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Abstract. We seek to analyze the geometry and explain how bounds
and intervals of nonzero purely cylindrical powers are obtained and
applied in symmetric dioptric power space and envisaged in the
clinic. The principal powers at zero and at the focus at the cylinder
power of a lens are subject to the same uncertainty when measured.
Accompanying these uncertainties is an error in axis position. Error
cells are constructed for typical cylinder axes and an associated
power. The geometry contains an elegant clinical determination for
cross-cylinder compensation of astigmatism in terms of calculation
friendly quantities. The extreme positions in the error cells define
bounds for the cross-cylinder powers and their meridians. When clini-
cal powers in a chosen error cell are transposed, the new powers are
within a different cell. This ambiguous cell pair maps to a single cell
in an antistigmatic plane around cross-cylinder powers. © 2009 Society of
Photo-Optical Instrumentation Engineers. �DOI: 10.1117/1.3079809�
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Introduction

ike most measurements, the astigmatic compensation of a
atient’s vision has indeterminate numbers estimated for it.
ounds in the vicinity of this measurement and intervals are
elieved to contain the patient’s “true” or “exact” demand. A
heoretical concept like uncertainty is made tangible and sub-
tantial by well-known, visible, plane figures from coordinate
eometry that allow us to identify extreme values for bounds
f antistigmatic coordinates, and are the best way to analyze
r process intervals. The figures beautifully reveal a clinical
rocess for compensation of astigmatism in calculation
riendly quantities.

An error cell is a set of powers in the vicinity about a
rescription that images within an estimated diopter range of
he retina. This condition defines the shape and size of the
ell.1 Clinical powers are transformed to calculation friendly
uantities by equations that have an elementary geometric in-
erpretation. The error cells around nonzero purely cylindrical
owers become cells in symmetric dioptric power space.

Recent works2,3 have challenged the accepted view of how
ubjective refraction is performed, and offer a radically differ-
nt routine in a plane. A unique point in power space repre-
ents every discrete symmetric power �the ordinary astigmatic
ower familiar to optometry�. To determine the antistigmatic
omponent of the refractive compensation, the routine needs
ackson cross-cylinders only, that is, lenses in a range of
urely antistigmatic powers.

Powers in error cells in terms of cylinder power FC and
xis A are converted to be antistigmatic powers in unique
ells in a plane of symmetric dioptric power space. The plane,
here the coordinates plotted along the FJ and FK axes have

dentical units, houses those powers where dioptric power ma-
ournal of Biomedical Optics 014025-
trices have zero trace, and is perpendicular to planes previ-
ously considered.1 The FJ axis contains all cross-cylinder
powers whose principal meridians are vertical and horizontal.
The FK axis represents cross-cylinder powers whose principal
meridians are at 45 and 135 deg. The powers have zero
spherical equivalent or are Jackson cross-cylinders.

A unique error cell with radial and tangential dimensions
in an antistigmatic plane is the image of a pair of rectangular
clinical error cells. Bounds of the individual antistigmatic co-
ordinates of a power matrix and intervals are obtained for
discrete powers of cylinder lenses and their axes. The bounds
give the extreme positions of the principal meridians of a
cross-cylinder lens and the extreme values of its principal
powers. The patient’s exact compensation is believed to be
between these extremes. We model the Jackson cross-cylinder
procedure for the unambiguous powers in an error cell, and
thus include the uncertainty that accompanies the measure-
ments. Bounds of powers and axes of cylindrical lenses and
intervals around nonzero power as spherocylindrical powers
in symmetric power space are examined independently.

It is important in research to include error and its effect as
well as account for patterns in measurement data4,5 that are
not the result of transformations. Cylindrical lenses of zero
power produce different intervals around powers and axes and
are not discussed.

It is verified1 that error cells plotted with sphere and cyl-
inder powers and axis in positive cylinder form are not the
same as cells where powers are transposed to negative cylin-
der form. This noninvariance of cells does not carry across to
the new cells when they are transformed to symmetric diop-
tric power space. Invariance under spherocylindrical transpo-
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ition is a necessary requirement of all meaningful ophthalmic
arameters. Thus the bounds and intervals in symmetric diop-
ric power space are truly meaningful. Hence, for quantitative
nalyses, the traditional clinical spherocylindrical representa-
ion of power must be replaced by the invariant symmetric
ioptric power space. In fact, the invariance one observes in
ymmetric power space is a feature of dioptric power space
tself and is independent of the noninvariance from the world
f spherocylindrical power.

