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Abstract. The sensitivity of near-infrared spectroscopy �NIRS� to
evoked brain activity is reduced by physiological interference in at
least two locations: 1. the superficial scalp and skull layers, and 2. in
brain tissue itself. These interferences are generally termed as “global
interferences” or “systemic interferences,” and arise from cardiac ac-
tivity, respiration, and other homeostatic processes. We present a
novel method for global interference reduction and real-time recovery
of evoked brain activity, based on the combination of a multisepara-
tion probe configuration and adaptive filtering. Monte Carlo simula-
tions demonstrate that this method can be effective in reducing the
global interference and recovering otherwise obscured evoked brain
activity. We also demonstrate that the physiological interference in the
superficial layers is the major component of global interference. Thus,
a measurement of superficial layer hemodynamics �e.g., using a short
source-detector separation� makes a good reference in adaptive inter-
ference cancellation. The adaptive-filtering-based algorithm is shown
to be resistant to errors in source-detector position information as well
as to errors in the differential pathlength factor �DPF�. The technique
can be performed in real time, an important feature required for ap-
plications such as brain activity localization, biofeedback, and poten-
tial neuroprosthetic devices. © 2007 Society of Photo-Optical Instrumentation Engi-
neers. �DOI: 10.1117/1.2754714�
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Carlo; adaptive filter; interference; cancellation.
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Introduction

ver the past 15 years, near-infrared spectroscopy �NIRS� and
iffuse optical imaging �DOI� have been used to detect hemo-
ynamic or neuronal changes associated with functional brain
ctivity in a variety of experimental paradigms.1–16 Compared
ith existing functional methods �e.g., fMRI, PET, EEG, and
EG�, the advantages of NIRS and DOI for studying brain

unction include good temporal resolution, measurement of
oth oxygenated hemoglobin �O2Hb� and deoxygenated he-
oglobin �HHb�, nonionizing radiation, portability, and low

ost.4,6 Disadvantages include modest spatial resolution, lim-
ted penetration depth, potential sensitivity to hair absorption
nd motion artifacts, and global interference �also called sys-
emic physiological interference�.

Global interference can arise from at least two spatial
ources: 1. in the superficial layers �such as scalp and skull�,
nd 2. inside brain, due to factors such as heart activity, res-
iration, and spontaneous low frequency oscillations �i.e., low
requency oscillations �LFOs� and very low frequency oscil-

ddress all correspondence to Quan Zhang, Harvard Medical School, Neural
ystems Group, MGH-13th St, Building 149, Rm 2651, Charlestown, MA 02129
nited States of America; Tel: �617� 724–5550; Fax: �617� 726–4078; E-mail:

zhang@nmr.mgh.harvard.edu
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lations �VLFOs��.17–21 In empirical studies of brain function
using NIRS and DOI, the amount of global interference varies
from subject to subject and from time to time. In some cases,
the amount of interference is small and evoked brain activity
can be seen in the raw measurement; other times the amount
of interference is too large for the evoked brain activity to be
detected without signal processing.18 Several methods have
been explored for the removal of global interference and im-
provement of evoked brain activity measurements. Low pass
filtering is the most common and straightforward, as it is
highly effective in removing cardiac oscillations.22,23 How-
ever, for physiological variations such as respiration, LFOs,
and VLFOs, there is a significant overlap between their fre-
quency spectra and that of the hemodynamic response to brain
activity. Frequency-based removal of these interferences can
therefore result in large distortion and inaccurate timing for
the recovered brain activity signal. Other methods for improv-
ing the contrast-to-noise ratio �CNR, mean signal during task
performance minus mean signal during baseline, divided by
the noise� for NIRS-based brain function measurements in-
clude adaptive average waveform subtraction,24 direct sub-
traction of a “nonactivated” NIRS waveform,22 state space
1083-3668/2007/12�4�/044014/12/$25.00 © 2007 SPIE
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stimation,25–27 and principal components analysis.28

Recently, Morren et al. adopted the technique of adaptive
ltering to remove cardiac oscillations, using signals acquired
rom pulse oximetry as a reference.29 Adaptive filtering has
een widely used in interference cancellations,30,31 and has
reat potential in the removal of global interferences and re-
overy of evoked brain activity detection, as demonstrated in
EG and MRI studies.32 The advantage of adaptive filtering

ncludes its capability of following the signal’s nonstationary
hanges and its simple implementation with low computa-
ional overhead. Since biomedical signals are generally non-
tationary and real-time features are desired for most NIRS
pplications, adaptive filtering has the potential to be a good
t for NIRS applications. Morren et al. showed that this
ethod effectively removes the cardiac-related signal varia-

ion in the optical measurements. However, in the application
f evoked brain activity detection, global interference in-
ludes not only cardiac oscillations but also other physiologi-
al variations such as vasomotor waves and respiration, which
re not represented by pulse oximetry signals. Moreover,
ulse oximetry is often measured from fingers or toes, far
rom the head, and acquires measurements at different wave-
engths. Thus, this reference signal is less representative of the
IRS signal observed during head measurements and hence is
ot optimal for reducing head/brain-based interferences.

In evoked brain activity detection, a good reference mea-
urement used in adaptive interference cancellation should be
ighly correlated to the global interference. Ideally, it mea-
ures directly the interference while avoiding any sampling of
he evoked response. Previously, researchers have used opti-
al measurements with short interoptode distances for moni-
oring superficial layer hemodynamics.17,20 For example,

cCormick et al. have attempted to measure interference
rom superficial layers using short source-detector separation
o correct cerebral oxygen delivery monitoring.20 No detailed
lgorithm for interference correction was presented in their
ublication, and the superficial layer interference measure-
ent was used simply to visually compare measurements

rom far source-detector separations rather than for interfer-
nce correction. The methodology we developed combines a
ultiseparation probe for data collection and adaptive filter-

ng for signal processing, and it can be used in conjunction
ith the existing methods such as low pass filtering. This
ethod has low computational requirements, and hence can

e implemented in real time, an important feature needed for
otential applications for real-time brain function localization
rocedures, biofeedback, and potential neuroprosthetic
evices.

Multidistance Optode Configuration and
Adaptive Filtering Algorithm to Remove
Global Interference

ccording to a photon transport theory,33 photons propagating
hrough a highly scattering tissue travel along a zig-zag path
efore they are detected. The collective photon propagation
ollows a roughly banana-shaped pattern �formulated by
hree-point Green’s function34,35� when reflection geometry is
sed, as in most applications of NIRS in the measurement of
euronal activity �see Fig. 1�. With appropriate source and

etector placement, we can make one channel primarily sen-

ournal of Biomedical Optics 044014-
sitive to the shallow layer hemodynamic changes �S-D1, with
close separation of source and detector; Fig. 1� and another
channel sensitive to hemodynamic changes, both in the shal-
low layer �unavoidably� and on the cerebral cortex �S-D2,
with far separation of source and detector�. In adaptive inter-
ference cancellation, measurements from S-D2 can be used as
a target signal channel, and with measurements from S-D1
used as reference channel. This process is equivalent to as-
suming a linear mapping between the shallow layer hemody-
namics, acquired from S-D1, and the global interference in
the target measurement from S-D2. Optimized cancellation is
then achieved by a point-to-point optimization of this linear
mapping. This cancellation, and hence the improvement in
CNR, is maintained even when hemodynamic changes in the
superficial layer are nonstationary, so long as the changes are
relatively slow compared to the adaptive filter convergence
rate.

