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Abstract. Recently the psychophysical compensation comparison
method was developed for routine measurement of retinal stray light.
The subject’s responses to a series of two-alternative-forced-choice
trials are analyzed using a maximum-likelihood �ML� approach as-
suming some fixed shape for the psychometric function �PF�. This
study evaluates the reliability of the method using Monte-Carlo simu-
lations. Various sampling strategies were investigated, including the
two-phase sampling strategy that is used in a commercially available
instrument. Results are given for the effective dynamic range and mea-
surement accuracy. The effect of a mismatch of the shape of the PF of
an observer and the fixed shape used in the ML analysis was ana-
lyzed. Main outcomes are that the two-phase sampling scheme gives
good precision �Standard deviation=0.07 logarithmic units on aver-
age� for estimation of the stray light value. Bias is virtually zero. Fur-
thermore, a reliability index was derived from the responses and
found to be effective. © 2006 Society of Photo-Optical Instrumentation Engineers.
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1 Introduction
Recently a novel psychophysical method to measure retinal
stray light was introduced. Details of this so-called compen-
sation comparison �CC� method have been published earlier.1

The CC method is a psychophysical approach to assess the
amount of light scattered by the ocular media �e.g., cornea
and crystalline lens� toward the retina, or to be more precise
the stray light as it is sensed by the retina.2 Retinal stray light
is a disturbing effect to vision, resulting in complaints such as
blinding by headlights while driving at night or hazy vision
during day time.3,4 The CC method can be used in clinical
practice to determine the severity of pathological states, such
as cataract and corneal edema, in a functional sense. The CC
method has been implemented by Oculus GmbH in a com-
mercially available instrument called C-Quant. It is the pur-
pose of this paper to discuss the psychophysics involved in a
CC test and to gain more insight in the stochastic behavior of
the method.

The CC method works as follows: a subject is presented a
stimulus as shown in Fig. 1. It consists of an annulus-shaped
stray light source, and centered within this annulus there are
two half-circular test fields. During a short trial period, the
annulus flickers at 8 Hz. Due to intraocular light scatter, part
of the light from the �strongly� flickering annulus is deflected,
inducing a �weak� flicker in the two test fields. This deflected
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light is called stray light. The amount of stray light in an eye
can be quantified by means of the �equivalent� luminance it
induces in the test fields. More precisely, stray light is defined
as the equivalent luminance normalized on the illuminance of
the stray light source at the pupil plane.4,5 So, when the in-
duced flicker luminance in the test fields is known, the
amount of stray light in an eye can be determined.

1.1 Direct Compensation

The induced flicker luminance in the test fields can be as-
sessed by adding a compensating counterphase flicker lumi-
nance in the test fields. Originally, in the “direct compensa-
tion” method, this luminance was adjusted by the subject until
the flicker perceived in the test fields was extinguished. The
amount of counterphase luminance needed equals the equiva-
lent luminance induced by the flickering source, giving a di-
rect measure of the amount of stray light in an eye. This
“direct compensation” method for measuring retinal straylight
has been used as golden standard.6 The “direct compensation”
method, however, was not suitable for use in routine clinical
practice.7,8 Most notably, the direct compensation method
lacked control over the adjustment strategy of the subjects,
and no indication of the reliability of an individual adjustment
result was available.
1083-3668/2006/11�5�/054010/12/$22.00 © 2006 SPIE
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1.2 Compensation Comparison
The CC method for measuring retinal stray light was devel-
oped to solve the problems met in clinical practice with the
direct compensation method. The most important improve-
ment is that the test follows a two-alternative-forced-choice
�2AFC� paradigm. Instead of adjusting the compensating
flicker luminance, a fixed number �25� of short duration trials
�1 or 2 s� are presented. In these trials, only one of the test
fields is given counterphase compensation flicker. So, in one
of the test fields, only the induced stray light flicker is per-
ceived, and in the other one, the combination of induced stray
light flicker and added compensation flicker. The task for the
subject is to compare the flickers perceived in both test fields
and to indicate which of the two test fields flickers strongest.
A choice in favor of the compensated field is recorded as 1, a
choice for the uncompensated field as 0.

