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Abstract. Cancer is now recognized as one of the major causes of morbidity and mortality. Histopathological
diagnosis, the gold standard, is shown to be subjective, time consuming, prone to interobserver disagreement, and
often fails to predict prognosis. Optical spectroscopic methods are being contemplated as adjuncts or alternatives
to conventional cancer diagnostics. The most important aspect of these approaches is their objectivity, and
multivariate statistical tools play a major role in realizing it. However, rigorous evaluation of the robustness of
spectral models is a prerequisite. The utility of Raman spectroscopy in the diagnosis of cancers has been well
established. Until now, the specificity and applicability of spectral models have been evaluated for specific cancer
types. In this study, we have evaluated the utility of spectroscopic models representing normal and malignant
tissues of the breast, cervix, colon, larynx, and oral cavity in a broader perspective, using different multivariate
tests. The limit test, which was used in our earlier study, gave high sensitivity but suffered from poor specificity.
The performance of other methods such as factorial discriminant analysis and partial least square discriminant
analysis are at par with more complex nonlinear methods such as decision trees, but they provide very little
information about the classification model. This comparative study thus demonstrates not just the efficacy of Raman
spectroscopic models but also the applicability and limitations of different multivariate tools for discrimination
under complex conditions such as the multicancer scenario. C©2011 Society of Photo-Optical Instrumentation Engineers (SPIE).
[DOI: 10.1117/1.3548303]
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1 Introduction
Cancer is considered to be one of the most life threatening dis-
eases, and a major public health problem in both developed and
developing countries. According to a report, a total of 1,479,350
new cancer cases and 562,340 deaths from cancer were esti-
mated to occur in the United States alone in 2009, correspond-
ing to more than 1,500 deaths per day. The prostate, lung, colon,
and rectum are the most common cancers in males, while breast,
lung, and bronchus are the most common cancers in females.1

Late detection of cancerous lesions is considered to be the ma-
jor cause of death due to cancer. Early detection is limited by
the fact that cancers most often are asymptomatic and may not
appear in diagnostic images. Histopathological diagnosis, based
on visual examination to identify morphological peculiarities
that are indicative of disease, is the gold standard for cancer
diagnosis. But this approach can be subjective, time consuming,
prone to interobserver disagreement, and may not provide prog-
nostic information to a clinician, especially for precancerous
conditions.

Detection of neoplastic changes by optical spectroscopy
techniques such as Fourier transform infrared (FTIR), Raman,
and fluorescence has been actively pursued in recent times.
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Early transformation from a healthy to a diseased state is at-
tributed to biochemical changes within the tissue. Since optical
spectroscopic techniques are very sensitive to biochemical
changes, they are being pursued as potential alternatives or ad-
juncts to conventional diagnostic methodologies. The efficacy
and potential applications of optical spectroscopic techniques in
cancer diagnosis has been well demonstrated. References 2–4
present the latest topical reviews on biomedical applications of
LIF, FTIR, and Raman. Another attractive feature of optical
spectroscopic methods is that data are amenable to multivariate
statistical tools. Various statistical techniques have been suc-
cessfully deployed to exploit subtle differences in the spectral
profile for diagnosis. Principal component analysis (PCA) and
its derivatives such as linear discriminate analysis (LDA) and lo-
gistic regression, are some of the widely used methods. Among
optical spectroscopic methods, Raman spectroscopy can pro-
vide detailed information about the chemical composition of the
tissue under study and, since progression of a disease is accom-
panied by chemical changes, it can provide the physician with
valuable information for diagnosing a disease. The most impor-
tant attribute of Raman spectroscopy is its in vivo applications,
since light can be delivered and collected rapidly via optical
fibers which can be incorporated into catheters, endoscopes,
cannulas, and needles.5–8 Raman microspectroscopy, which
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facilitates high spatial resolution down to 1 μm, is often used
for in-depth analysis of selected regions, while conventional or
macro-Raman spectroscopy is better suited for diagnostic ap-
plications especially for in situ or in vivo conditions because
the probing area is larger in this mode (20 to 100 μm). More-
over, the findings of conventional spectroscopy of ex vivo sam-
ples can be extrapolated, to a reasonable extent, to in vivo or
in situ conditions. Hence, conventional Raman studies of ex
vivo samples are often used as exploratory approaches before
taking up eventual in vivo or in situ evaluations. We have carried
out extensive Raman spectroscopic investigations of ex vivo oral,
cervical, breast, stomach, colon, and ovarian cancer tissues.9–18