Our study used the continuous wave �CW� NIRS method,
where two wavelengths �690 and 830 nm� of light are shone
into the head, detected at the scalp’s surface, and then are
converted to relative changes in the concentration of deoxy-
hemoglobin �HHb� and oxyhemoglobin �O2Hb� using the
modified Beer-Lambert law.5,34,36,37 First we calculate the
changes in the absorption coefficient by:

��a��� = ln
I0���
I���

/�DPF · d� , �1�

where I0 is the baseline light intensity, or the light intensity at
the initial time, and I is the time-dependent light intensity.
DPF is the differential pathlength factor, a constant that ac-
counts for the scattering properties of tissue, and d is the
separation between the source and the detector. After solving
the equations

��a��1� = ln�10��HHb��1���HHb�

+ ln�10��O2Hb��1���O2Hb�
�2�

��a��2� = ln�10��HHb��2���HHb�

+ ln�10��O2Hb��2���O2Hb� ,

we obtain the concentration of ��HHb�, the variation of

Fig. 1 Multisource-detector separation approach. Superficial layer he-
modynamics acquired from S-D1 will be used to estimate the global
interference presented in the target measurement from S-D2, which is
then canceled using adaptive filtering.
deoxygenated hemoglobin, and ��O2Hb�, the variation of

July/August 2007 � Vol. 12�4�2
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xygenated hemoglobin, as a function of time. The �’s are the
pecific extinction coefficients of deoxygenated and oxygen-
ted hemoglobin at different wavelengths. Water content is
ssumed to be stable, thus is not shown in Eq. �2�.

An adaptive filter with a finite impulse response �FIR� and
ransversal structure �tapped delay line� is used in our global
nterference cancellation.38 The filter output signal ei is given
y:

ei = yi − �
k=0

M

�k,ixi−k. �3�

Here the ��HHb� �or ��O2Hb�� acquired from far source-
etector separations �S-D2 in Fig. 1�, which contains evoked
rain hemodynamic changes, is used as the target measure-
ent �the signal channel�, denoted by yi. The subscript i is the

ndex of the time point. The ��HHb� �or ��O2Hb�� acquired
rom short source-detector separations �S-D1 in Fig. 1� is used
s reference measurement �the reference channel�, denoted by

i. M represents the order of the filter and the �k are the filter
oefficients, where k is the coefficient index. Since the coef-
cients are adjusted by the filter output ei on a sample by
ample basis, we use �k,i to denote the k’th coefficient at time
. Coefficients were updated via the Widrow-Hoff least mean
quare �LMS� algorithm.39 This algorithm is simple and fast,
eatures needed for real-time applications, especially for ap-
lications such as diffuse optical imaging where hundreds of
hannels would have to be processed together in real time.
he LMS algorithm for optimization is:

�k,i = �k,i−1 + 2�eixi−k, �4�

here the constant � is a step size, which controls the con-
ergence rate of the algorithm.

The processing steps proceed as follows. First, we calcu-
ate the ��HHb� �or ��O2Hb�� time series for both close and
ar source-detector separations, xi and yi, respectively. These
ime series become the inputs to the adaptive filter. The adap-
ive filter converts xi, the hemodynamic and oxygenation
ariation associated with the superficial layers, to an estimate
f the global interferences embedded in yi. Finally, this esti-
ate is then subtracted from the original time series. The

ransfer function of the adaptive filter is optimized dynami-
ally, via LMS �Eq. �4��, to ensure the best quality of cancel-
ation and account for variations of the living tissue. To expe-
ite the convergence of the LMS algorithm, we can normalize
he two time series xi and yi, so that both have standard de-
iations close to one. In real application on human subjects,
uch normalization could be achieved by collecting �e.g.� rela-
ively short �30 to 60 sec� pretest recordings prior to running
he main experiment. Pretests will also allow pretraining
f the adaptive filter to acquire good initial FIR filter
oefficients.

The performance of the filter is controlled by the order of
he FIR filter M and the step size used in updating the FIR
odes �. Note that if M =1, the adaptive filter becomes a

traight subtraction:

ournal of Biomedical Optics 044014-
ei = yi − �0xi, �5�

with �0 as a scaling factor. A previous study by Franceschini
et al. demonstrated a CNR improvement of approximately
20% by subtracting manually selected “nonactivated” pixels
from other pixels when imaging brain activities,22 which is
equivalent to assigning �0 a fixed value of 1. Instead of using
a nonactivated channel �which presupposes knowledge of ac-
tivation in the face of noisy data�, as shown in Eq. �5�, we use
short source-detector separation measurements to estimate
global interference and a scaling factor to adaptively adjust
the quantitative value. Here, �0 can be adjusted using Eq. �4�,
or in some cases be estimated and updated dynamically ac-
cording to the instant variation amplitudes of the xi and yi
time series. For example, �0=std�yi� /std�xi�, where std indi-
cates estimation of standard deviation using current or short-
term data. Since different tissue areas may have different
blood concentrations �and different variations in amplitude�,
in many cases by assigning �0 a fixed value of 1, we may not
be able to remove all interference. Adaptive filtering depends
more on the relative variation rather than their absolute mag-
nitude, thus by performing adaptive filtering we expect the
result to be further improved.

3 Monte Carlo Simulation Study of Evoked
Brain Activity Recovery

3.1 Simulation Design
To assess the performance of our methodology, we developed
a Monte Carlo simulation of head tissue, using layered struc-
tures to simulate scalp, skull, CSF, white matter, and gray
matter, respectively. One light source location with two wave-
lengths, 690 and 830 nm, and two detectors were located on
the surface of the medium to collect reflectance data. Simu-
lated cardiac oscillations and respiration are used as sources
of global variations, and they present in all layers. A proto-
typical hemodynamic response in the gray matter layer was
introduced via synchronous reduction of �HHb� and increased
�O2Hb�. The “stimulation” paradigm was a common block-
design paradigm composed of alternating blocks of 15 sec of
rest and 15 sec of stimulation, for a total of 200 sec. Data
were collected at a sampling rate of 10 Hz, and scattering
properties of tissue throughout the simulation were assumed
to be stable. The adaptive filtering used measurements from
S-D1 as reference to acquire an estimate of global interfer-
ence �1.5-cm separation� and measurements from S-D2 as a
target dataset �4.5-cm separation� to acquire evoked hemody-
namic response after removal of global interference. By com-
paring the raw measurements from S-D2, recovered evoked
response and the true evoked response, we evaluated the fil-
ter’s ability to remove unrelated physiological variations from
the hemodynamic response.

3.2 Simulating Global Interference and Evoked
Functional Brain Hemodynamics

Generally, multiple Monte Carlo simulations have to be per-
formed to acquire the simulated time series. However, using
the tMCimg Monte Carlo program �implemented in C�,40,41

pathlengths through the simulated tissue are recorded for each
photon detected. So for different time points where only ab-

sorption changes, the result can be calculated without rerun-
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ing the whole simulation. We launched 100,000,000 photons
rom the source for the simulated data collection at each time
oint. As shown in Fig. 2, the size of the simulated tissue is
50�100�50 mm3. The thickness and scattering properties
elected for each layer can be found in the first column of
able 1. Because the source and detectors are in the middle of

he simulated tissue surface, the boundary effect was ignored.
he index of refraction mismatch was also ignored in this
tudy �both tissue and air were given a refraction index of 1�.

