1.00 mm−1. Note that time scale for short distance
is reduced to emphasize the difference in fluence rates at an early
time.
TMC at early times, while SMC and TMC are essentially
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identical. Far from the source, as shown in Fig. 2�c�, all three
methods converge as expected. Various combinations of opti-
cal properties as summarized in Table 2 were also used to test
the validity of the scaling relations in SMC. The four combi-
nations were chosen to span the range typical of soft tissues in
the red or near infrared. All the results from SMC agreed very
well with TMC.

In Fig. 3, the frequency domain fluence and phase were
obtained for OPs: �a=0.20 mm−1 and �s�=0.50 mm−1. Since
the reduced scattering coefficient is comparable to the absorp-
tion coefficient, it is expected that the diffusion theory may
not work very well even at large distances. This is evident in
Fig. 3, as is the good agreement between SMC and TMC.

3.2 Effect of Finite Dimension of the Source on
Fluence in Delta-P1 Model

First we investigate whether the delta-P1 model describes flu-
ence better than the SDA. It has been shown5–9 that the delta-

Table 2 Combinations of optical properties.

�s��1/mm� 1.00
�ref�

3.00
�high�

0.5
�low�

4.00
�high�

0.40
�low�

�a�1/mm� 0.01
�ref�

0.10
�high�

0.2
�high�

0.001
�low�

0.001
�low�

Fig. 3 Comparison of the fluence and phase in frequency domain
obtained from diffusion mode �dotted line�, TMC �solid line�, and
SMC �dashed line� versus distances for �a=0.20 mm−1, �s�

−1
=0.50 mm .
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P1 model works better than the SDA in the region proximal to
the source and in a transition region for a wide range of albe-
dos. This may not be true far from the source, where the
uncollided beam is negligible and diffusion dominates. The
delta-P1 model recovers Beer’s law in the far region only
when absorption is dominant, but when scattering is compa-
rable to or larger than absorption, it resembles the SDA more
than the true MC result. In this respect, the delta-P1 model is
most valuable in dealing with the fluence and current near the

Fig. 4 �a� and �b� Fluence and �c� phase versus distance from the
source. Plot �b� shows the behavior close to the source. Fluence
�phase� obtained from delta-P1 model �solid line�, MC �dashed line�,
and diffusion model �dotted red line� as the result of OPs: �a
=0.2 mm−1, �s�=0.5 mm−1 �color online only�.
source. Figures 4�a� and 4�c� show the fluence and phase,
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respectively, as functions of distance using the delta-P1
model, MC simulation, and the SDA for OPs: �a

=0.2 mm−1 and �s�=0.5 mm−1. The fluence plot shows that
the delta-P1 model is closer to MC than the SDA for distance
less than 0.5 mm �see Fig. 4�b��. Beyond this range, the delta-
P1 model deviates from MC and starts to resemble SDA. For
the phase, the delta-P1 model provides a worse description
than SDA at all distances �including the region close to the
source�.

The second term in Eq. �23� represents the effect of source
dimension on the fluence distribution. Two sets of OPs
���a=0.01 mm−1,�s=10.0 mm−1,g=0.9� and ��a
=0.01 mm−1,�s=0.3 mm−1,g=0.9�� were chosen to investi-
gate how OPs affect the fluence distribution. MC simulations
for each set of OPs with three source radii �0.2, 1, 2 mm�
were conducted, and the fluences were compared with those
calculated from the delta-P1 model. In Fig. 5, relative differ-

Table 3 Optical properties: scattering is medium or low.

�s��1/mm� 0.005 0.05 0.03 0.50 0.80 1.00

�a�1/mm� 0.01 0.03 0.01 0.05 0.04 0.01

�s�/�a 0.50 1.67 3.00 10.0 20.0 100.0

Fig. 5 Relative difference in fluence versus radial distance as obtained
from the delta-P1 model without the contribution of the second term
in Eq. �23� compared with MC for different source sizes. The radii of
the source spheres are 0.2, 1, and 2 mm, respectively, �a� and �b�
were obtained with OPs �0.01,10,0.9� and �0.01,0.3,0.9�,
respectively.
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ence in fluence is defined as:

��
−p1
− �
−p1

w �/�
−p1

w ,

where �
−p1
��
−p1

w � is calculated using the delta-P1 model
without �with� the contribution of the second term in Eq. �23�.
Hence a large relative difference indicates that the contribu-
tion of the second term is not negligible. Figure 5 shows that
the relative differences obtained without and with the second
term in Eq. �23� using the delta-P1 model were negligible for
both sets of OPs when the radius of the source tip was
0.2 mm or less. For the medium with higher scattering, the
finite dimension of the source exerts noticeable effect on the
fluence distribution as the radius increases. In the case of the
medium with lower scattering, the source size does not have a
significant effect on the fluence distribution, even when the
radius is 2 mm. Our data �not shown here� also suggest that
higher absorption tends to reduce the source size effect on the
fluence.