In symmetric dioptric power space, the axes of the cylin-
ers distinguish the planes containing the axis of scalar pow-
rs from each other. The invariance exists for all axes, and
hus for all planes and the entire symmetric dioptric power
pace. Lattice points subdivide the cylinder-sphere plane and
ny plane containing the axis of scalar powers in symmetric
ower space into error cells. The area of the surface of an
rror cell in a plane of the axis of scalar powers is half of the
rea of the cell about the same power in the cylinder-sphere
lane, valid for both spherical and astigmatic powers.

Further,6 symmetric intervals estimated for powers in
phere, cylinder, and axis lead to parallelepipedal error cells.
very power on or in the cell is transformed into a typical
ower on or in cells in symmetric power space. Coordinates
f the power matrix are obtained using transformations for
iscrete powers. The error cell surrounding sphere and cylin-
er powers and axis is converted to a cell about scalar, or-
hogonal, and oblique antistigmatic powers. In turn, the cells
re converted to cells around entries of the dioptric power
atrix, principal powers, and principal meridians.
The error cells are projected onto the planes of cylinder

nd sphere and cylinder and axis. Error cells in the cylinder-
xis plane image onto an antistigmatic plane in symmetric
ioptric power space. The powers give rise to a family of arcs
entered at the origin and a family of lines through the origin.

When restricted to thin systems with perpendicularly
rossed toric faces, the representation7,8 reduces to something
imilar to that of Thibos, Wheeler, and Horner;9 matrix FJJ
orresponds to their scalar J0 and matrix FKK to their scalar

45. Matrix notation holds for the power of all systems, thin or
ith obliquely crossed toric faces, thick and with perpendicu-

arly crossed toric faces, so that it better reflects the true char-
cter of dioptric power, that of a matrix. Furthermore, it is not
onfined to power but holds also for all the fundamental prop-
rties and many derived properties of linear optics.

Constructing Bounds and Intervals
uppose a reported power of, for example, 1.25 D of a cylin-
rical lens follows from a bracketing and optimization process
hat converges with the patient’s responses to “which is better,

or 2, or are they the same?” and the practitioner’s judge-
ent. The practitioner brings bounds as close together as pos-

ible. The reported power was obtained by the methods of
lassical texts.10,11 The bounds �1 and 2� seldom coincide, so
hat some small region remains after the new compensation
as been dispensed to the patient. In our example some hy-
othesized “true” figure or patient’s “exact” demand has been
ounded to the power 1.25 D12 that a supplier typically has on
he shelf or that a measuring instrument or routine is capable
f reporting. An interval must be an indeterminate quantity, or
n “uncertainty,” for if one knew what the bounds were pre-
ournal of Biomedical Optics 014025-
cisely, the “true” or “exact” patient demands could be ad-
justed for, and estimates for bounds and mathematics would
be unnecessary.

A pure thin cylindrical lens like any spherocylindrical lens
has two principal powers. The cylinder lens brings incident
rays parallel to the line of diopters to focus in a line parallel to
the axis of the cylinder at this nonzero power. To complete the
picture, imagine the other principal power at zero to focus on
a line of diopters at zero perpendicular to the focal line of the
nonzero lens. These focal positions define the length of an
interval in diopter that is the power of the cylinder lens.

Let us estimate that the hypothetical power of a cylinder
lens lies within 0.125 D of the rounded value. Thus 0 D
power is between −0.125 and 0.125 D, and similarly, 1.25 D
cylinder power is between 1.125 and 1.375 D �see Fig. 1� as
the conjugate nature of principal foci of spherocylindrical
lenses demand.1 Then the true value of the cylinder lens
power, reported as 1.25 D, is estimated to be between 1.00
and 1.50 D �1 and 2�, as shown in Fig. 1. Similarly the “true”
or “exact” axis angle of the lens is estimated to be in an
interval. The error in the principal powers is 0.125 D and the
error in the power of the cylinder lens is 0.25 D. Thus prin-
cipal powers are 0�0.125 D and 1.25�0.125 D, and the
power of the cylinder lens is 1.25�0.25 D. An experienced
researcher has the ability to understand, quantify, and commu-
nicate uncertainty in measurements. A measurement that does
not contain the likely interval of possible errors has limited
information. The true value differs surely from the one that is
reported, and therefore one has no idea of the possible size of
this difference.