The hemodynamic changes in the scalp, skull, CSF, and
ray and white layers were simulated as a combination of
ardiac fluctuation c�t�, respiratory fluctuations r�t�, and func-
ional hemodynamic responses v�t�. In a real experiment,
here would be a certain amount of uncorrelated changes in
he superficial layers compared with deep layers. For ex-
mple, the skin may sweat, which will only produce varia-
ions in the scalp layer. To simulate this phenomenon, we also
ntroduced a slow varying random time series g�t� in the scalp
ayer response. In summary:

fHHb
1 �t� = HHb0

1 + g�t��AHHb
1 c�t� + BHHb

1 r�t� + CHHb
1 v�t�� ,

�6�

ig. 2 Geometry of the Monte Carlo simulation for removal of global
nterferences and recovery of evoked brain activity.

Table 1 Hemodynamic parameters used in the

Head layers
Blood
content

B
con

Scalp, 7 mm
��s�=10 cm−1�

O2Hb

HHb

Skull, 7 mm,
��s�=12 cm−1�

O2Hb

HHb

CSF, 1 mm ��s�=0.1 cm−1� O2Hb

HHb

Gray matter,
3 mm
��s�=5 cm−1�

O2Hb

HHb

White matter,
33 mm
��s�=7 cm−1�

O2Hb

HHb
ournal of Biomedical Optics 044014-
fO2Hb
1 �t� = O2Hb0

1 + g�t��AO2Hb
1 c�t� + BO2Hb

1 r�t� + CO2Hb
1 v�t�� ,

�7�

fHHb
2,3,4,5�t� = HHb0

2,3,4,5 + AHHb
2,3,4,5c�t� + BHHb

2,3,4,5r�t� + CHHb
2,3,4,5v�t� ,

�8�

fO2Hb
2,3,4,5�t� = O2Hb0

2,3,4,5 + AO2Hb
2,3,4,5c�t� + BO2Hb

2,3,4,5r�t� + CO2Hb
2,3,4,5v�t� ,

�9�

where fHHb
1 �t�, fO2Hb

1 �t�, fHHb
2,3,4,5�t�, and fO2Hb

2,3,4,5�t� represent the
concentration of deoxygenated and oxygenated hemoglobin in
each layer as a function of time, with the superscripts 1 to 5
indicating the layer index for scalp, skull, CSF, and gray and
white matters, respectively. HHb0 and O2Hb0 represent the
average or baseline concentrations. The coefficients A, B, and
C with layer index as superscript and HHb or O2Hb as sub-
script are the hemodynamic variation amplitude control pa-
rameters. They are used to adjust the magnitude of variations
of deoxygenated and oxygenated hemoglobin concentrations
in each layer due to cardiac pulsation, respiration, and evoked
brain response. The values of the previously described param-
eters, including the baseline concentration and the variation
amplitude control parameters A, B, C for deoxygenated and
oxygenated hemoglobin in each layer, can be found in Table
1. Since this study focuses on signal and hemodynamic varia-
tions, the constant absorption from water and other back-
ground chromophores is not considered. The parameters used
are based on Choi et al.42 and others,34,43–45 together with our
own human subject data.

The cardiac and respiratory oscillations c�t� and r�t� were
both simulated as amplitude- and frequency-varying sinu-
soidal oscillations:

c�t� = Mheart sin�2�fheartt� , �10�

Carlo simulation.

on A ��M�,
respiration

B ��M�,
heartbeat

C ��M�,
evoked

response

2 1.1 0

0.13 0.074 0

2 1.2 0

0.13 0.078 0

0.2 0.12 0

0.01 0.006 0

2 1.2 15

0.13 0.076 −4

2 1.1 0

0.13 0.072 0
Monte

aseline
centrati
��M�

39

16

39

16

11.7

4.8

56

20

56

20
July/August 2007 � Vol. 12�4�4
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r�t� = Mresp sin�2�f respt� , �11�

here Mheart, fheart, Mresp, and f resp are all random variables,
nd were generated by low pass filtered Gaussian white noise
with offset added�. The average value and standard deviation
f the previous variables and the bandwidth of the low pass
lter �fourth order, Butterworth� used to filter the Gaussian
hite noise are listed in Table 2. These values were chosen
ased on our human subject data.

The evoked hemodynamic response v�t� was defined as the
onvolution of the stimulation paradigm s�t�, �s�t�=0 for rest
nd 1 for stimulation� and a prototypical hemodynamic im-
ulse response h�t�46:

s�t� = �0,t � rest

1,t � stimulation
, �12�

h�t� = � t

bc
�b

exp�b −
t

c
� ; b = 8.6, c = 0.547, �13�

v�t� = h�t� � s�t�, 0 � t � 200. �14�

Independent scalp variation g�t� is also generated by bi-
sed and low pass filtered Gaussian white noise; its related
nformation can be found in Table 2.

The hemoglobin concentration changes at each layer were
onverted to reduced absorption coefficients using a linear
ransform with specific extinction coefficients at 690 and
30 nm. Monte Carlo simulations were performed using the
rior parameters �about 15 h of compute time on a Gateway
50 laptop�, and the simulated fluence rate for a 2000 point
ime series �200 sec of data at a sampling rate of 10 Hz� was
alculated without rerunning the Monte Carlo for each time
oint �the calculation for one entire time series took about
2 h in Matlab�. Noise was then added to the acquired simu-
ated optical measurements. Simulated electronic noise was
enerated by low pass filtered white noise to 3 Hz, with a
tandard deviation of 1/100 standard deviation caused by res-
iration and heart beat.

.3 Determining Differential Pathlength Factor
and Sensitivity Correction Factor

ifferential pathlength factor is a correction to the source-

able 2 Simulation parameters for amplitude and frequency of inter-
erence oscillations.

arameters
Baseline

�average� value
Standard
deviation

Bandwidth of the
low pass filter �Hz�

heart �a.u.� 1 0.32 0.8

heart �Hz� 1.1 0.003 0.2

resp �a.u.� 1 0.18 0.2

resp �Hz� 0.18 0.002 0.1

�t� �a.u.� 1 0.1 0.01
etector separation, which is used to estimate the actual path-

ournal of Biomedical Optics 044014-
length a photon propagates through the medium.33 Usually,
DPFs are defined for homogeneous medium; for the hetero-
geneous medium used in the Monte Carlo simulation, we tried
two ways to determine the DPF. First, we used CW light in
the Monte Carlo simulation and determined the DPFs by:

DPF =

ln
U0

U

��ad
, �15�

where U0 is the baseline measurement acquired from Monte
Carlo, U is the measurement with a small and known pertur-
bation ��a in all layers, and d is the source-detector separa-
tion. In the second method, we used radio frequency �RF�
modulated light �70 MHz�. In our simulation, the average
phase delay of the optical measurement at each detector is
acquired, and this phase delay is proportional to the average
photon propagation length, thus we can determined the DPF
using the phase delay via

DPF =
	c

2�f�d
, �16�

where 	 is the phase delay after the diffuse photon density
wave �DPDW� propagates through the medium, acquired
from the Monte Carlo simulation; c is the speed of light; f is
the modulation frequency �e.g., 70 MHz, the result is not sen-
sitive to modulation frequency changes�; � is the index of
refraction; and d is the source-detector separation. The results
are presented in Table 3.