In the following discussion, we classify the medium ac-
cording to its value of reduced scattering coefficient, i.e., rela-
tively low scattering in Table 3 and relatively high scattering
in Table 4. The reason for this classification is that it appears
delta-P1 and ISM models show different fluence and phase
behavior for high and low scattering media. Examining the
low scattering medium, although not commonly encountered
in biological tissues, allows us to thoroughly investigate vari-
ous models.

3.3 Forward Calculation Using the Delta-P1 Model
in the Frequency Domain

Forward calculation using the delta-P1 model was performed
to describe the fluence and phase delay relative to the source.

Table 4 Optical properties: scattering is medium or high.

�s��1/mm� 1.00 1.50 3.00 2.00 1.00

�a�1/mm� 0.05 0.l5 0.60 0.80 0.90

�s�/�a 20.0 10.0 5.00 2.50 1.11

Fig. 6 Relative difference in fluence and phase calculated from SDA
a s
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A collection of OPs with medium and low scattering as listed
in Table 3 were used. Figure 6 plots the percent relative flu-
ence and phase difference compared with those from MC for
the medium with �a=0.005 mm−1, �s�=1 mm−1. It demon-
strates that SDA and the delta-P1 model both describe the
phase and fluence well for the region between 10 and 50 mm
from the source. Closer than 10 mm, the delta-P1 model still
performs better than does SDA but gives errors up to 25% for
phase and 15% for fluence. As the albedo decreases, similar
results hold until the �s� /�a ratio reaches around 20, as shown
in Fig. 7 for the medium with �a=0.04 mm−1 and �s�
=0.80 mm−1. The delta-P1 model gives less than 5% error in
phase for the entire region. However, the delta-P1 model gives
less than 10% error in fluence only for the region close to the
source �for this albedo, less than 40 mm�. It appears that the
discrepancy in fluence compared to MC simulation becomes
larger as the radial distance increases and grows indefinitely.
The SDA shares features of the delta-P1 model: increasing
discrepancy in fluence with increasing radial distances and
good prediction of phase, except in the region very close to
the source. When the �s� /�a ratio is decreased to close to or
less than 1, shown in Fig. 8 for the medium �a=0.03 mm−1,
�s�=0.05 mm−1, the fluence estimated by the delta-P1 model

Fig. 7 Relative difference in fluence and phase calculated from SDA
and delta-P1 models compared with Monte Carlo simulation �g
=0.9� as a function of position. �a=0.04 mm−1, �s�=0.80 mm−1.

Fig. 8 Relative difference in fluence and phase calculated from SDA
and delta-P models compared with Monte Carlo simulation �g

=0.9� as a function of position. � =0.03 mm , ��=0.05 mm .
and delta-P1 models compared with Monte Carlo simulation �g
=0.9� as a function of position. � =0.005 mm−1, ��=1.00 mm−1.
1
−1 −1
a s
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is in error by less than 25% for radial distances less than about
25 mm. SDA’s description of fluence is in error by more than
25% at 5 mm and up to 85% just at the source. Hence the
delta-P1 model is better than SDA in terms of describing flu-
ence close to the source for media with low albedo. The de-
scription of phase by the delta-P1 model in this case is inac-
curate with maximum deviation 350% close to the source,
leveling off at 10% beyond 15 mm. We have plotted the ab-
solute phase against the radial distance and discovered that
the phase was negative for distance less than 4 mm. This is
unphysical because it means that photons were detected prior
to their being launched from the source. This is indicative of
the limitations of the collimation approximation �Eq. �18��.
From the given OPs, �t

* can be calculated to be 0.125 mm−1.
The collimation approximation requires r�2/�t

*=16 mm for
the delta-P1 model to be valid. Phase description by SDA is in
error by less than 10% for distances greater than 15 mm.
Thus for low scattering media, the delta-P1 model gives a
better description of fluence than SDA for low and high albe-
dos, but the phase description is worse than that of SDA for
low albedos, for all radial distances.

The preceding paragraph discussed how the delta-P1
model performed for media with medium and low scattering.
In reality, we often encounter biological tissues with relatively
high scattering. A collection of OPs with medium and high
scattering is shown in Table 4. The delta-P1 model and SDA

Fig. 9 Relative difference in �a� fluence and �b� phase obtained from
MC using g=0.7 �solid line�, from MC using g=0.3 �dashed line�, and
from MC using g=0.0 �dash-dotted line�, compared with that ob-
tained from Monte Carlo simulation �g=0.9� as a function of position.
�a=0.01 mm−1, �s�=1.00 mm−1.
demonstrated similar trends, as shown in Fig. 7 �with �a
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=0.04 mm−1 and �s�=0.80 mm−1�, for 1��s� /�a�20, ex-
cept that phase description by the delta-P1 model shows im-
proved precision compared to SDA close to the source, but a
somewhat worse performance in the far region. For �s� /�a
�20, the delta-P1 model rapidly converges to SDA. For high
scattering media, the delta-P1 model and SDA give similar
descriptions of fluence for all radial distances. Phase calcu-
lated by the delta-P1 model is better than that by SDA close to
the source, but worse in the far region.