When the compensated test field is presented with a strong
counterphase flicker, this field is chosen as flickering most,
resulting in a 1 response �Fig. 1 lower right�. When the coun-
terphase flicker exactly compensates the induced stray light
flicker, the perceived flicker in the compensated field is 0, and
therefore, the uncompensated field will be chosen as flicker-
ing most, resulting in a 0 response �at compensation level 10
in Fig. 1�. When the compensated test field has twice the
amount of induced stray light flicker �at compensation level
20 in Fig. 1�, both test fields will have equal flicker strength.
However, the subject is forced to give a response �0 or 1�, and
the chance of a 1 response will be 50%. The whole chance
process is described by the psychometric function �PF�. This
function starts at 0.5 for no compensation, goes to �almost� 0
at exactly the compensation level, and rises to �almost� 1 for
higher compensation levels �see Fig. 1 bottom right�. In an

1

Fig. 1 �left� Stimulus layout presented in a CC test. The annulus shape
induces a �relatively weak� flicker in the central test fields, due to in
function of compensation level. Assume that the right test field is g
compensated. �lower right� The PF that describes the average respons
which test field flickers strongest. If the compensated field is chosen, t
field flickers clearly stronger than the left, resulting in a 1 response. W
in this example�, there is no flicker in the right test field, resulting in a
in this example� both test fields flicker equally strong, resulting in cha
earlier paper, a mathematical formulation of the PF for the
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CC method is discussed; a summary of this formulation is
given in the appendix of this report. The upper half of Fig. 2
shows the actual PF used and a set of responses obtained in a
measurement.

1.2.1 Sampling strategy
In clinical practice, a relatively low number of trials in a test
is desirable to minimize test duration. After some preliminary
tests, we arrived at the following sampling strategy. The test
starts with 12 initial trials. These trials are presented starting
with a high level of compensation and subsequently have
lower levels of compensation, spaced by 0.1 logarithmic
units. So a subject will start responding with 1 and at lower
compensation levels �lower than twice the stray light level of
the eye tested� respond with 0. The transition from 1 to 0
responses is used to obtain an initial estimate of the stray light
level. The test is then refined in a final phase, where 13
stimuli spaced by 0.05 logarithmic units are presented around
the initially found transition level. These final trials are pre-
sented in random order. The range of initial trials can be set to
seven levels �ranges A to G�, depending on the stray light
level expected �see Table 1�. The ranges A to E follow the
normal age dependence of stray light in healthy eyes.

1.2.2 Maximum likelihood analysis
A subject’s stray light value in a CC test is determined using
the binary 0 and 1 responses on basis of a maximum-
likelihood �ML� analysis. In short, the likelihood of obtaining
a 1 response is given by the value of the PF at the respective
compensation level. The likelihood of obtaining a 0 response
is given by 1-PF. The total likelihood of all 0 and 1 responses
is then given by the product of the likelihood of all the single

light source is presented flickering at 8 Hz during a trial. The source
lar light scatter. �upper right� Retinal flicker modulation is plotted as
ounterphase compensation flicker, and that the left test field is not
function of compensation level. The task of the subject is to indicate
ored as 1. For high levels of compensation flicker �e.g., 50�, the right

e stray light flicker is exactly compensated �at compensation level 10
onse. When the compensation level is twice the stray light value �20
sponse �0.5�.
d stray
traocu
iven c
e as a
his is sc
hen th
0 resp
responses. One of the parameters of the PF is the stray light
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value. So, the total likelihood can be calculated as function of
stray light value �see the bottom of Fig. 2�. This likelihood
function is normalized such that the maximum is 1. Such a
normalized likelihood function is also known as a likelihood
ratio function. A more elaborated explanation of the ML

Fig. 2 Example of a CC stray light measurement with range setting A
compensation level. The responses of the initial phase are shown as do
is the PF describing the chance of a 1 response. The PF is plotted at
shows the likelihood ratio function. The horizontal position of the ma
responses shown in the upper plot. The thick horizontal lines show
for calculation of ESD. The dotted line is a Gaussian �resembling a
parameter �.

Table 1 Range settings for the stimuli presented in the initial phase of
a CC measurement.