The region around power 0 D could equally be around a
spherical lens. Although the exact hypothetical power is re-
garded as cylindrical, in most cases the power does contain
some sphere, and therefore, is actually astigmatic. It is known
that during refraction, changes in cylinder power give rise to
adaptations in sphere power to keep the circle of least confu-
sion on the retina. In symmetric dioptric power space, this
preserves the independence of the scalar power from an anti-
stigmatic power in the determination of the power of cross-
cylinder compensation. Then the trace of the dioptric power
matrix remains invariant.1 In Fig. 1 the arrows 1.00 D and
1.50 D represent positive powers of cylinder lenses. By re-
versing the arrows, the cylinder lens power is estimated to be
between −1.50 D and −1.00 D. Let a line of axes similar to
that of Fig. 1 illustrate bounds in axis angles.

Previous work6 shows that no common independent vari-
ables exist among proper values and vectors of the power
matrices for spherocylindrical powers, so that proper values
and vectors of the dioptric power matrix are functionally in-

01.25

– 0.1250.1251.375 1.125
Line of dioptres

1.00 D

1.50 D

Fig. 1 A line of diopters. The hypothetical power is estimated to be
within 0.125 D of the rounded number, that is, plano power is be-
tween −0.125 and 0.125 D, and reported power 1.25 D is between
1.125 and 1.375 D. Then the true value of the cylinder lens power,
reported as 1.25 D, is estimated to be between 1.00 and 1.50 D.
January/February 2009 � Vol. 14�1�2
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ependent. Thus an interval of cylinder powers does not de-
ermine an interval of corresponding cylinder axes or vice
ersa.

The best way to represent axes and corresponding powers
f the cylinder lens is in the plane with a rectangular set of
xes.6 Any hypothetical cylindrical component within the in-
erval of the rounded power has a corresponding hypothetical
xis located anywhere within the axis interval. Intervals of
xis angles and corresponding cylinder power intervals com-
ine to form error cells around each reported cylinder power.

Illustrating Examples
or the reported cylindrical powers 1.25 D and −1.25 D
hose axes are at 0 and 90 deg, as shown in Fig. 2, powers

t the corners of the error cells are listed in Table 1. The axes
re estimated to range from −2.5 to 2.5 deg and 87.5 to
2.5 deg.

The cylinder powers FC= �1.25 D with corresponding
xis at A=0 are the points Q and P plotted on the axis of
ylinder powers FC in Fig. 2. The cell about Q �with positive
ower� images on the cell about P and both straddle the cyl-
nder axis at A=0.

able 1 Rectangular coordinates of the corner points of the error cell
or the reported cylindrical powers 1.25 D and −1.25 D, whose axes
re at 0 and 90 deg, as shown in Fig. 2.

Axis �deg� Axis �deg� +Cyl �D� −Cyl �D�

2 −2.5 87.5 1.50 −1.50

3 −2.5 87.5 1.00 −1.00

2 2.5 92.5 1.50 −1.50

3 2.5 92.5 1.00 −1.00

FC

O

1.00 D

1.50 D

–2.5º 2.5º

–1.00 D

–1.50 D

A

87.5º 92.5º

90º

E2

E3

E2

E3

E2

E2

E3

E3

E6

E6

E6

E6

E7

E7

E7

E7

Q

P

ig. 2 Error cells in positive and their images in negative cylinder
ower at a common axis in an axis-cylinder plane about discrete
owers are seen with their spherocylindrical transposes. Imagine a

hird axis for spherical power �not shown� perpendicular to the paper.
he cells are used to study the effects of transposition and change of
ign of cylinder power only on cross-cylinder powers and two typical
ells that surround them. The figure is schematic and shows rectan-
ular surfaces of a parallelepiped �no scale is implied�. Power of the
ylinder lens is plotted in diopter along the FC axis and the corre-
ponding axis of the cylinder lens is plotted in degrees along the A
xis.
ournal of Biomedical Optics 014025-
The error cell about −1.25�90 is the spherocylindrical
transpose of the cell about 1.25�0; similarly, the cell about
1.25�90 is the transpose of the lower cell about −1.25�0.
Because of the invariance under transposition, every vertical
error cell pair related as shown in Fig. 2 forms the single
diametrically opposite cell pair shown in Fig. 3�a�. An error
cell about the power and axis at Q is on the left in Fig. 3�a�.