3.4 Forward Calculation Using the Isotropic
Similarity Model in the Frequency
Domain

First we used MC to investigate if the similarity relation �OPs
��a ,�s ,g� replaced by the equivalent OPs ��a ,�s� ,0�, where
�s�= �1−g��s� is a reasonable approximation for describing
fluence and phase. We investigated how fluence and phase
behaved if g changed from 0.9 to 0 for a fixed ratio �s� /�a

=100, where �a=0.01 mm−1 and �s�=1.00 mm−1. Six cho-
sen values of g were 0.9, 0.7, 0.5, 0.3, 0.1, and 0.0. Since the
fluence ranges over several orders of magnitude, we defined
the relative fluence �phase�, shown in Fig. 9, as the ratio of the
difference of absolute fluence �phase� from MC using g=0.9

Fig. 10 Relative difference in fluence and phase obtained from ISM
model compared with that obtained from Monte Carlo simulation �g
=0.9� as a function of position. �a=0.04 mm−1, �s�=0.80 mm−1.

Fig. 11 Relative difference in fluence �bottom curve� and phase �top
curve� obtained from ISM model compared with that obtained from
Monte Carlo simulation �g=0.9� as a function of position. �a

−1 −1
=0.01 mm , �s�=0.03 mm .
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and that from MC using g=0.0 �0.3, 0.7� to the absolute flu-
ence �phase� from MC using g=0.9. The maximum relative
difference of fluence of 11% occurred at less than 0.5 mm
from the source for g=0. The error rapidly dropped to less
than 2% at 2 mm. Beyond that distance, the relative differ-
ence in fluence is less than 1% for all values of g. Similar
behavior was observed for the relative phase, for which the
maximum difference of 2% also occurred 2 mm from the
source. Larger fluctuations for distances over 50 mm were
due to the intrinsic noise of the MC simulations. We also
examined how the relative difference in fluence and phase
�percent difference in fluence obtained in the medium with

Table 5 Recovery of optical properties �medi
models. Two positions are 4 and 9 mm from the

�s�/�a Model
�a

�1/mm�
�a,pred

�1/mm�

100 Diffusion 0.01 0.00980

SMC 0.00992

Delta-P1 0.00995

ISM 0.00986

20 Diffusion 0.04 0.0386

SMC 0.0394

Delta-P1 0.0405

ISM 0.0388

10 Diffusion 0.05 0.0473

SMC 0.0483

Delta-P1 0.0518

ISM 0.0480

3 Diffusion 0.01 0.113

SMC 0.0108

Delta-P1 0.0204

ISM 0.00291

1.67 Diffusion 0.03 0.0582

SMC 0.0268

Delta-P1 0.0653

ISM 0.0238

0.5 Diffusion 0.01 0.0799

SMC 0.0109

Delta-P1 0.0156

ISM 0.0087
g=0.9 and that obtained in the medium with g=0.0� behaved
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as �s� /�a changes. Table 3 summarizes relevant optical pa-
rameters and the values of �s� /�a, which spanned more than
three orders of magnitude. For �s� /�a�10, a typical graph
that demonstrates the relative difference of fluence and phase
is shown in Fig. 10 for �a=0.04 mm−1, �s�=0.80 mm−1. The
difference of phase has a maximum of 14% at the source and
decreases to less than 1% beyond 5 mm. The difference in
fluence is 10% at the source, rapidly decreases to 1% at about
2 mm, then gradually increases with a certain slope. How-
ever, for �s� /�a�100, this slope is virtually zero. As �s� /�a

decreases, the slope slowly increases until �s� /�a=10, where

d low scattering� for various �s� /�a using four
.

or
�s�

�1/mm�
�s,pred�

�1/mm� % error

% 1.00 0.989 −1.1%

% 0.990 −1.0%

% 0.979 −2.1%

% 0.991 −0.9%

% 0.80 0.798 −0.3%

% 0.795 −0.6%

0.767 −4.1%

% 0.792 −1.0%

% 0.50 0.507 1.4%

% 0.511 2.2%

0.465 −7.0%

% 0.507 1.4%

% 0.03 0.0480 60%

0.0281 −6.3%

% 0.0326 8.7%

% 0.0107 −64.3%

% 0.05 0.109 118%

% 0.0532 6.4%

% 0.0961 92.2%

% 0.0293 −41.4%

% 0.005 0.0395 690%

0.00489 2.2%

% 0.0219 338%

% 0.00229 −54.2%
um an
source

% err

−2.0

−0.8

−0.5

−1.4

−3.5

−1.5

1.3%

−3.0

−5.4

−3.4

3.6%

−4.0

1030

8.0%

104

−70.9

94.0

−10.7

118

−20.7

699

9%

56.0

−13.0
different behavior is observed �see next�. It should be noted
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that the increase is so slow that for distances of practical
interest ��20 mm�, the maximum error in fluence is only a
few percent. It appears that the relative errors for phase are
smaller than those for fluence for high scattering coefficients.
Figure 11 plotted with �a=0.01 mm−1 and �s�=0.03 mm−1

shows the typical trend for the relative differences of fluence
and phase when 0.5��s� /�a�10. The difference in phase
reaches its maximum value at about 5 mm and gradually de-
creases away from the source. The difference of fluence
reaches its maximum value at about 9 mm and also gradually
decreases with distance. It is interesting to note that for this
domain, the relative errors in phase exceed those in fluence,
just the opposite to the conclusion drawn for media with high
albedo.