Range
Initial Compensation

Levels Presented
Intended log�s�

Range Intended Use

A 2.0, 1.7, 1.6,…,0.7 �1.1 Healthy eye
�age �45�

B 2.1, 1.8, 1.7,…,0.8 0.8 to 1.2 Healthy eye
�age 46 to 55�

C 2.2, 1.9, 1.8,…,0.9 0.9 to 1.3 Healthy eye
�age 56 to 65�

D 2.3, 2.0, 1.9,…,1.0 1.0 to 1.4 Healthy eye
�age 66 to 75�

E 2.5, 2.2, 2.1,…,1.2 1.2 to 1.6 Healthy eye
�age �76�/early

opacity

F 2.7, 2.4, 2.3,…,1.4 1.4 to 1.8 Moderate opacity

G 3.0, 2.7, 2.6,…,1.7 �1.7 Severe cataract or
corneal edema
Journal of Biomedical Optics 054010-
analysis is given in an earlier paper.9 The stray light level
corresponding to the top of the likelihood �ratio� function is
used as the most likely estimate of the true stray light level.

Apart from estimation of the most likely stray light value,
the likelihood function can be used to estimate the uncertainty
of this value. We have called this the expected standard de-
viation �ESD�. The calculation of this value is explained in
more detail in Sec. 2. Here it may suffice to mention that the
width of the peak of the likelihood function is evaluated at
four levels below the maximum, shown by horizontal bars in
the lower half of Fig. 2. The weighted average of these widths
gives ESD.

ESD has proven to be useful to identify unreliable mea-
surements during data analysis of the stray light measure-
ments in the GLARE study.9 Although a firm theoretical basis
exists on likelihood ratio �as will be explained in Sec. 2�, the
initial development of ESD was heuristic. It must be noted
here that the strict theory is based on assumptions about the
PF and the sampling, both not necessarily valid in our appli-
cation. However, in practice, ESD turned out to be the most
effective criterion after evaluation of several different mea-
sures of reliability.

1.2.3 Individual dependent shape of PF
As explained earlier, the PF has a central role in the estima-
tion of both the stray light value and ESD. In the ML estima-
tion, a single, fixed shape of the PF is used. However, analysis
of the GLARE data suggests that the shape of the PF might be

pper plot shows the raw 0 and 1 responses obtained as function of
responses of the final phase are shown as crosses. The continuous line
st likely horizontal position for the responses shown. The lower plot

of this function indicates the most likely stray light value, given the
evels where the width of the peak of the likelihood is determined
la due to the logarithmic scaling of the y axis�, with ESD as width
. The u
ts; the
its mo
ximum

the l
parabo
different between individuals. Figure 3 shows 12 experimen-
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tal PF obtained from the GLARE study. Data from 1073 sub-
jects have been sorted according to ESD and split into 12
equally sized groups. The responses in each group were
binned and averaged after normalization on the individual
stray light value of the eyes. These averaged responses were
fitted with the PF described in the appendix �see also Refs. 1
and 9�.

1.3 Monte-Carlo Simulation
Although the GLARE results have been a valuable source of
information on the stochastic properties of a CC measure-
ment, some relevant questions �listed below� cannot be an-
swered directly with the GLARE data set. An essential short-
coming for answering these questions is that the true stray
light value of the eyes tested is unknown. Therefore, possible
systematic errors �bias� cannot be evaluated with these data.
Furthermore, the true PF of the individuals in the study is

Fig. 3 Experimental PF obtained from 1073 subjects in the GLARE stu
groups. The crosses indicate the average response. The number of resp
fit of the PF model given in the appendix to the 0 and 1 responses. M
0.131; �middle row, from left to right� 0.139, 0.142, 0.170, 0.204; and
during the fit. Before averaging and fitting the responses, the response
were normalized to a stray light level log�s�=0. The stray light val
continuous line �MDCc=0.156, �=0.05�.
unknown. Also, the effects of different sampling strategies
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could not be studied, nor the basics of the relationship be-
tween ESD and �true� SD.

The limitations mentioned above can be resolved by using
Monte-Carlo simulations. Instead of analyzing responses from
real subjects, responses are simulated by computer. In such
simulations, both the assumed subject characteristics �stray
light value and shape of PF� and the returned results are
known. An additional benefit is that the input parameters
�such as number and distribution of samples� can be varied as
desired.