By transforming reported powers8 of cylinder 1.25�0 and
−1.25�0 �at Q and P in Fig. 2�, the rectangular antistigmatic
coordinates FJ and FK of the dioptric power matrix are ob-
tained as follows:

�FJ

F
� = −

1.25

2
�cos 2�0�

sin 2�0� � =
5

8
�− 1

0
�D and

δFK
5 º  

– 5 º  
O ●●

Q P

FK

FJ

E6

0.50 D

E7

E3
E2

–0.75 D –0.50 D

E6
E7

E2
E3

δFJ δFJ

0.75 D

δFK
5 º  

– 5 º  
●●

Q P

FK

FJ

E6

0.50 D

E7

E3
E2

–0.75 D –0.50 D

E6
E7

E2
E3

δFJ δFJ

0.75 D

O
Q

P

(a)

(b)

(c)

(d)

P P P

P
P

P

Q Q
Q

Q Q Q

O O O

O O O

E6

E6

FJ

FJ

E2

E2

Fig. 3 Error cells that are images of all the cells from Fig. 2 are
bounded by two radial lines E2E3 and E6E7, and the arcs E2E6 and E3E7
of the same circles on either side of the FK axis. Drawings are not to
any scale and the points are a plot of rows in Table 1 that satisfy Eqs.
�1�. The FJ value is found in the interval whose lengths are denoted by
�FJ. The FK value is in the interval between E2 and E6. The length of
this interval is denoted by �FK. Cross-cylinder meridians are seen ro-
tated through 10 deg, and lenses are flipped so that positively pow-
ered meridians OQ are replaced by negatively powered meridians OP
or vice versa. The arcs E2E6 and E3E7 of the same circles on either side
of the FK axis represent extreme powers of positive and negative cross-
cylinder lenses. Although we usually work with cylinder lenses as
compensation and a cross-cylinder lens as a probe, this method uses
the cross-cylinder lenses as both probe and compensation.
K

January/February 2009 � Vol. 14�1�3



r
Q
c
f
a
a
a
F

e
a

C
t
d
p
e
r
o
t
c
d
p
a
a
p

3
t
c
c
r
T
i
F
3
s
a
c
o

−
c
t
b
t
t
F
m
F

Abelman and Abelman: Bounds and intervals of nonzero cylinder powers…

J

�FJ

FK
� = −

− 1.25

2
�cos 2�0�

sin 2�0� � =
5

8
�1

0
�D, �1�

espectively. Equations �1� show the coordinates � FJ

FK
� at points

and P on opposite sides of the origin O in Fig. 3�a�. Polar
oordinates �r ;��= �1.25 /2;0� that identify point P emanate
rom axis and cylinder �0;−1.25�. The polar coordinates of Q
re then �−5 /8;0�= �5 /8;180�. A circle with diameter PQ
nd with equation FJ

2+FK
2= �5 /8�2 could be drawn. The di-

meter PQ with equation FK=0 then intersects the circle at

J= �5 /8 D.
The antistigmatic coordinates for each of the cylinder pow-

rs 1.25�90 �transpose at P� and −1.25�90 �transpose at Q�
re

�FJ

FK
� = −

1

2
�1.25��cos 180

sin 180
� =

5

8
�1

0
�D and

�FJ

FK
� = −

1

2
�− 1.25��cos 180

sin 180
� =

5

8
�− 1

0
�D.