Having explored the validity of the similarity relationships
using MC, we then performed analytical calculations using
Eq. �37� to obtain the amplitude and phase of the complex
fluence for a number of OPs whose �s� /�a ratios range from
1 to 100. It was found that the fluence amplitude calculated
from the ISM model agreed with that obtained from MC �g
=0.0� for all these OPs across the distances investigated �0.1
to 60 mm� with less than 0.5% error. However, the estimate
of the phase using the analytical expressions was less satis-
factory, agreeing well closer to the source but deviating from
MC in the far region for relatively high �s�. This supports the

Table 6 Recovery of optical properties �mediu
models. Two positions are 3 and 6 mm from the

�s�/�a Model
�a

�1/mm�
�a,pred

�1/mm�

20 Diffusion 0.05 0.0483

SMC 0.0490

Delta-P1 0.0507

ISM 0.0488

10 Diffusion 0.15 0.142

SMC 0.148

Delta-P1 0.157

ISM 0.145

5 Diffusion 0.60 0.545

SMC 0.573

Delta-P1 0.664

ISM 0.563

1.11 Diffusion 0.90 0.691

SMC 0.910

Delta-P1 0.960

ISM 0.946
claim that the coefficient in the second-order term in Eq. �35�
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does play a role in estimating the phase. We also performed a
numerical calculation of Eq. �33� using the double exponen-
tial formula. It was found that both analytical and numerical
methods gave satisfactory descriptions of fluence and phase
within 10 mm for all OPs listed in Tables 3 and 4. The fluence
and phase calculated by the analytical solution start to deviate
from those of the numerical method beyond 10 mm when
�s��0.3 mm−1 ��a is usually less than �s��. To be cautious,
numerical integration was invoked for this range of OPs.

3.5 Inverse Calculation Using Four Models
Since we are interested in interstitial detection of light, detec-
tor locations are typically less than 1 cm from the source. In
this work, two detector locations were chosen to be 4 and
9 mm for low absorption media as shown in Table 5, and 3
and 6 mm for high absorption media as shown in Table 6.
Shorter distances were chosen for high absorption media be-
cause the signal becomes virtually undetectable in practice.
For medium and low scattering media, recovery of reduced
scattering and absorption coefficients is within 5% for �s� /�a

greater than 10 for all models �Table 5�. When �s� /�a is less
than 10, the SDA and delta-P1 models break down com-
pletely, because SDA cannot give good estimates of fluence,
and delta-P1 is unable to give correct phase values. The ISM

high scattering� for various �s� /�a using four
.

error
�s�

�1/mm�
�s,pred�

�1/mm� % error

3.4% 1.00 0.999 −0.1%

2.0% 0.998 −0.2%

1.4% 0.951 −4.9%

2.4% 1.01 1.0%

5.3% 1.50 1.52 1.3%

1.3% 1.52 1.3%

4.7% 1.35 −10.0%

3.3% 1.60 6.7%

9.1% 3.00 3.12 4.0%

4.5% 3.08 2.7%

0.7% 2.34 −22.0%

6.7% 3.42 14.0%

23.2% 1.00 1.23 23.0%

1.1% 0.97 −3.0%

6.7% 0.632 −36.8%

5.1% 1.17 17.0%
m and
source

%

−

−

−

−

−

−

−

−

1

−

−

model fares better, with the estimate of �a within 70% and �s�
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within 64%. This suggests that even though the difference of
fluence and phase is within 20%, the inverse calculation still
gives fairly large errors in recovering OPs. Hence, inverse
calculation is sensitive to the small variations of fluence and
phase. For medium and high scattering media, all four models
perform very well for �s� /�a greater than 10. When the al-
bedo is decreased, SDA gives a maximum error of about 25%
for �s� /�a as low as 1.11. The ISM model gives 17% error of
the estimate of �s� and 5.1% error of the estimate of �a. The
delta-P1 model performs slightly better than diffusion theory
but worse than the ISM. It is not surprising that the SMC
model works very well for all types of media, since no ap-
proximation has been used in the forward calculation �small
deviations are due to interpolation errors�. It is generally
thought that SDA does not perform well if �s� /�a is not large,
but from our results, the inverse calculation using SDA as a
forward model can recover �s� and �a both within 10% for
�s� /�a as low as 5. It can also be seen that SDA does not
apply well for distances within several mean free paths, as
shown in Table 5. Fortunately, most biological tissues have
scattering coefficients greater than 0.5 mm−1. Hence, diffu-
sion theory should be adequate in most practical circum-
stances. It is interesting to note that the delta-P1 model be-
haves about the same as the diffusion theory in recovering
OPs, in contrast to findings in other papers. The discrepancy
may be due to the fact that: 1. the collimation approximation
is not good enough for a point source; and 2. the measured
quantity in our case is fluence instead of irradiance. For the
latter, since the fluence is the integral of the radiance over 4�
while the irradiance is the integral over some forward solid
angle, it is likely that the delta-P1 model may provide a more
accurate description of the radiance in the forward direction.
Hence, although improvement over SDA has been reported
for irradiance,7,8,23 this may not be true for fluence.