Our studies have demonstrated the feasibility of classifying nor-
mal, premalignant, inflammatory, and malignant conditions in
the above-stated cancers. We have also verified spectroscopic
diagnostic models of normal and pathological oral, breast, and
cervix cancers over large data from certified and single blinded
samples.

The strength of optical spectroscopy methods relies in its
objective diagnosis. But the fact remains that the outcomes are
not reliable unless both the input dataset and discrimination
methodology are robust enough. So far, specificity or appli-
cability evaluations of a spectroscopic model were limited to
a given cancer, e.g., standard sets of oral, normal, and patho-
logical conditions were always evaluated by test oral tissue
spectra. In the present study, we have evaluated the specificity
of already developed Raman spectroscopic models in healthy
and cancerous conditions of the breast, oral cavity, cervix, lar-
ynx, and colon tissues using different multivariate statistical
tools. Concomitant discrimination of the nature of the tissue,
as well as healthy versus cancerous conditions, is consider-
ably tough, allowing for a fair comparison of different dis-
criminant methods. Comparative evaluation of discrimination
efficiency has been performed for linear unsupervised meth-
ods such as PCA and supervised methods such as factorial
discriminant analysis (FDA), partial least square discriminant
analysis (PLSDA), and a nonlinear supervised method based on
decision trees. The findings of the study are discussed in this
paper.

2 Materials and Methods
In our earlier studies, we have developed and evaluated the speci-
ficity of Raman spectroscopic models for breast, oral, cervix,
colon, and larynx cancers. Raman spectra were recorded with
an instrument assembled by us, details of which are described
elsewhere.9–16 In brief, this setup consists of a diode laser (SDL-
8530/785 nm, 100 mW) as excitation source and HR 320 spec-
trograph (600 gr/mm blazed at 900 nm) coupled to a Spec-
trum One liquid nitrogen cooled CCD that is used for recording
the Raman signal. Unwanted signals from excitation source are
filtered by a holographic filter (HLBF 785.0, Kaiser Optics).
A notch filter (HSPF-5812, Kaiser Optics) is used to remove
the Rayleigh scattering. An integration time of 30 s per ac-
cumulation with 20 accumulations are the spectral acquisition
parameters. Samples are kept moist with saline during measure-
ment, and these conditions are maintained constant for all the
measurements.

In the present study, randomly selected 223 spectra from
spectral models of the breast (normal 25, malignant 21), oral

cavity (normal 22 , malignant 24), cervix (normal 21, malignant
31), larynx (normal 25, malignant 28), and colon (normal 11,
malignant 15) were analyzed in a common spectral range of 1200
to 1700 cm− 1. These spectra were a part of the spectral models
which were tested and verified by us.9–16 Before proceeding
for any analysis, these spectra are required to be converted into
a digitized spectral matrix form. For this, consider xi to be a
vector representing a digitized spectrum with p elements (in this
study, with spectral range of 1200 to 1700 cm− 1, spectra were
interpolated to have common 800 digitized point absorbance
values). If we have n such spectra (in this study, n = 223), we
can build a matrix X, dimensioned (n X p), in which an element
xij is the absorbance of the i’th spectrum, for the j’th digitized
point. All spectral data used in this study were transformed by the
standard normal variate technique (SNV) to reduce within-class
variability.19 After SNV transformation, the 223 spectra together
were treated as training samples for generating a classification
model with the help of multiple multivariate tools. The efficiency
of discrimination of various statistical tools was evaluated using
a blinded training dataset.