ylinder powers that are spherocylindrical transposes are seen
o have the same antistigmatic coordinates. Clearly the coor-
inates are invariant under transposition. This is valid for all
owers. At corresponding points in any diametrically opposite
rror cells arcs of the same circle and a line intersect. The
adii of the arcs represent the powers of cross-cylinders of
pposite sign and the direction of the line �or a line at 45 deg
o the diameter� represents the direction of the lens. Thus error
ells in an antistigmatic plane are a set of points defined by a
iscrete power, where cross-cylinder lens meridians and their
owers intersect. In Fig. 3 one sees the handles at positions
long a line at 45 deg to the diameters as the practitioner flips
cross-cylinder and presents powers of opposite sign to the

atient.
A line emanating from the page in the vicinity of O in Fig.

may be regarded as the line of sight of a patient’s eye. All of
he error cells from Fig. 2 are imaged without a superposed
ross-cylinder lens in Fig. 3�a� and with a superposed cross-
ylinder lens in Fig. 3�b�. In Fig. 3�b� the cross-cylinder me-
idian OQ of positive power is aligned with OQ in Fig. 3�a�.
he letter O and the line OE6 of the cross-cylinder on the left

n Fig. 3�c� must be brought into coincidence with those in
ig. 3�a�. Similarly, the cross-cylinders on the right in Fig.
�c� have OE2 coincide with that of Fig. 3�a�. The largest and
mallest radii of arcs of a family of concentric circles in an
ntistigmatic plane in Fig. 3�a� represent powers of cross-
ylinder lenses ranging from −0.75 to −0.50 D on one side
f the origin and 0.50 to 0.75 D on the opposite side.

A family of diameters in Fig. 3�a� sloping from the angle at
5 to 5 deg represents the principal meridians of cross-
ylinder lens powers. The diameters with extreme slopes in-
ersect the circles with extreme radii and locate error cells
etween line segments and arcs of circles. The mathematics
hat give rise to Fig. 3�a� depict 1. the clockwise rotation of
he cross-cylinder handles of the lenses through 10 deg in the
ig. 3�c�, and 2. the flipping of the lenses so that positive
eridians in Fig. 3�c� are replaced by negative meridians in
ig. 3�d� or vice versa. Although we usually work with cylin-
ournal of Biomedical Optics 014025-
der lenses as compensation and a cross-cylinder lens as a
probe, this method uses the cross-cylinder lens as both probe
and compensation. The cross-cylinder options in Figs. 3�c�
and 3�d�, intermediate handle positions, and an interval of
principal powers are contained in the geometry of Fig. 3�a� in
an antistigmatic plane.

Similar cross-cylinder figures where handles rotate, lenses
flip, and powers change emanate from Fig. 4. Flipping the
lens takes one across the circle diameter; turning the lens
takes one around the circle.

In the intervals �−0.75,−0.50� D and �0.50,0.75� D, we
identify radii of concentric arcs on opposite sides of the ori-
gin. Examples are seen in Fig. 3�a�. The radii of the arcs
represent cross-cylinder powers with alternate signs. The
powers are presented to the patient as the handle is flipped to
counteract cross-cylinder powers of the ametropia. In particu-
lar, the points P and Q at the radii −5 /8 D and 5 /8 D in Fig.
3�b� represent the potential power of the opposite sign pre-
sented to neutralize2,3 this cross-cylinder component of the
ametropia.

In Fig. 3�a� the powers at P and Q and their location on
the FJ axis are now known. From Fig. 3�a� the magnitude
of F at E and E is �0.75 sin 5� D. The “true” value of F