The purpose of this paper is to use Monte-Carlo simula-
tions to study questions such as the following: �1� How well
does ESD represent the true standard deviation? �2� What is
the relation of standard deviation �SD� �and ESD� with num-
ber and spacing of the samples? �3� How effective is the two-
phase sampling scheme described above? �4� Does the CC
analysis introduce systematic deviations in the estimated stray
light value? �5� What happens if there is a discrepancy be-

ta have been sorted according to ESD and split into 12 equally sized
�weight� is indicated by the area of the circles. The thick line is a ML
values obtained are �top row, from left to right� 0.070, 0.094, 0.114,
m row� 0.217, 0.259, 0.376, 0.521. The lapse rate � was fixed at 0.01
ch test were shifted along the horizontal axis, such that all responses
the individual eyes were determined with the PF shown as a thin
dy. Da
onses
DCc

�botto
s of ea
ues of
tween the PF of an observer and the assumed PF used in the
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Fig. 4 Example of a CC stray light measurement, comparable to Fig. 2. The measurement range was C. In the upper plot, the responses of a poor
observer are shown, as opposed to the responses of a good observer shown in Fig. 2. The continuous line is the PF, shown at its most likely
horizontal position for the responses given. The lower plot shows the likelihood ratio function. When compared to Fig. 2, the peak is wider. The
stray light value �log�s�=1.19� determined in this example has just acceptable expected accuracy �ESD=0.077�.
Fig. 5 Example of an unacceptable measurement, caused by a too low range setting �range A� for the initial phase of the measurement. With an
estimated stray light value log�s�=1.61, the measurement should be redone in range F. Because of the erroneous range setting the samples of the
final phase of the test are placed at too low compensation levels. As a result, the likelihood function does not bind the lowest likelihood level used
for ESD calculation. The resulting ESD value is therefore very high. Also, the likelihood ratio function deviates largely from a Gaussian with width

parameter � equal to ESD, as shown by the dotted line.
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ML analysis? �6� What happens if there is a discrepancy be-
tween stray light value and sampling range? To answer these
questions, three sets of Monte-Carlo simulations were gener-
ated, with increasing complexity of input parameters. Details
of these simulations will be given in Sec. 2.

2 Methods
2.1 ESD Calculation
For a large number of trials, the shape of the likelihood ratio
function will approach that of a Gaussian function.10 This
Gaussian function, when properly normalized �having an in-
tegrated value of 1�, represents the probability density func-
tion of the most likely stray light value obtained.11 For the
relatively small number of trials in a CC test, the shape of the
likelihood function may deviate from a Gaussian function.
For an ESD calculation, the width of the peak of the likeli-
hood ratio function is determined at four levels below the
maximum value �normalized on a maximum value of 1�. The
levels used are 0.61, 0.14, 0.011, and 0.0003, respectively. At
these levels, a Gaussian function with width parameter �, has
a �total� width of 2�, 4�, 6�, and 8� respectively. The cor-
responding confidence levels for these widths are 68, 95, 99.7,
and 99.99%. ESD is calculated by averaging the four widths

Fig. 6 �a� Monte-Carlo analysis of a CC measurement. On the y axis t
stray light value. In the ideal case, both are identical and then lie on
log�s�=0.6 to 2.6 is simulated with a range of trials at compensation le
resulting in 300 trials per test. �b� Similar to A, but now the spacing o
to A and B, but now the spacing is 0.10 logarithmic units, resulting in
seen in the simulated values. �d� The range of trials is now limited to
there are 20 trials in a test. Stray light values outside the range of trial
the y=x line outside the tested range.
after dividing them by the number of SD they represent. Fig-
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ures 2, 4, and 5 show examples of the widths found in real CC
measurements. Note that the likelihood ratio functions in the
lower plots of these figures have a logarithmic scale on the y
axis. On a logarithmic scale, a Gaussian function resembles a
parabola.

The example in Fig. 5 shows large deviations of the like-
lihood function from a Gaussian shape. In fact, the deviations
are so large that the width of the peak determined at the low-
est confidence level is not bounded by the likelihood ratio
function. The corresponding ESD value is very large. The
deviations in this example were caused by the use of an in-
correct measurement range during the initial phase of the test,
resulting in improper distribution of the trials.