DPFs were variable, depending on separation and wave-
length. The difference between the results from these two
methods is less than 2%. Part of this error may be because the
photon propagation pattern �banana pattern� for RF and CW
are different. Since we are using CW illumination in the simu-
lation, we applied the results from the CW method to our
further data analysis.

When comparing the recovered brain hemodynamic
changes with the true evoked hemodynamic response v�t�,
since surface measurements are more sensitive to superficial
layers and there is a partial volume effect �i.e., in the tissue
probed by the light, the blood concentration changes in the
gray layer part are “averaged” to the whole volume�, we can-
not compare the quantitative filtered results directly with the
expected values. To examine the quantitative performance of
our methodology, we calculated the sensitivity correction
scaling factor by introducing a known perturbation into the
blood content of the gray matter layer only and then calculat-

Table 3 Calculated DPFs using CW and RF methods.

690 nm 830 nm

Methods
S-D1

�1.5 cm�
S-D2

�4.5 cm�
S-D1

�1.5 cm�
S-D2

�4.5 cm�

CW method 5.4 7.0 5.1 6.6

RF method 5.5 7.1 5.2 6.7
ing the blood content changes using the surface measurements

July/August 2007 � Vol. 12�4�5
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nd the modified Beer-Lambert law �MBLL�. The sensitivity
orrection factor is defined as the ratio of true blood content
hange to measured blood volume change. For our simulation,
his sensitivity correction factor is calculated to be about 27.

.4 Simulated Optical Measurements
igure 3 shows the raw simulated optical measurement at
90 nm and its power density spectrum, acquired from the
.5- and 4.5-cm source-detector separations. The simulated
easurements qualitatively match human subject data.47 The

ray bars indicate blocks of evoked stimulation. As from the
aw time series and from the power density spectrum, neither
he simulated measurements from S-D1 nor from S-D2 show
ny obvious evoked response, because the signal variation
s dominated by global interference, i.e., respiration and
eartbeat.

.5 Adaptive-Filtering-Based Removal of Global
Interference and Recovery of Simulated
Hemodynamic Response

fter the simulated optical measurements are acquired, the
ata analysis described in Sec. 2.1 is applied. For the filtering
arameters, considering both convergence speed and filter sta-
ility, we chose �=0.0001 and we use M =100, about twice
s large as the average period of the respiration fluctuation. To

Fig. 3 Simulated optical measurements at 690 nm from S-D1 and
peed up the convergence, we prenormalized the target and

ournal of Biomedical Optics 044014-
the reference datasets by dividing by their estimated standard
deviation, so that both time series have a standard deviation of
approximately 1. After the adaptive filtering, the quantitative
values of the filtered results were recovered by multiplying
back the standard deviation. The initial guess of the adaptive
filter weights was �1 0 . . . 0�, in other words we assume that
the shape of the global interference and the S-D1 measure-
ments are identical at the beginning of the adaptive filtering.
�O2Hb� and �HHb� were filtered separately and are presented
in Figs. 4 and 5, respectively. In these figures, we show both
raw time series of calculated blood concentration �the first
column� and their block averaged results �the second column�.
For the block average results, we average from 5 sec prior
through 25 sec after the onset of each simulated stimulation.
The gray bars indicate the period of active stimulation.

In Fig. 4, where the O2Hb result is presented, the target
dataset for adaptive filtering is the calculated �O2Hb� from
S-D2 with 4.5-cm source-detector separation �Figs. 4�a� and
4�b��, and the reference dataset is the calculated �O2Hb� from
S-D1 with 1.5-cm source-detector separation �Figs. 4�c� and
4�d��. In theory, the target dataset should contain the evoked
hemodynamic response; however, neither its raw time series
�Fig. 4�a�� nor its block average �Fig. 4�b�� show visible sig-
nal change correlated with the stimulation paradigm. In fact,

� and �c�, together with their power density spectrum �b� and �d�.
S-D2 �a
its similarity �both in the raw time series and the block aver-
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ges� to the reference dataset �Figs. 4�c� and 4�d�� indicates
hat it is dominated by global interferences.

After adaptive filtering, as seen from the filtered result
Figs. 4�g� and 4�h��, approximately 80% of the signal varia-
ion has been removed. This is another indication that the
ignal variations in the target dataset are predominantly global
nterferences that correlate well with the superficial layer re-
ponses. After we multiplied the sensitivity correction factor
ack into the filtered result, we compared it with the real
voked brain hemodynamic changes in the gray matter layer.
he comparison can be seen in Figs. 4�i� and 4�j�, with the
olid line as the filtered result recovered after sensitivity cor-
ection, and the dashed line as the true evoked brain response
sed in the simulation. Although obvious interferences still
emain, the contrast-to-noise ratio is dramatically improved
or evoked hemodynamic response detection. We also see,
uantitatively, good agreement between the filtered result �af-
er sensitivity correction� and the true value. Cardiac and res-
iration variations were significantly reduced, even without
he application of any bandpass filtering. The CNR of the
voked response can be further improved by block averaging
Fig. 4�j��, since the global variations are not temporally cor-
elated �due to the random factors in the frequency and am-
litude of heartbeat and respiration�, and can be canceled and

ig. 4 Adaptive filtering to remove global interference and to recover
ource-detector separation and �b� its block averaged result. �c� and �
ion. �e� and �f� Low pass filtering result for the target measurements
daptive filtering result with sensitivity correction �solid line�, toget
omparison and evaluation of the performance of the adaptive filterin
hus suppressed significantly by block averaging.

ournal of Biomedical Optics 044014-
Comparing the recovered evoked hemodynamics �solid
line in the block average results, Fig. 4�j�� with the real un-
derlying hemodynamics �dashed line in the block average re-
sult, Fig. 4�j��, we noticed several types of errors. 1. Residual
interference: the recovered evoked response is not as smooth
as the real hemodynamics, due to the leftover global interfer-
ence after filtering. 2. Quantitative error: the amplitude of the
recovered evoked response is about 85% of the real value. 3.
Timing error or phase lag: the rise and fall of the evoked
response has a small amount of time delay compared with the
real hemodynamic response. Residual interference is ex-
pected, as no technique will completely remove truly random
interference. In our adaptive filtering, the error may be be-
cause the random factor g�t� in superficial layers reduced the
correlation between the global interference in the superficial
layers and the global interference in the brain layers. In addi-
tion, the convergence of the LMS algorithm is relatively slow,
and the results may improve when another adaptive filtering
algorithm with faster convergence is used.