δFK

δFJ

δFJ

FJ

FK

δFK

O

5º
–5º

0.75 D

–0.75 D

●

●

E6

E7

E3

E2

E2

E3

E6

E7

0.50 D

–0.50 D

Q

P

Fig. 4 These error cells for scalar powers in an antistigmatic plane are
the image of cells in Fig. 2 that straddle lines at 22.5 and 112.5 deg,
respectively. The two radial lines E6E7 and E2E3 and the arcs E7E3 and
E6E2 of the same circle form the centrosymmetric error cells. The radii
of the arcs define the bounds that the cross-cylinder lens powers as-
sume. The lines define the extreme values that the direction of the
cross-cylinder lens assumes about a particular axis position. Polar co-
ordinates of points E7 and E2 enable one to find the rectangular coor-
dinates �FJ ;FK� of the cell points and the corners of the surrounding
rectangles. The cells are two of many tangential neighbors in the
quadrants of an antistigmatic plane, and the labeled points satisfy Eqs.
�1�. The difference between tangent, arc, and chord becomes less
significant for greater magnitude cylinder powers and smaller errors in
axis angle. The exact FJ�FK� values are in the interval between the
abscissas of E2 and E3 �the ordinates of E6 and E7�, and �FJ ��FK�
denote the lengths of the intervals. Rotation of the cell through 90 deg
about an axis emanating from the paper at the origin allows what has
been described for FJ and �FJ to be interchanged with what has been
valid for FK and �FK and vice versa.
K 2 6 K
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bout 0 deg is in the symmetric interval
−0.75 sin 5 , 0.75 sin 5� D. The length of this interval is
FK=1.50 sin 5 D. The lower bound for FJ occurs where the
rcs E2E6 intersect the axis, namely, −0.75 D. The upper
ound is the FJ value at E3 �or E7�. The asymmetric interval
or the cell about FJ=−0.625 D at Q �see Eqs. �1�� is
−0.75, −0.50 cos 5�. The length of this interval is �FJ
�0.75, –0.50 cos 5� D.

Sphere, cylinder, and axis cannot be optimized or suitably
rocessed. However, in the example the antistigmatic coordi-
ates of an error cell are optimized under the estimated con-
traint.

The error cells in Fig. 3�a� contain all hypothetical powers
hat would be rounded to the transposed cylinder powers
.25�0 and −1.25�90 �as well as −1.25�0 and 1.25
90� that keep the circle of least confusion on the retina.
Let points Q and P in Fig. 2 move to the right to vertical

ines at 22.5 deg. The powers of cylinder 1.25�22.5 and
1.25�22.5 D are transformed to the rectangular antistig-
atic coordinates FJ and FK

8 of the dioptric power matrix via

�FJ

FK
� = −

1.25

2
�cos 2 �22.5�

sin 2 �22.5� � =
5

8�2
�− 1

− 1
�D and

�FJ

FK
� = −

− 1.25

2
�cos 2 �22.5�

sin 2 �22.5� � =
5

8�2
�1

1
�D . �2�

quations �2� contain the powers on opposite sides of a diam-
ter QP as similar right-angled triangles with a common ver-
ex O in Fig. 5. Polar coordinates �5 /8;45� that identify point

emanate from axis and cylinder �22.5;−1.25�.
The diameter QP in Fig. 3�a� has rotated through 45

eg for the same circle as in Eqs. �2�, and is illustrated in
igs. 4 and 5. The polar coordinates of Q are then
−5 /8;45�= �5 /8;225�. A circle with diameter QP as in Fig.

has the same equation as an analogous circle in Fig. 3�a�,
J
2+FK

2= �5 /8�2, but the diameter, determined by the axis,
as the equation FK=FJ.

The coordinates for each of the transposed cylinder powers
ave invariant antistigmatic powers under transposition.

FK

FJ

FJ
2 + FK

2 = (5/8)2

FK = FJ tan 45°

–FJ

Q

FJ

P

O
45°

45°

●

●

5
8

5
8−

–FK

FK

O

P

Q

ig. 5 This is a circle for which Eqs. �1� and �2� are the parametric
quations. The parameters are the clinical quantities A and FC. Elimi-
ation of one of the parameters yields the equation of a diameter FK
FJ tan 2A of the circle FJ

2+FK
2 =FC

2 /4 in terms of the antistigmatic
owers FJ and FK that have zero spherical equivalent or are Jackson
ross-cylinders. Powers where dioptric power matrices have zero
race are to be found in this plane of symmetric power space. The
ross-cylinder lens with its handle indicates how meridians with op-
osite powers alternate and coincide with radius OP and radius OQ.
ournal of Biomedical Optics 014025-
As the cross-cylinder handle along a line at 45 deg to di-
ameter QP is flipped, P and Q at the radii −5 /8 D and 5 /8 D
represent the potential cross-cylinder power of the opposite
sign presented to the patient2,3 for this component of the
ametropia.