Using the Box-Muller method, Gaussian distributed noise
has been added to the amplitude ratio and the phase to simu-
late the signal-to-noise ratio in the actual measurements. The
robustness of the inversion scheme has been tested by adding

Table 7 Recovered OPs when noise was added to phase and amplitu
amplitude at the origin divided 100 �fourth row�. The expected OPs: �
The numbers in brackets are relative errors.

Noise added
Optical

properties Diffusion

5% of the phase
and amplitude

�a mm−1 9.73�10−3 �4.9%� 9

�s� mm−1 9.78�10−2 �4.8%� 9

10% of the phase
and amplitude

�a mm−1 9.69�10−3 �13.5%� 9

�s� mm−1 9.94�10−2 �12.1%� 9

0.5 deg in phase
�amplitude/100�
at the origin

�a mm−1 9.84�10−3 �7.3%� 9

�s� mm−1 9.89�10−2 �6.7%� 9
noise proportional to the signal or of a fixed amplitude. For
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proportional noise, standard deviations of 5 and 10% were
used. For fixed amplitude, the standard deviation was 0.5 deg
in phase and the fluence at the origin divided by 100. These
values were based on typical experimental uncertainties. In
Table 7, the ratio of the standard deviation in the recovered
optical coefficients divided by the mean is approximately 5%
at 5% noise added. This ratio increased to about 13% when
10% noise was added. For the fixed added noise, the ratio is
about 7%.

There is potential for improving ISM model performance
for medium and high scattering media, since the fluence error
displays a set behavior and the phase error is not large. If we
can find the minimum of the fluence difference curve and its
slope beyond the position where the minimum occurs �see
Fig. 10, for example�, the fluence in the anisotropic medium
could then be modified accordingly. This requires a look-up
table to store the relevant conditions and may not give any
advantage compared to the SMC model.

It is interesting to note that ISM consistently gives better
estimates of �a than of �s� �for medium and high scattering
media, it can recover �a within 5% for �s� /�a as low as 1�,
while SDA tends to recover �s� better than �a. The latter
observation was also noted in the thesis by Boas.34 Hence the
combination of ISM �estimating �a� and SDA �estimating �s��
will definitely provide better estimates of OPs than using ei-
ther model alone.

The major inconvenience for using SMC is that for a par-
ticular set of reference data, OPs that can be accessed in the
search parameter space are limited to a certain range because
of the scaling effect. A possible way to alleviate this problem
is to use diffusion theory and the ISM model to obtain rough
estimates of OPs, then the SMC to refine the results. This is
only necessary for media with low albedo, since combined
diffusion theory and ISM is sufficiently accurate �within 5 to
10% for �s� /�a as low as 5� to recover OPs for media with

% �second row�, 10% �third row�, and the fixed 0.5 deg in phase and
0 mm−1, �a=0.01 mm−1. Data were taken at 4- and 9-mm positions.

SMC Delta-P1 ISM

10−3 �4.2%� 9.74�10−3 �4.9%� 9.83�10−3 �5.1%�

10−2 �5.3%� 9.78�10−2 �5.5%� 9.67�10−2 �5.0%�

0−3 �12.8%� 9.79�10−3 �14.1%� 9.90�10−3 �14.1%�

0−2 �13.4%� 9.61�10−2 �13.4%� 9.68�10−2 �13.1%�

10−3 �7.0%� 9.95�10−3 �7.5%� 9.86�10−3 �6.8%�

10−2�6.2%� 9.79�10−2 �6.4%� 9.91�10−2 �7.8%�
de of 5
s�=1.0

.90�

.86�

.72�1

.87�1

.92�

.89�
high albedo.
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4 Conclusion

In this study, inverse calculation to determine absorption and
reduced scattering coefficients is conducted using the follow-
ing four models: standard diffusion theory �SDA�, single
Monte Carlo �SMC�, delta-P1, and isotropic similarity �ISM�
in the frequency domain. Fluence and phase, which were used
as input parameters to the inversion algorithm, were generated
from Monte Carlo simulation in an infinite medium with an
isotropic source situated at the origin. To simulate interstitial
photodynamic therapy protocols, fluence and phase data
within 10 mm of the source were used. We show that SMC is
the best model of the four, being able to recover OPs within
10% error for media with all the albedos investigated. Diffu-
sion theory recovers OPs for media with �s� /�a�10 within
10% error, but is unsatisfactory for media with �s� /�a�10.
The delta-P1 model offers no real advantage over diffusion
theory for all values of OPs investigated. Possible reasons
may be the breakdown of the collimation approximation
and/or the use of fluence instead of irradiance. ISM generally
works no worse than SDA with some improvement in recov-
ering �a for media with relatively high scattering, which is
typical of biological tissues. This study demonstrates that
combined diffusion theory and ISM is adequate for the recov-
ery of OPs �within 5 to 10%� for most biological tissues �as
long as �s� /�a�5�. If a priori knowledge of OPs is unavail-
able, the possible range of the OPs may be obtained by diffu-
sion theory, followed by the use of the SMC model for im-
proved accuracy.