2.2 Monte-Carlo Simulation
As already mentioned in Sec. 1, field tests of a psychophysical
measurement method are not sufficient to fully analyze it. In
Sec. 3, all trial responses have been generated by a computer
“subject.” Since the PF describes the chance of a 1 response
for a subject, a computer “response” is easily generated with a
uniform random number that is compared to the value of the
PF. In total, three simulation settings are presented in this
paper with increasing complexity and increasing relation with

lt of the simulated measurement is shown, on the x axis the assumed
x line. A uniform distribution of 8000 stray light values ranging from
g�s� from 0.3 to 3.3. The spacing of the trials is 0.01 logarithmic unit,
ials is 0.05 logarithmic units, resulting in 60 trials per test. �c� Similar
als per test. Due to the rather coarse sampling, some discretization is
nsation values from 1.3 to 2.3. Spacing is 0.05 logarithmic units, so

t in inaccurate estimates, as can be seen by the larger deviation from
he resu
the y=
vels lo
f the tr
30 tri
compe
s resul
the real CC test. The first set of simulations presented was
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created with an identical shape of the PF for generation of
responses and ML analysis. Simulated straylight values in this
set have a uniform distribution from log�s�=0.6 to log�s�
=2.6. Also the compensation levels of the trials “presented”
have a uniform distribution, mostly from log�s�=0.3 to
log�s�=3.3. These simulations are used to investigate the ef-
fect of sampling density on measurement outcome. More con-
cretely, the results of these simulations are used to show the
influence of the number of trials on measurement accuracy
�SD� and, furthermore, whether the resulting ESD is represen-
tative for the true SD or not. The second set of simulations is
used to investigate the properties of the somewhat more com-
plicated two-phase sampling scheme as described in Sec. 1.
Special attention is given to the range settings from A to F that
determine the compensation levels of the trials presented in
the initial phase of a CC test. The third set of simulations is
most complicated and intended to reproduce the results from
the GLARE study. Simulated stray light values and range set-
tings were taken from the GLARE data. In this simulation, the
range was set according to age averages as given in Table 1.
This last set of simulations was created with the 12 different
shapes of the PF obtained from the GLARE data shown in
Fig. 3. All data of the simulations presented were analyzed
using the ML routines based on a single assumed �fixed�
shape for the PF.9

3 Results
3.1 Sampling Strategy

Fig. 7 Results from the same simulations as shown in Fig. 6. On the y a
and returned stray light value is shown. On the x axis, a moving avera
explained in Sec. 2. In the ideal case, ESD represents the SD from the
Figures 6 and 7 show results for the ideal case when the PF
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assumed for the ML analysis is identical to the true PF of the
�simulated� subject. Figure 6 shows the returned stray light
value as function of the assumed stray light value in the simu-
lation. Each simulation contains 8000 assumed stray light val-
ues, uniformly distributed from log�s�=0.6 to log�s�=2.6.
Four different sampling schemes were used. The results pre-
sented in Figs. 6�a�–6�c� have uniformly distributed sampling,
with compensation levels ranging from log�s�=0.3 to log�s�
=3.3. For these results, the trial levels were spaced by 0.01,
0.05, and 0.1 logarithmic units, respectively, corresponding to
a total number of trials per test of 300, 60, and 30. The results
show how the accuracy of the test increases with the number
of trials. The SD of the results is approximately proportional
to the reciprocal of the square root of the sample spacing.
Furthermore, the overall SD of the difference between as-
sumed and returned stray light values closely follows the av-
erage ESD. The average difference of assumed and returned
stray light values �bias� is not statistically significant. The
fourth simulation �Fig. 6�d�� shows the result for an erroneous
sampling scheme. The same spacing as in Fig. 6�b� was used,
but the compensation levels range from log�s�=1.3 to
log�s�=2.3, whereas the range of simulated stray light values
was from log�s�=0.6 to log�s�=2.6, as before. Figure 6�d�
shows how mismatch between stray light value and sample
range upsets the estimate.

Figure 6 showed ESD to be equal to SD on average. But
ESD �and SD� may differ between individual measurements.
An important research question was whether ESD on an indi-
vidual basis predicts SD. Figure 7 shows SD as function of

oving average �n=100� of the SD of the difference between assumed
100� of the ESD is shown, calculated with the likelihood function as

ation, and all points would lie on the y=x line.
xis, a m
ge �n=
simul
ESD for the same simulations as shown in Figure 6. Both SD
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and ESD shown in this figure were smoothed by a moving
average with window size n=100. For the first three simula-
tions, shown in Figs. 7�a�–7�c�, SD does follow ESD. The
effect of sample size �300, 60, and 30, respectively� is very
clear in these three figures. The fourth simulation, with insuf-
ficient range of trial levels, is shown in Fig. 7�d�. For the
larger ESD values in this figure, ESD deviates strongly from
the y=x line. ESD tends to overestimate the true SD for val-
ues larger than 0.1 �see also Fig. 5�.