We also compared the adaptive filtering result with a tra-
ditional low pass filtering result. �O2Hb� acquired from S-D2
�Fig. 4�a�� was low pass filtered with an eighth-order Butter-
worth filter with 0.5-Hz bandwidth, and the result is shown in

brain activity. �a� target O2Hb measurements from S-D2 with 4.5-cm
rence measurements from S-D1 with 1.5-cm source-detector separa-
d �h� Adaptive filtering result for the target measurement. �i� and �j�
h the true evoked brain activity �dashed line� used for quantitative
od.
evoked
d� Refe
. �g� an
her wit
Figs. 4�e� and 4�f�. From Fig. 4�e�, we can see that this low
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ass filter effectively removes the cardiac oscillations; how-
ver, systemic variations due to respiration remain. After
lock average, seen in Fig. 4�f�, the systemic interference was
urther suppressed; however, it is still too large for the evoked
rain activity to be detected. Comparing Fig. 4�f� with the
nal adaptive filtering block averaged result �Figs. 4�h� and
�j��, we can see that adaptive filtering removes the global
nterference and recovers the evoked brain activity much

ore effectively.
In Fig. 5, we show the equivalent of Fig. 4 but for �HHb�.

he evoked response is visible, although noisy, after block
veraging without adaptive filtering �Fig. 5�b��. This is be-
ause the amount of global interference in �HHb� is relatively
mall. After adaptive filtering, the global interference is sig-
ificantly removed, CNR increased, and the evoked response
an be clearly seen �Figs. 5�g� and 5�h��. The performance of
daptive filtering for interference removal and evoked brain
ctivity detection can be further demonstrated with sensitivity
orrection �Figs. 5�i� and 5�j��. As for O2Hb, we can see there
re still interferences left; however, cardiac and respiration
ariations were significantly reduced, again without bandpass
ltering. The quantitative value of the functional blood con-
entration change was recovered to about 80% of the ex-

ig. 5 Adaptive filtering to remove global interference and to recover
ource-detector separation and �b� its block averaged result. �c� and
eparation. �e� and �f� Low pass filtering result for the target measurem
j� Adaptive filtering result with sensitivity correction �solid line�, tog
omparison and evaluation of the performance of the adaptive filterin
ected value. When comparing adaptive filtering result with

ournal of Biomedical Optics 044014-
the low pass filtering result shown in Figs. 5�e� and 5�f� using
an eighth-order Butterworth filter with 0.5-Hz bandwidth, we
can see that this low pass filter again effectively removes the
cardiac oscillations; however, systemic variations due to res-
piration remain. After block averaging �Fig. 5�f��, the evoked
brain activity can be clearly seen, and systemic interference
was further suppressed; however, the residuals are still quite
obvious. In comparison, the final adaptive filtering block av-
eraged result �Figs. 5�h� and 5�j�� has much less residual in-
terferences and improved CNR.

Both �O2Hb� and �HHb� demonstrated approximately
20% quantitative error after adaptive filtering �Figs. 4�j� and
5�j��. We hypothesized that there was a small sensitivity to
brain tissue at a 1.5-cm separation, and the evoked brain ac-
tivity detected by the reference channel was removed from the
signal channel after adaptive filtering, resulting in reduced
filtered results. This hypothesis was supported by the fact that
when we re-ran the simulations using a reference separation
of 1.0 cm in place of 1.5 cm, we were able to recover 95% of
the expected value of functional blood concentration change
�result not shown�. Generally, using a reference that is partly
correlated with the expected hemodynamic response will re-
sult in a loss in quantitative accuracy when filtering. Optimi-

brain activity. �a� Target HHb measurements from S-D2 with 4.5-cm
ference HHb measurements from S-D1 with 1.5-cm source-detector
g� and �h� Adaptive filtering result for the target measurement. �i� and
ith the true evoked brain activity �dashed line� used for quantitative
od.
evoked
�d� Re
ents. �

ether w
g meth
zation of the selection of reference channels for the best fil-
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ering performance will be studied and reported in the future.
Together, our Monte Carlo simulations show that, in prin-

iple, our methodology significantly removes global interfer-
nce and improves the CNR in evoked brain activity detec-
ion.

Resistance to Positional Errors
and Differential Pathlength Factor Errors

rrors in the location of optical sources and detectors and in
he assumed DPFs are two major error sources in NIRS using
W measurements and MBLL. Both affect the quantitative
alues of the result significantly, but less on the relative varia-
ions or the shape of the �O2Hb� and �HHb� time series. Since
his adaptive-filtering-based method uses mostly the shape of
he time series rather than the quantitative values of the time
eries, it is resistant to the errors in source and detector posi-
ion measurements or in DPFs. One example demonstrating
his method’s resistance to DPF error is shown in Fig. 6. The
ptical measurements are the same as described in Sec. 3.2;
owever, when calculating the �O2Hb� and �HHb� time se-
ies, the DPFs used for S-D1 and S-D2 are 4.3 and 5.6 at
90 nm, and 3.6 and 4.6 at 830 nm �i.e., introduction of 25%
rror�. From the result we see that the quantitative values of
O2Hb� and �HHb� changed; however, the global interfer-
nces are still effectively removed and evoked responses suc-
essfully detected, although the quantitative values of the re-
overed evoked response changed due to DPF error.
enerally speaking, when DPFs are underestimated, the re-

onstructed quantitative values will be overestimated and vice
ersa. This effect, however, will be systematic throughout an
xperiment, such that all measurements will be over- or un-
erestimated in a similar way, preserving comparability in
erms of relative change.

An example demonstrating our method’s resistance to po-
itional error is shown in Fig. 7. In this test, we introduced
andom positional error �generated in Matlab using the func-
ion “randn,” with standard deviation of 5 mm�. Again, global
nterferences are effectively removed and evoked responses
re still successfully detected, although the quantitative values

Fig. 6 Adaptive filtering result
Fig. 7 Adaptive filtering results using inaccurate

ournal of Biomedical Optics 044014-
of the recovered evoked response changed due to source and
detector positional error. Generally, when source-detector
separation estimates are smaller than the real separations, the
calculated blood concentration will be larger than the results
using the correct separations, and vice versa.

5 Comparison of Shallow Layer Hemodynamics
and Global Interference

The performance of the adaptive-filtering-based removal of
the global interference depends on how well the global inter-
ference �in the target measurement from S-D2� and the refer-
ence measurement �from S-D1� are correlated. In principle,
global interference in the target dataset comes from all layers,
since respiration, heart beat, and related hemodynamics could
exist in all tissue types. Our reference measurement, however,
is predominantly sensitive to shallow layer hemodynamics,
and hence changes there may differ from those in deeper lay-
ers. Two major reasons conspire to make the reference mea-
surements and the global interference in the target measure-
ments correlate well: 1. sensitivity dominance of the
superficial layer, and 2. physiological connection between su-
perficial and deeper layers.

5.1 Sensitivity Preeminence of Superficial Layers
First, superficial layer variation is the predominant component
in the total global interference in the noninvasive surface
measurement. According to photon transport theory, even for
measurements with large source-detector separation like
S-D2, the surface measurements are more sensitive to super-
ficial layer changes.34,35 Although the total global interfer-
ences consist of superficial layer hemodynamic variations and
deep-layer hemodynamic variations, the superficial layer he-
modynamic variation comprises a much larger portion of the
total global interferences. Hence, a measurement of the super-
ficial layer hemodynamics is a very good choice for a refer-
ence measurement in a noninvasive reflectance probe
geometry.