5 Appendix A

Here we derive the SMC formula in the frequency domain
�FD�. By definition, the FD fluence is:

�̃��,r� =

0

�

��t,r�exp�i�t�dt . �38�

To evaluate this integral, we have to discretize the time axis.
Thus the previous equation becomes:

�̃��,r� = �
k=0

�

��tk,r�exp�i�t�	tk. �39�

Note that:

��t,r� = ���tn

�t
t,

�tn

�t
r� . �40�

We can choose tk=�tn /�ttl, where tl is the discretization of
time axis for the unscaled fluence ��t ,r� to avoid interpolat-

ing values of ��t ,r�. We have:
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�̃��,r� = �
k=0

�

��tk,r�exp�i�tk�	tk

= �
k=0

�

���tn

�t
tl,r�exp�i�

�tn

�t
tl��tn

�t
	tl

= �
k=0

�

��tl,r�exp�i�
�tn

�t
tl��tn

�t
	tl. �41�

In practice, tl and 	tl are usually chosen to be 1 psec.

6 Appendix B
In steady state, the modulation frequency is zero. Equation
�22� is simplified to:

��2 − 3�a�t���d�r�,�� = − 3�s
*�t�P�r�, ŝ0� + 3g*�s

*ŝ0 · �P�r�, ŝ0� ,

�42�

with boundary conditions:

�d�r�� − Ahr̂ · ��d�r�� =
− 3Ahg*�s

*

4�r0
2 , �43�

�d�r� → 0 for r → � . �44�

We are going to solve for Green’s function associated with
Eqs. �42�–�44�.

��2 − �eff
2 �G�r�,r��� = − 
�r� − r��� ,

�G�r�,r��� − Ahr�0 · �G�r�,r�����r=r0
= 0, �45�

G�r�,r��� → 0, as r → � . �46�

Let G�r� ,r���=U�r� ,r���+V�r� ,r��� such that

��2 − �eff
2 �U�r�,r��� = − 
�r� − r��� , �47�

U�r�,r��� → 0, as r → � , �48�

and

��2 − �eff
2 �V�r�,r��� = − 
�r�,r��� ,

�V�r�,r��� − Ahr�0 · �V�r�,r�����r=r0

= − �U�r�,r��� − Ahr�0 · �U�r�,r�����r=r0
, �49�

V�r�,r��� → 0, as r → � . �50�

The solution for U�r� ,r��� can be readily found to be:

U�r�,r��� =
exp�− �eff�r� − r����

4��r� − r���
. �51�

This can also be expressed in a form suitable for use with
spherical coordinates by using the addition theorem for Bessel

functions:
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U�r�,r��� =
1

4��rr�
�
n=0

�

�2n + 1�Kn+ 1
2
��effr��

�In+ 1
2
��effr�Pn�cos ��, for r � r�, �52�

U�r�,r��� =
1

4��rr�
�
n=0

�

�2n + 1�Kn+ 1
2
��effr�

�In+ 1
2
��effr��Pn�cos ��, for r � r�, �53�

where I and K are modified Bessel functions of the first and
second kind, respectively. The solution of V�r� ,r��� can be
written as the following infinite sum:

V�r,�,r�� = �
n=0

�

Cn�r��r− 1
2Kn+ 1

2
��effr�Pn�cos �� . �54�

The Cn�r�� are determined by the boundary conditions of Eqs.
�49� and �50�.

Cn�r�� = −
2n + 1

4��r�
Kn+ 1

2
��effr��

�

In+1/2��effr0�/�r0 − Ah�In+1/2��effr�/�r���r=r0

Kn+1/2��effr0�/�r0 − Ah�Kn+1/2��effr�/�r���r=r0

.

�55�

In particular,

C0 = −
1

4�

K1/2��effr��
�r�

C̃0, �56�

where

C̃0 =
I1/2��effr0� − Ah�effI3/2��effr0�

K1/2��effr0� − Ah�effK3/2��effr0�
. �57�

Hence Green’s function for our geometry is:

G�r�,r��� =
exp�− �eff�r� − r����

4��r� − r���

+ �
n=0

�

Cnr−1/2Kn+1/2��effr�Pn�cos �� . �58�

Green’s second identity allows us to obtain the solution for
the fluence.