The second set of Monte-Carlo simulations tests the two-
phase sampling scheme developed for stray light measure-
ment in clinical practice, as explained in Sec. 2. This sampling
scheme consists of an initial estimate of the ML estimation
stray light level, with a relatively coarse sampling distance of
0.1 logarithmic units. The measurement is refined in a final
phase with a sampling distance of 0.05 logarithmic units. The
range used in the initial phase can be chosen by the operator,
as summarized in Table 1. Measurement ranges A to F were
used in the second set of Monte-Carlo simulations. As before,
each simulation contains 8000 assumed stray light values,
uniformly distributed from log�s�=0.6 to log�s�=2.6.

Figure 8 shows the returned stray light value as a function
of the assumed values in the simulation. The two vertical
dashed lines indicate the stray light intervals for which the
ranges were intended. These correspond to the 95% confi-

Fig. 8 Scatterplot with the assumed stray light value on the x axis, and
The interval of stray light values simulated is uniformly distributed fr
vertical dashed lines indicate the �age dependent� 95% confidence lim
dence intervals of stray light values in the respective age
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group, as given in Table 1. The spreading of the results around
the y=x line shows that these intervals are rather conserva-
tive. Up to some distance �–0.2 and +0.5 logarithmic units
respectively� outside these intervals, reliable measurements
are obtained.

Figure 9 shows ESD as function of assumed stray light
value. This figure shows quantitatively what interval of stray
light values can be measured to a certain degree of accuracy
in each range setting. For example, in range E it can be seen
that this interval is 1.1� log�s��1.9 for an accuracy of 0.07
logarithmic units. ESD values outside the usable interval rap-
idly increase to large ��0.1� values. The reason for this rapid
increase is illustrated in the example given in Fig. 5. Mis-
match between measurement range and stray light value
causes the lowest confidence level used for ESD calculation
not to be bound by the likelihood ratio function.

3.2 Mismatch of PF
The last series of Monte-Carlo simulations was used to ap-
proach the true field situation as closely as possible, with the
GLARE study as a reference. An important aspect of these
simulations is that the simulated PF differs from the fixed
shape that is used in the ML analysis. The 12 PF that were
used in these simulations are shown in Fig. 3. The stray light

ray light value returned by the Monte-Carlo simulation on the y axis.
s=0.6 to 2.6. The figure shows the result of 8000 simulations. The
stray light values found in an average population.
the st
om log
values assumed and the range settings in the initial phase were
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taken from the GLARE study. So, each simulation contains
the same 8230 stray light values and range settings. Figure 10
shows the returned stray light value as function of the as-
sumed value. From left to right and top to bottom the PF is
less steep.

The plots contain less than 8230 data points, because a
limit value for ESD of 0.08 was used. Note that in the field
ESD is used to accept or reject a measurement and redo a
measurement if necessary. For a steep PF, almost all simula-
tions resulted in acceptable ESD. This is the case for most of
the 12 simulations in Fig. 10. However, for the most shallow
PF �lower right� less than half of the simulated values had an
ESD�0.08.

On average there is no significant difference between
simulated and returned values. The largest systematic differ-
ence �only 0.020 logarithmic units� is found for the shallowest
PF. On average, for a very steep PF �top left�, ESD=0.055
and SD=0.034. So, for a very steep PF, ESD overestimates
SD. For a very shallow PF �bottom right�, ESD=0.068 and
SD=0.107. So, for a very shallow PF, ESD underestimates
SD.

Figure 11 shows the relationship between SD and ESD for
the same simulations shown in Fig. 10. For very good observ-
ers �top row�, almost all simulated measurements had an ESD
smaller than the limit value that was set to 0.08. For average

Fig. 9 ESD as function of simulated stray light value. The interval of str
figure shows the result of 8000 simulations. ESD values have been smo
8 that shows the raw simulated stray light values directly. Again, the v
stray light values found in an average population.
observers �middle row�, the range of returned ESD values
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starts to increase, and the data tend toward the y=x line. Note
that for these observers, actual PF and assumed PF are virtu-
ally identical �see Fig. 3�. For bad observers �lower row, right
two plots�, a smaller percentage of the measurements reached
the limit value for ESD. The data lie above the y=x line,
indicating that ESD underestimated SD.