Our Monte Carlo simulation allows us to look at the total
global interference and its components �i.e., from superficial

inaccurate DPFs �25% error�.
s using
source-detector separation �±5 mm error�.
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ayers and from cerebral layers� separately. This is done as
ollows. To acquire total systemic interference, we performed
imulation with the same parameters as those we described in
ec. 3.2, except that there is no evoked hemodynamic re-
ponse added to the gray layer. Then, to acquire the compo-
ent of global interference from superficial layers, we per-
ormed simulation with the respiration and cardiac
emodynamics restricted to scalp and skull layers only. Fi-
ally, to acquire the component of global interference from
eep layers, we restricted the respiration and cardiac to gray
nd white matters layers only. Again, those simulation time
eries are calculated based on recorded photon pathlength in-
ormation without rerunning individual Monte Carlos at each
ime point. Simulated optical measurements were acquired
rom S-D2 with 4.5-cm source-detector separation, and then
lood content was calculated using MBLL.

The �O2Hb� result is shown in Fig. 8, where the solid line
epresents the total global interference in O2Hb, acquired
hen respiration and cardiac hemodynamics exists in all lay-

rs; the dotted line represents the global variations from scalp
nd skull; and the dashed line represents the variations from
eep brain layers. As Fig. 8 shows, the total global interfer-
nce and its components look very similar. Quantitatively, the
nterference from scalp and skull is the major component, and
t is about 80% of the total global interference, which is ap-
roximately the same proportion of the signal removed during
daptive filtering. This decomposition of total global interfer-
nce clearly demonstrates the sensitivity preeminence of su-
erficial layers for optical measurements with source-detector
eparation of 4.5 cm in our simulation.

.2 Physiological Connection between Superficial
and Deep Layers

hallow and deep layer hemodynamics should be correlated
ue to their close physiological connections. In a human sub-
ect, the heart, blood vessels, and lungs are the sources of the
lobal pressure-induced oscillations, and the carotid artery is
he common gateway for both scalp and skull �shallow� and
rain �deep� hemodynamic oscillations. Thus, correlation is

ig. 8 Total global interference and its components. Solid line �la-
eled 1� is the total global interference in the �O2Hb� from S-D2 in the
imulation; dotted line �labeled 2� is the interference from superficial
calp and skull layers; and dashed line �labeled 3� is the interference
rom deep layers of gray and white matters.
xpected, even if the enclosed state of the tissue inside the

ournal of Biomedical Optics 044014-1
skull alters the shape of the oscillatory waveforms. In our
simulation, the hemodynamic variations in the superficial lay-
ers �scalp, skull� and deep layers �gray, white matter� were
generated using linear combinations of respiration and cardiac
waveforms. The factors that differ between the superficial and
deep layers in our simulations included: 1. g�t� to simulate
independent scalp processes such as sweating, 2. different
relative weight on respiration and cardiac wave, which
changes the final waveforms, 3. different scattering for each
layer, and 4. electronic noise. Although we have added these
factors to make the superficial and deep-layer hemodynamics
different, when correlating shallow-layer variation time series
and deep variation time series, the correlation coefficient is
0.9986.

Due to these two reasons, the measurement of the superfi-
cial layer hemodynamics using short source-detector separa-
tion provides a good estimate of the global interference in the
target measurement for evoked brain activity detection, and
enables good adaptive filtering performance. This conclusion
appears to hold up in human subject experiments, which will
be reported separately.47

6 Real-Time Implementation
of the Methodology

The LMS adaptive filtering algorithm we discussed is particu-
larly suited to real-time implementation. We have imple-
mented the algorithm in C++ and tested it �Intel Pentium M
processor, 2000 MHz, 400-MHz external bus�, and it is ca-
pable of processing 833 K data points �64 bit data type� per
second with adaptive filtering �M =100�. For a typical DOI
imaging system with 50 sources, 50 detectors �2500 chan-
nels�, and 100-Hz sampling rate, the time required to process
all data collected in 1 sec with adaptive filtering is 0.3 sec, or
30% of the total time �70% can be used for data acquisition
and other processing�. Therefore, a real-time removal of glo-
bal interference and recovery of evoked brain activity is prac-
tical on even modestly current computer hardware, an impor-
tant feature required for applications such as brain activity
localization, biofeedback, and potential neuroprosthetic
devices.

7 Discussion
Using Monte Carlo simulation, we demonstrated that one
should be able to combine a multiseparation probe configura-
tion with adaptive filtering to dramatically reduce global in-
terference and improve the CNR in evoked brain activity de-
tection. We further demonstrated that superficial layer
interference is the major component of the total global inter-
ference, making superficial layer hemodynamics a particularly
good estimate for the total global interference. An added ad-
vantage of our method is its suitability for real-time use.

In previous studies,23,34,48 we utilized simple, traditional
signal conditioning methods �high and low pass filtering�. The
implicit assumption was that the overlying layers, even if they
do interfere with the brain measurement, do not correlate with
the stimulation protocol and hence can be reduced or elimi-
nated by block averaging or statistical methods. Across stud-
ies, however, we have consistently observed notable intersub-
ject variability in 1. the robustness of evoked responses and 2.

the magnitude of nonevoked variability �especially cardiac
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nd respiratory oscillations�. Based on our findings here—
articularly the observation that approximately 80% of our
aw signal is removed during filtering—we suggest that the
obustness of noninvasively recorded evoked brain responses
ay, at least in some cases, be much more severely affected

y interference from overlying tissue layers than previously
ssumed. Preliminary application of this technique to human
ata supports this suggestion.

While we tried to make the simulation as realistic as we
ould, it is not possible to include every potential physiologi-
al variable. In the Monte Carlo simulation work, we chose to
nclude respiration and cardiac oscillations, with respiration
eing representative of lower frequency oscillations �and in-
eed we selected a relatively low frequency for respiration of
.18 Hz�. In the human subject case report, the major inter-
erences were found to be Mayer waves and cardiac, and it
as demonstrated that they were also effectively removed by

daptive filtering. In principle, with appropriate reference sig-
al and adaptive filter design, adaptive filtering helps to re-
ove interferences with different types.
In this study we performed adaptive filtering after convert-

ng raw signal to blood content. Roughly speaking, the raw
ptical signal is an exponential function of the blood concen-
ration or absorption coefficient; the total measurement is a
roduct of contributions from global interference and evoked
rain hemodynamics. Linear adaptive filtering does not work
ell in this case, since here the output signal is total signal
inus �not divided by� estimated interference. Put another
ay, there is a nonlinear operation �logarithm� between raw

ntensity and ��O2Hb� and ��HHb�, and nonlinear opera-
ions cannot be transposed to get the same answer. However,
fter the raw optical measurements are converted to absorp-
ion coefficients �i.e., after taking the logarithm�, then there
hould be minimal difference switching the linear procedures
f blood conversion �using the absorption coefficient� and
daptive filtering. Since the result will be presented as hemo-
ynamics �blood concentration variations� at the end, the DPF
rror cannot be avoided. Conceptually it is relatively easier to
xplain the physiology and discuss the interference from
2Hb and HHb separately. In addition, in many of our human

ubject studies we found that the interference in O2Hb and
Hb are different. While information about O2Hb and HHb

re merged in the raw signals at each wavelength, converting
he raw signal to blood components first gives us the flexibil-
ty of choosing which blood species we will perform the adap-
ive filtering on to get the greatest benefit.