�d�r� = 3�s
*��t

* + g*�a�

V�

G�r�,r���P�r��dV�

− 3g*�s
*


r�=r0

G�r�,r���P�r��dS�. �59�

By substituting Green’s function in Eq. �58� into Eq. �59�, we

obtain Eqs. �23�–�25�.
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7 Appendix C
Direct use of a residue theorem to evaluate the integral in Eq.
�37� is complicated, since it involves double poles. However,
we used the following method to reduce the double pole to a
simple pole. Define an auxiliary integral Faux�r� as:

Faux�r� =
1

2�i



−�

+� k

k2 + 1
·

exp�ik�t�r�
�1 − �c/k� · tan−1k�

dk . �60�

It can be shown by simple calculation that

F�r� = Faux�r� + c
�Faux�r�

�c
. �61�

The problem reduces to evaluation of the integral Faux�r�. The
residue theorem still cannot be applied directly to evaluate
Faux�r�, since the branch point and one of the poles coincide.
To get around this difficulty, we multiply the pole at i by 
,
where 
 is less than but extremely close to one. Then, we
have

Faux�r,
� =
1

2�i



−�

+� k

k2
2 + 1
·

exp�ik�t�r�
�1 − �c/k� · tan−1k�

dk .

�62�

In the end, the limit 
→1 restores the value of F�r�. We
separate Faux�r ,
� into two easier integrals:

Faux�r,
� = −
1

2
� 1

2�



−�

+� 1

1 − ik

·

exp�ik�t�r�
1 − �c/k� · tan−1k

dk

−
1

2�



−�

+� 1

1 + ik

·

exp�ik�t�r�
1 − �c/k� · tan−1k

dk . �63�

By applying the results in Appendix D in Case, deHoffmann
and Placzek,31 the two integrals �the first and the second are
denoted by I1 and I2, respectively� can be evaluated as:

I1 = − c
�a0

�c

exp�− a0�t�r�
1 + a0


+
c

2



0

1 g�c,��
� + 1

exp�− �t�r/��d� ,

�64�

I2 = − c
�a0

�c

exp�− a0�t�r�
1 − a0

+
c

2
VP


0

1 g�c,��
� − 


exp�− �t�r/��d�

+ exp�− �t�r�g�c,
��1 − c tanh−1
� . �65�

The limit 
→1 has been taken wherever allowed. The VP
stands for the Cauchy principal value. Although the form of
the solution may not look simple, it is easy to implement on a
computer.

Acknowledgments
This research was supported by the National Institutes of

Health, PO1-CA43892.

July/August 2006 � Vol. 11�4�7



Xu, Farrell, and Patterson: Investigation of light propagation models¼
References
1. S. R. Arridge, “Photon measurement density functions. Part I: Ana-

lytical forms,” Appl. Opt. 34, 7395–7409 �1995�.
2. S. R. Arridge and M. Schweiger, “Photon measurement density func-

tions. Part II: Finite-element-method calculations,” Appl. Opt. 34,
8026–8037 �1995�.

3. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflec-
tance and transmittance for the noninvasive measurement of tissue
optical properties,” Appl. Opt. 28, 2331–2336 �1989�.

4. T. J. Farrell, M. S. Patterson, and B. C. Wilson “A diffusion theory
model of spatially resolved, steady-state diffuse reflectance for the
noninvasive determination of tissue optical properties in vivo,” Med.
Phys. 19�4�, 879–888 �1992�.

5. S. A. Prahl, “Light transport in tissue,” PhD Thesis, University of
Texas at Austin, Austin, TX �1988�.

6. W. M. Star, “Diffusion theory of light transport,” Chap. 6 in Optical-
Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J.
van Gemert, Eds., pp. 131–206, Plenum Press, New York �1995�.

7. V. Venugopalan, J. S. You, and B. J. Tromberg, “Radiative transport
in the diffusion approximation: An extension for highly absorbing
media and small source-detector separations,” Phys. Rev. E 58, 2395–
2407 �1998�.

8. S. A. Carp, S. A. Prahl, and V. Venugopalan, “Radiative transport in
the delta-P1 approximation: Accuracy of fluence rate and optical pen-
etration depth predictions in turbid semi-infinite media,” J. Biomed.
Opt. 9�3�, 632–647 �2004�.

9. J. S. You, C. K. Hayakawa, and V. Venugopalan, “Delta-P1 approxi-
mation to radiative transport in the frequency domain,” Phys. Rev. E
72�2�, 021903 �2005�.

10. L. T. Perelman, J. Winn, J. Wu, R. R. Dasari, and M. S. Feld, “Photon
migration of near-diffusive photons in turbid media: A Lagrangian-
based approach,” J. Opt. Soc. Am. A 14�1�, 224–229 �1997�.

11. S. L. Jacques and L. Wang, “Monte Carlo modeling of light transport
in tissues,” Chap. 4 in Optical-Thermal Response of Laser-Irradiated
Tissue, A. J. Welch and M. J. van Gemert, Eds., pp. 73–100, Plenum
Press, New York �1995�.

12. R. F. Bonner, R. Nossal, S. Havlin, and G. H. Weiss, “Model for
photon migration in turbid biological media,” J. Opt. Soc. Am. A 4,
423–432 �1987�.

13. A. H. Gandjbakhche, R. Nossal, and R. F. Bonner, “Scaling relation-
ships for theories of anisotropic random walks applied to tissue op-
tics,” Appl. Opt. 32, 504–516 �1993�.