4 Discussion
None of the simulations have shown significant systematic
differences between assumed and returned stray light values.
However, this statement only holds when results with ESD
higher than 0.08 are excluded. Since in practice this should be
the case, no significant bias is expected on the basis of the
MC analysis presented here. Using the 0.08 limit value for
ESD, the largest systematic difference between returned and
assumed stray light value is 0.02 logarithmic units, as ob-
tained from the worst group of observers in Fig. 10 �lower
right plot�. With a random error �SD� of a CC test of about
0.05 logarithmic units, a systematic error of 0.02 logarithmic
units can be considered acceptable.

4.1 SD and Its Relation to ESD
SD may be expected to be proportional to the reciprocal of the
square root of the sample number, as shown in Figs.

t values simulated is uniformly distributed from log�s�=0.6 to 2.6. The
by a moving average �n=100�. This figure can be compared with Fig.
dashed lines indicate the �age dependent� 95% confidence limits of
ay ligh
othed
ertical
6�a�–6�c�. However, also sampling density may be expected
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to play a role. If sampling density is too coarse compared to
the steepness of the PF, accuracy suffers. Other simulations,
not presented in this paper, have shown that, for example,
identical results are obtained with a spacing of 0.01 logarith-
mic units, and a five times repetition at 0.05 logarithmic units
spacing. For a coarse sample spacing at 0.10 logarithmic units
and with a 10 times repetition this no longer holds; some
discretization is observed, faintly visible in Fig. 6�c�. So, a
safer choice in practice would be a spacing of 0.05 logarith-
mic units.

Figures 7�a�–7�c� show that ESD and SD correspond very
well. So, the theoretical need for a large number of samples to
use the likelihood ratio function as predictor for data reliabil-
ity is easily met in practice. Even for the rather coarse sam-
pling with a spacing of 0.10 logarithmic units, as shown in
Fig. 6�c� and Fig. 7�c�, the asymptotic conditions required in
theory seem to be reached in practice.

For an inadequate range of test levels, as shown in Fig.
6�d�, stray light values outside the sampling interval cannot be
measured accurately. This is quite obvious, since most infor-
mation about the stray light value of a subject is obtained
from the transition from 0 to 1 responses near twice the stray
light value. Trials presented at compensation levels �far� away

Fig. 10 Returned stray light value as function of the assumed value. T
the PF used in the ML estimation.
from this transition carry little information.
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ESD was found to represent the true SD in Figs. 6�a�–6�c�
and Figs. 7�a�–7�c�. However, as explained earlier, these
simulations used impractical sampling schemes. When using
the more practical two-phase sampling strategy, ESD repre-
sents true SD less precise, but it turned out to be a conserva-
tive �i.e., safe� estimate of SD: In this case, assumed stray
light values lie within the test range chosen, ESD does repre-
sent SD. In this case, the stray light values are outside this
interval, ESD rapidly increases and more so than SD.

So, in the case of inadequate sampling, ESD is a conser-
vative value that overestimates the true SD to be expected.
However, ESD calculation is based on an assumed shape of
PF. Data from the GLARE study suggest that this assumption
is invalid. This raised the question of what happens to the
ESD value when there is a mismatch between the PF of an
observer and the PF used in the ML analysis.

The upper row of Fig. 10 shows results from simulated
observers with a PF that is steeper than the PF used in the ML
analysis. In this case, the SD is lower than ESD. The lower
row of Fig. 10 shows results from simulated observers with a
PF ranging from similar to much shallower than the PF in the
ML analysis. The corresponding SDs increase with shallower
PF. For the two lower right cases, with very shallow PF, ESD

used in the simulations equal those shown in Fig. 3, and differ from
he PFs
clearly underestimates the true SD, which constitutes a cau-
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tionary note. However, the difference is not large. The per-
centage of acceptable measurements �ESD�0.08� is quite
low though in these cases �see Fig. 11�.