Three limitations of the method need to be mentioned.
irst, in this study the stimulation paradigm and the global

nterference were uncorrelated. In some experiments, how-
ver, the evoked brain activity and the global interference may
e correlated to some degree. For example, tasks requiring
xertion may increase respiration and heart rates in concert
ith task performance, thereby making the global interference

nd brain activity coupled. How well our adaptive filtering
ill work for this scenario is still under investigation. Gener-

lly, error will occur if the reference time series and the signal
o detect are correlated, and this error depends on the magni-
ude of correlated components in the two time series. Second,
ood performance of our method depends on measurements
rom S-D1 with short source-detector separation correlating

ell with the global interference in measurements from S-D2.

ournal of Biomedical Optics 044014-1
In our simulation the head is assumed to be layered homog-
enous, while those layers in an actual human head can be very
heterogeneous, e.g., due to the heterogeneous distribution of
large blood vessels. We are susceptible to independent optical
changes around the location of D1, or movement of D1 inde-
pendent of D2. In principle, adaptive filtering effectively re-
moves only interferences that are contained both in the target
measurement and in the reference channel; any independent
changes or noise in the reference measurement can be added
�with inverted sign� into the target measurement by the sub-
traction step in the filtering process. Thus, the reference mea-
surement needs to be as free from artifact as possible. One
possible solution might be to collect more than one short
source-detector separation reference measurement and to
combine or select these references as needed. Third, as com-
pared with the true evoked hemodynamic response, the re-
sponse recovered via adaptive filtering still has leftover inter-
ferences, as well as quantitative error and phase distortion.
The focus of this study is to preliminarily demonstrate the
methodology, and solutions to the previously mentioned limi-
tations are under investigation.

Overall, the combination of a multidistance probe and
adaptive filtering appears quite promising for removing a ma-
jor source of error in NIRS for evoked brain activity detec-
tion. Such filtering may be particularly useful in studies of the
optical fast signal,2,16,29 where signals are small and lowpass
filtering removes the signal of interest along with the noise. In
depth discussion about the optimization of the adaptive filter
parameters and comparison of different adaptive filter struc-
tures will be reported in the future. In our tests, we have
observed that the best parameters �M and �� in the adaptive
filter are relatively robust and do not vary substantially from
case to case. By optimizing the probe configuration and algo-
rithm, for example choosing the best source-detector separa-
tions for the reference measurement and target measurement,
or using adaptive filtering algorithms with faster convergence
�e.g., normalized LMS, recursive least squares, adaptive
RLS�, we may be able to further improve the performance of
this methodology.

Acknowledgments
This work was supported by the National Institutes of Health
�K25-NS46554 and R21-EB02416�. We would also like to
thank the PMI laboratory at Massachusetts General Hospital
for the Monte Carlo simulation code �available at http://
www.nmr.mgh.harvard.edu/PMI/resources.htm�, and thank
Margaret Duff for her help in preparing the manuscript.

References
1. J. Steinbrink, A. Villringer, F. Kempf, D. Haux, S. Boden, and H.

Obrig, “Illuminating the BOLD signal: combined fMRI-fNIRS stud-
ies,” Magn. Reson. Imaging 24�4�, 495–505 �2006�.

2. J. Steinbrink, F. C. D. Kempf, A. Villringer, and H. Obrig, “The fast
optical signal-robust or elusive when non-invasively measured in the
human adult?,” Neuroimage 26�4�, 996–1008 �2005�.

3. T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and
D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS
hemodynamic responses to motor stimuli in adult humans,” Neuroim-
age 29�2�, 368–382 �2006�.

4. E. Gratton, V. Toronov, U. Wolf, M. Wolf, and A. Webb, “Measure-
ment of brain activity by near-infrared light,” J. Biomed. Opt. 10,
011008 �2005�.

5. A. Villringer and B. Chance, “Non-invasive optical spectroscopy and

imaging of human brain function,” Trends Neurosci. 20�10�, 435–442

July/August 2007 � Vol. 12�4�1



1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

Zhang, Brown, and Strangman: Adaptive filtering for global interference cancellation…

J

�1997�.
6. G. Strangman, D. A. Boas, and J. P. Sutton, “Noninvasive brain im-

aging using near infrared light,” Biol. Psychiatry 52, 679–693 �2002�.
7. C. Hirth, H. Obrig, J. Valdueza, U. Dimagl, and A. Villringer, “Si-

multaneous assessment of cerebral oxygenation and hemodynamics
during a motor task—a combined near infrared and transcranial Dop-
pler sonography study,” Oxygen Transport Tissue 18, pp. 461–469,
Plenum Press, New York �1997�.

8. A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl,
“Near-infrared spectroscopy �Nirs�—a new tool to study
hemodynamic-changes during activation of brain-function in human
adults,” Neurosci. Lett. 154�1-2�, 101–104 �1993�.

9. W. N. Colier, V. Quaresima, B. Oeseburg, and M. Ferrari, “Human
motor-cortex oxygenation changes induced by cyclic coupled move-
ments of hand and foot,” Exp. Brain Res. 129, 457–461 �1999�.

0. V. Toronov, M. A. Franceschini, M. Filiaci, S. Fantini, M. Wolf, A.
Michalos, and E. Gratton, “Near-infrared study of fluctuations in ce-
rebral hemodynamics during rest and motor stimulation: temporal
analysis and spatial mapping,” Med. Phys. 27�4�, 801–815 �2000�.

1. M. A. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, and S.
Fantini, “On-line optical imaging of the human brain with 160-ms
temporal resolution,” Opt. Express 6�3�, 49–57 �2000�.

2. K. Matsuo, N. Kato, and T. Kato, “Decreased cerebral haemodynamic
response to cognitive and physiological tasks in mood disorders as
shown by near-infrared spectroscopy,” Psychol. Med. 32�6�, 1029–
1037 �2002�.

3. J. Ruben, R. Wenzel, H. Obrig, K. Villringer, J. Bernarding, C. Hirth,
H. Heekeren, U. Dirnagl, and A. Villringer, “Haemoglobin oxygen-
ation changes during visual stimulation in the occipital cortex,” Oxy-
gen Transport Tissue 19 428, 181–187 �1997�.

4. K. Sakatani, S. Chen, W. Lichty, H. Zuo, and Y. P. Wang, “Cerebral
blood oxygenation changes induced by auditory stimulation in new-
born infants measured by near infrared spectroscopy,” Early Hum.
Dev. 55�3�, 229–236 �1999�.

5. B. Chance, Z. Zhuang, C. Unah, C. Alter, and L. Lipton, “Cognition-
activated low-frequency modulation of light-absorption in human
brain,” Proc. Natl. Acad. Sci. U.S.A. 90�8�, 3770–3774 �1993�.

6. M. A. Franceschini and D. A. Boas, “Noninvasive measurement of
neuronal activity with near-infrared optical imaging,” Neuroimage
21�1�, 372–386 �2004�.

7. H. Obrig, M. Neufang, R. Wenzel, M. Kohl, J. Steinbrink, K. Ein-
haupl, and A. Villringer, “Spontaneous low frequency oscillations of
cerebral hemodynamics and metabolism in human adults,” Neuroim-
age 12�6�, 623–639 �2000�.