14. A. Kienle and M. S. Patterson, “Determination of the optical proper-
ties of semi-infinite turbid media from frequency-domain reflectance
close to the source,” Phys. Med. Biol. 42, 1801–1819 �1997�.

15. A. Kienle and M. S. Patterson, “Determination of the optical proper-
ties of turbid media from a single Monte Carlo simulation,” Phys.
Med. Biol. 41, 2221–2227 �1996�.

16. A. Pifferi, P. Taroni, G. Valentini, and S. Andersson-Engels, “Real-
time method for fitting time-resolved reflectance and transmittance
measurements with a Monte Carlo model,” Appl. Opt. 37, 2774–2780
�1998�.

17. J. B. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Frances-
chini, and E. Gratton, “Frequency-domain method for measuring
spectral properties in multiple-scattering media: Methemoglobin ab-
sorption spectrum in a tissuelike phantom,” Appl. Opt. 34, 1143–1155
Journal of Biomedical Optics 041104-1
�1995�.
18. T. H. Pham, T. Spott, L. O. Svaasand, and B. J. Tromberg, “Quanti-

fying the properties of two-layer turbid media with frequency-domain
diffuse reflectance,” Appl. Opt. 39, 4733–4745 �2000�.

19. X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh,
“Fluorescence diffuse photon density waves in homogeneous and het-
erogeneous turbid media: Analytical solutions and applications,”
Appl. Opt. 35, 3746–3758 �1996�.

20. R. Graaff, M. H. Koelink, F. F. M. de Mul, W. G. Zijlstra, A. C. M.
Dassel, and J. G. Aarnoudse, “Condensed Monte Carlo simulations
for the description of light transport,” Appl. Opt. 32, 426–434 �1993�.

21. A. Sassaroli, C. Blumetti, F. Martelli, L. Alianelli, D. Contini, A.
Ismaelli, and G. Zaccanti, “Monte Carlo procedure for investigating
light propagation and imaging of highly scattering media,” Appl. Opt.
37, 7392–7400 �1998�.

22. C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B.
J. Tromberg, and V. Venugopalan, “Perturbation Monte Carlo meth-
ods to solve inverse photon migration problems in heterogeneous
tissues,” Opt. Lett. 26, 1335–1337 �2001�.

23. C. K. Hayakawa, B. Y. Hill, J. S. You, F. Bevilacqua, J. Spanier, and
V. Venugopalan, “Use of the 
-Pi approximation for recovery of op-
tical absorption, scattering, and asymmetry coefficients in turbid me-
dia,” Appl. Opt. 43, 4677–4684 �2004�.

24. D. R. Wyman, M. S. Patterson, and B. C. Wilson, “Similarity rela-
tions for anisotropic scattering in Monte Carlo simulations of deeply
penetrating neutral particles,” J. Comput. Phys. 81, 137–150 �1989�.

25. H. C. van de Hulst and K. Grossman, “Multiple light scattering in
planetary atmosphere” in The Amospheres of Venus and Mars, J. C.
Brandt and M. B. McElroy, Eds., pp. 35, Gordon and Breach, New
York �1968�.

26. D. R. Wyman, M. S. Patterson, and B. C. Wilson, “Similarity rela-
tions for the interaction parameters in radiation transport,” Appl. Opt.
28, 5243–5249 �1989�.

27. W. M. Star, J. P. A. Marijnissen, and M. J. C. van Gemert, “Light
dosimetry in optical phantoms and in tissues: I. Multiple flux and
transport theory,” Phys. Med. Biol. 33, 437–454 �1988�.

28. R. Graaff, J. G. Aarnoudse, F. F. M. de Mul, and H. W. Jentink,
“Similarity relations for anisotropic scattering in absorbing media,”
Opt. Eng. 32�2�, 244–252 �1993�.

29. H. C. van de Hulst and R. Graaff, “Aspects of similarity in tissue
optics with strong forward scattering,” Phys. Med. Biol. 41, 2519–
2531 �1996�.

30. W. J. Wiscombe “The delta-M method: Rapid yet accurate radiative
flux calculations for strongly asymmetric phase functions,” J. Atmos.
Sci. 34, 1408–1422 �1977�.

31. K. M. Case, F. de Hoffmann, and G. Placzek, Introduction to the
Theory of Neutron Diffusion, Los Alamos Scientific Laboratory, Los
Alamos, NM �1953�.

32. T. Ooura and M. Mori, “A robust double exponential formula for
Fourier-type integrals,” J. Comput. Appl. Math. 112, 229–241 �1999�.

33. P. R. Bevington and D. K. Robinson, Data Reduction and Error
Analysis for the Physical Sciences, 2nd ed., McGraw-Hill, Inc.
�1992�.

34. D. A. Boas, “Diffusion photon probes of structural and dynamical
properties of turbid media: theory and biomedical applications,” PhD
Thesis, Univ. of Pennsylvania �1996�.
July/August 2006 � Vol. 11�4�8