4.2 Effectiveness of the Two-Phase Sampling Scheme
The CC measurement as implemented in practice consists of
an initial phase of 12 samples spaced by 0.10 logarithmic
units, and a final phase of 13 samples spaced by 0.05 loga-
rithmic units, as illustrated in Fig. 2. The final phase has the
samples placed around compensation levels that carry most of
the information about the true stray light value of a subject.
These samples are placed near the transition from 0 to 1 re-
sponses. The range of test levels in the initial phase can be
chosen to be most efficient for the expected stray light value
for the subject. Table 1 gives for each range setting an interval
of stray light values. The effectively usable interval proved to
be wider than the interval for which the range was intended.
Figure 9 shows that the usable interval is about 1 logarithmic
unit, slightly decentered toward the higher stray light values.
This figure also indicates that within the usable interval, an
SD of 0.06 logarithmic units can be expected, which is clearly

Fig. 11 SD as function of ESD for the same series of simulations sho
n=100 window size. In the ideal case, ESD would equal SD, and all
value of 0.08 for ESD that was used. The percentages give the distrib
acceptable in clinical practice.
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To summarize, Monte-Carlo analysis was used to investi-
gate properties of the CC method for the assessment of retinal
stray light. In practical application, no significant bias is to be
expected. The ESD value obtained in a CC test approximates
true SD in the majority of cases. ESD is a conservative esti-
mate if the sampling range is not chosen properly. Only for
subjects with a very poor PF, showing ESD�0.1, ESD tends
to underestimate true SD. In the vast majority of cases, the
sampling strategy proved to be adequate, giving a SD between
0.1 and 0.03.

Appendix: Psychometric Function
The light the fovea receives in a CC test consists of two parts:
light originating from the flickering annulus by the process of
scattering, and light originating from the half fields the subject
is looking at. Both lights correspond to certain luminances in
the outside world �in the two half fields�. The light originating
from scatter �i.e., the stray light� corresponds to an outside
luminance called equivalent luminance, Leq.4 For the stray
light source used here �an annulus with a 1:2 ratio of inner
and outer radius, see Fig. 1�, Leq=0.0013sLsrc, with Lsrc be-

Fig. 10. The data have been smoothed by a moving average, with a
ould lie on the y=x line. The dashed vertical line indicates the limit
f data points above and below the ESD limit value.
wn in
data w
ing the luminance of the annulus �in its on phase� and s the
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stray light value of an eye. For more details on equivalent
luminance, stray light source illuminance and its relation to
source geometry see Ref. 12. Now let us express the exter-
nally presented luminances L in the test fields as a fraction of
Lsrc or to be precise as S=L / �0.0013Lsrc�. The unit of S is
�deg2/sr�, which is �apart from a constant� dimensionless. By
this choice of “s units,” the luminances used can be compared
directly to the s value of the subject, independent of Lsrc.

The two test fields are referred to as field a and b. Field a
is never given compensation flicker; field b is given various
amounts of �external� compensation luminance, Scomp, during
the off phase of the stray light source in a test and none during
the on phase of the source. The average luminance of fields a
and b is kept equal by adding 0.5Scomp to field a in both the
on and the off phases �of the stray light source�. The lumi-
nances used are Saon=s+0.5Scomp, Saof f =0.5Scomp, Sbon=s
and Sbof f =Scomp, where Sa and Sb represent stimulation of the
retina, corresponding to the sum of the �external� luminance
of the test fields and the equivalent luminance of the light
scattered from the straylight source. The perceived flicker
strength in each of the test fields is given by their respective
modulation depths: MDa�Scomp ,s�= ��Saof f −Saon� / �Saof f

+Saon�� and MDb�Scomp ,s�= ��Sbof f −Sbon� / �Sbof f +Sbon��.
The relative difference of these modulation depths, called
modulation depth contrast �MDC�, is consequently calculated
as MDC�Scomp ,s�= �MDb−MDa� / �MDb+MDa�. Note that
on a linear Scomp scale, MDC�Scomp ,s� shows symmetry
around s �see Fig. 1�. On the logarithmic Scomp scale normally
used in PF plots �e.g., see Fig. 2� this symmetry is not imme-
diately noticeable.

A logistic function13 was used as the basis for the PF of a
CC task

P�Scomp,s� = � + �1 − 2��� 1

1 + exp� MDC

MDCc
�	 ,
where MDCc is a critical value for MDC, and � the lapsing
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rate describing nonperfect performance. An a priori choice
for the PF was made with MDCc=0.156 and �=0.05. This
PF was used for initial analysis of each individual measure-
ment. The grouped population data were fitted with MDCc

free �fit results 0.070 to 0.52� and �=0.01 �fixed�.
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