Let the error cells in Fig. 2 move to the right to straddle
lines at 22.5 and 112.5 deg. Then the cells in Fig. 3�a� rotate
to where cells straddle a line at 45 deg in Fig. 4. For each of
these error cells, the extreme values of the rectangular coor-
dinates FJ and FK differ from those of Fig. 3�a�. Thus the
intervals and lengths need to be calculated anew. Error cells
contain a set of points defined by a discrete power, where
cross-cylinder lens meridians and their powers intersect. Let
the handle of the cross-cylinder be along a line at 45 deg to
PQ and the other diameters in Fig. 4. As the practitioner flips
the handle powers of cross-cylinders from diametrically op-
posite error cells, signs and meridians are presented to the
patient.

Assume that all of the many pure cylindrical powers and
their axes in the error cells in Fig. 2 around the single powers
at P and Q and their transposes are translated to symmetric
dioptric power space. Then a family of diameters intersects its
family of concentric circles so that concentric arcs and diam-
eters define error cells. Diameters and concentric arcs or
circles are patterns with cylindrical symmetry that are ex-
pected in such data. Any other patterns in a plane provide
characteristics deemed worthy of further investigation. In an
antistigmatic plane, error cells are of the form and shape seen
in Figs. 3�a� and 4. We have demonstrated that the orientation
of the cells changes for different cylinder axes.

Error cells in Fig. 2 are at 0 and 90 deg, and in Fig. 3�a�
their images straddle the FJ axis. Suppose the cells in Fig. 2
straddle lines about 45 and 135 deg, respectively. Then, in an
antistigmatic plane, an error cell straddles the FK axis instead
of the FJ axis. Although the discussion for FJ and �FJ may
then be interchanged with the aforementioned for FK and �FK
and vice versa, in general, cells need to be treated individually
for angles, since a treatment of a single cell in the sample that
covers all cases adequately does not exist. We have consid-
ered a representative sample of error cells at positions in an
antistigmatic plane.

4 Discussion and Conclusion
The shape of error cells has been tailored to include powers
that are well defined with respect to the circle of least confu-
sion and the patient’s retina. Error cells are a set of probable
compensatory powers about a discrete power that one may
use to assess just-noticeable differences for refractive com-
pensation and plan which powers to include in the research
project. Error cells could contain over-refractions for patients
with newly implanted intraocular lenses. The power of the
over-refraction in air is at the center of the cell. Other possible
over-refractions that keep the circle of least confusion near
enough to the retina are located in the cell. Once one eye has
been refracted and the order of the compensation is known,
measurements for the other eye may be adjusted accordingly
before the implant lens is ordered. Error cells give a fairly
complete picture of potential compensations.

An interval of cross-cylinder lens powers and an interval
of their axis positions have been modeled in an antistigmatic
January/February 2009 � Vol. 14�1�5
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lane by coordinate geometry and properties of the dioptric
ower matrix. The point of departure was a set of possible
ens compensations about discrete and corresponding powers
f lenses in a trial frame. Intervals conveyed to data in sym-
etric power space influence their accuracy and the confi-

ence one may place in them. Bounds were analyzed and
ptimized, and powers obtained by calculation were ranked.
ptimization with the usual calculus routines produced no

xtreme values in multivariate power matrix coordinates. This
ork showed via geometry how bounds postcomputation al-

ow intervals of individual antistigmatic coordinates of the
ower matrix to be obtained for thin cylinder lens powers and
heir axes.

For reported cylinder powers at specific axes, the cylinder
xis and power were considered as the coordinates in Table 1
n the plane of Fig. 2. The plane was subdivided into a mesh
f cells with a clinical measurement at the center. Rectangular
ells with the same shape, size, form, and orientation were
hosen and drawn for positive and negative cylinder powers.
oordinates of the centers and corners of such cells were
etermined. Every cylinder axis and power value on or in an
rror cell in an axis-cylinder plane was imaged onto cells in
n antistigmatic plane. The lines that were perpendicular
remapping became perpendicular lines and arcs postmap-
ing. It is interesting to note the number of cells halved after
apping as a result of invariance of cells under spherocylin-

rical transposition.1,6 Numerical examples illustrate how to
etermine upper and lower bounds. Bounds and intervals of
ero cylinder powers at all axis angles complement bounds
nd intervals about nonzero cylinder powers in an antistig-
atic plane.
ournal of Biomedical Optics 014025-
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