8. D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical
imaging of brain activation: approaches to optimizing sensitivity, im-
age, resolution, and accuracy,” Neuroimage 23, S275-S288 �2004�.

9. M. Kohl-Bareis, H. Obrig, K. Steinbrink, K. Malak, K. Uludag, and
A. Villringer, “Noninvasive monitoring of cerebral blood flow by a
dye bolus method: separation of brain from skin and skull signals,” J.
Biomed. Opt. 7�3�, 464–470 �2002�.

0. P. W. McCormick, M. Stewart, M. G. Goetting, M. Dujovny, G.
Lewis, and J. I. Ausman, “Noninvasive cerebral optical spectroscopy
for monitoring cerebral oxygen delivery and hemodynamics,” Crit.
Care Med. 19�1�, 89–97 �1991�.

1. P. W. McCormick, M. Stewart, G. Lewis, M. Dujovny, and J. I.
Ausman, “Intracerebral penetration of infrared light,” J. Neurosurg.
76�2�, 315–318 �1992�.

2. M. A. Franceschini, S. Fantini, J. H. Thomspon, J. P. Culver, and D.
A. Boas, “Hemodynamic evoked response of the sensorimotor cortex
measured noninvasively with near-infrared optical imaging,” Psycho-
physiology 40�4�, 548–560 �2003�.

3. G. Jasdzewski, G. Strangman, J. Wagner, K. K. Kwong, R. A.
Poldrack, and D. A. Boas, “Differences in the hemodynamic response
to event-related motor and visual paradigms as measured by near-
infrared spectroscopy,” Neuroimage 20�1�, 479–488 �2003�.

4. G. Gratton and P. M. Corballis, “Removing the heart from the brain:
compensation for the pulse artifact in the photon migration signal,”
Psychophysiology 32�3�, 292–299 �1995�.

5. V. Kolehmainen, S. Prince, S. R. Arridge, and J. P. Kaipio, “State-
estimation approach to the nonstationary optical tomography prob-
lem,” J. Opt. Soc. Am. A 20�5�, 876–889 �2003�.

6. S. Prince, V. Kolehmainen, J. P. Kaipio, M. A. Franceschini, D. Boas,
and S. R. Arridge, “Time-series estimation of biological factors in

optical diffusion tomography,” Phys. Med. Biol. 48�11�, 1491–1504

ournal of Biomedical Optics 044014-1
�2003�.
27. S. G. Diamond, T. J. Huppert, V. Kolehmainen, M. A. Franceschini,

J. P. Kaipio, S. R. Arridge, and D. A. Boas, “Dynamic physiological
modeling for functional diffuse optical tomography,” Neuroimage
30�1�, 88–101 �2006�.

28. Y. H. Zhang, D. H. Brooks, M. A. Franceschini, and D. A. Boas,
“Eigenvector-based spatial filtering for reduction of physiological in-
terference in diffuse optical imaging,” J. Biomed. Opt. 10�1�, 011014
�2005�.

29. G. Morren, U. Wolf, P. Lemmerling, M. Wolf, J. H. Choi, E. Gratton,
L. De Lathauwer, and S. Van Huffel, “Detection of fast neuronal
signals in the motor cortex from functional near infrared spectros-
copy measurements using independent component analysis,” Med.
Biol. Eng. Comput. 42�1�, 92–99 �2004�.

30. S. Selvan and R. Srinivasan, “Processing of abdominal fetal
electrocardiogram—a review,” IETE Tech. Rev. 17�6�, 369–384
�2000�.

31. H. A. Mansy and R. H. Sandler, “Bowel sound signal enhancement
using adaptive filtering—separating heart sounds from gastrointesti-
nal acoustic phenomena,” IEEE Eng. Med. Biol. Mag. 16�6�, 105–117
�1997�.

32. G. Bonmassar, P. L. Purdon, I. P. Jaaskelainen, K. Chiappa, V. Solo,
E. N. Brown, and J. W. Belliveau, “Motion and ballistocardiogram
artifact removal for interleaved recording of EEG and EPs during
MRI,” Neuroimage 16�4�, 1127–1141 �2002�.

33. D. T. Delpy, M. Cope, P. Vanderzee, S. Arridge, S. Wray, and J.
Wyatt, “Estimation of optical pathlength through tissue from direct
time of flight measurement,” Phys. Med. Biol. 33�12�, 1433–1442
�1988�.

34. G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affect-
ing the accuracy of near-infrared spectroscopy concentration calcula-
tions for focal changes in oxygenation parameters,” Neuroimage
18�4�, 865–879 �2003�.

35. M. A. O’Leary, “Imaging with diffuse photon density waves,” Ph.D.
Thesis, Univ. Pennsylvania, Philadelphia �1996�.

36. D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota,
and J. B. Mandeville, “The accuracy of near infrared spectroscopy
and imaging during focal changes in cerebral hemodynamics,” Neu-
roimage 13, 76–90 �2001�.

37. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J.
Wyatt, “Estimation of optical pathlength through tissue from direct
time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 �1988�.

38. J. L. Semmlow, Biosignal and Biomedical Image Processing,
Matlab-Based Applications, Marcel Dekker, Inc., New York �2004�.

39. S. Haykin, Adaptive Filter Theory. Prentice-Hall, Upper Saddle
River, NJ �2001�.

40. D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, “Three dimen-
sional Monte Carlo code for photon migration through complex het-
erogeneous media including the adult human head,” Opt. Express
10�3�, 159–170 �2002�.

41. See http://www.nmr.mgh.harvard.edu/DOT/resources/tmcimg/
index.htm.

42. J. Choi et al., “Noninvasive determination of the optical properties of
adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9,
221–229 �2004�.

43. S. Kohri, Y. Hoshi, M. Tamura, C. Kato, Y. Kuge, and N. Tamaki,
“Quantitative evaluation of the relative contribution ratio of cerebral
tissue to near-infrared signals in the adult human head: a preliminary
study,” Physiol. Meas 23�2�, 301–312 �2002�.

44. T. S. Leung, C. E. Elwell, and D. T. Delpy, “Estimation of cerebral
oxy- and deoxy-haemoglobin concentration changes in a layered
adult head model using near-infrared spectroscopy and multivariate
statistical analysis,” Phys. Med. Biol. 50�24�, 5783-5798 �2005�.

45. E. Okada and D. T. Delpy, “Near-infrared light propagation in an
adult head model. I. Modeling of low-level scattering in the cere-
brospinal fluid layer,” Appl. Opt. 42�16�, 2906–2914 �2003�.

46. M. S. Cohen, “Real-time functional magnetic resonance imaging,”
Methods 25�2�, 201–220 �2001�.

47. Q. Zhang, E. N. Brown, and G. E. Strangman, “Adaptive filtering to
remove global interference in evoked brain activity detection: a hu-
man subject case study,” J. Biomed. Opt., �in press�.

48. G. Strangman, J. C. Culver, J. H. Thompson, and D. B. Boas, “A
quantitative comparison of simultaneous BOLD fMRI and NIRS re-
cordings during functional brain activation,” Neuroimage 17, 719–

731 �2002�.

July/August 2007 � Vol. 12�4�2