3 Data Analysis
3.1 Linear Discriminant Methods
PCA was performed using the algorithm implemented in
commercially available GRAMS 32 (Galactic Corporation,
USA). As in our earlier studies, PCA was performed using three
different approaches.9–18 In the first approach, spectra from
different tissues were pooled together and scores of factors
were checked for discrimination in the unsupervised mode. In
the second approach, multiple discriminating parameters were
used to give a better and more objective diagnosis. For this,
the spectral model of different tissue types was used as the
standard calibration dataset. This standard set was subjected to
PCA to derive parameters such as scores, the spectral residuals,
and the Mahalanobis distance. When a test spectrum (blinded
training sample spectrum) and any standard set are of the same
class, the values of these parameters for the test samples will
fall in the range for that of the standard set and vice versa.
In the third approach, match/mismatch tables were computed
using the “limit test” approach. In this methodology, the test
spectra are matched against standard calibration sets with the
above-mentioned discrimination parameters. If the values of
the given spectrum fall within a specific set limits, the spectra
show YES or PASS, otherwise NO or FAIL.

FDA20 and PLSDA21–23 methods were employed using the
SAISIR24 Package which is an open source code. Since a step-
wise discriminant analysis method along with verification has
been employed for generating classification models (SAISIR
documentation) for all of these methods, a criterion of 95% clas-
sification efficiency was used for selecting a minimum number
of factors for generating models.

FDA models were built using PCA scores generated for the
training data set. To remove eigenvalues which provide negli-
gible contribution in data variation, a total of 30 PCA factors
were used for generating PCA scores. These scores have been
used for developing FDA models for different number of factors.
These models were tested against blinded training samples for
calculating the classification efficiency.
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PLSDA models were generated using different number of
partial least square discriminant (PLS) factors. Classification of
blinded training samples was done on the basis of maximum in-
dex of predicted response variables (class membership variable)
for all class types using PLS models.

3.2 Nonlinear Discriminant Models
We have implemented decision tree models based on classi-
fication and regression tree (CART),25 J48 (based on C4.5
algorithm)26 and random forest method (RFM)27 algorithms.
This analysis was carried out using algorithms from Weka.28

Models were developed and blinded training samples were used
for testing the capability of these models for efficient classifica-
tion.

4 Results and Discussion
4.1 Spectral Features
The mean Raman spectra of normal and malignant tissues
are shown in Fig. 1. Strong vibrational modes of lipids can
be seen in normal breast tissue spectra at 1267, 1301, 1440,
1654, and 1746 cm− 1 as compared to prominent vibrational
modes of proteins in malignant breast tissue spectra indicated
by broad and strong amide I at 1650 cm− 1, δCH2 bend at around
1450 cm− 1, and broad peaks in the amide III 1200 to
1350 cm− 1 region [Fig. 1(a)]. In general, this trend holds true
for the spectra of oral, colon, and larynx tissues [Figs. 1(b),
1(d), and 1(e)]. Mean spectra of normal cervical tissue shows

abundance of structural proteins such as collagen and elastin
indicated by vibrational modes at 1245, 1267, 1385, 1633, and
1671 cm− 1, whereas spectral features in malignant cervical tis-
sue suggests the presence of noncollagenous proteins and lipids
at 1305, 1331, and 1645 cm− 1 [Fig. 1(c)]. In addition to this,
sharper amide I and III peaks and redshift in 1450 cm− 1 can also
be seen in malignant spectra in contrast to broad amide I peaks
at 1384 and 1269 cm− 1 of normal cervical tissue spectra.9–16

As explained above, even on a cursory glance, the spectral
features of normal and malignant conditions in a given tissue-
type show very prominent differences. These features can be
easily exploited to bring out classification of a normal and a
malignant condition in any particular tissue type. But when we
consider the spectral features of all the tissue types (breast,
oral cavity, colon, cervix, and larynx) investigated in this study,
great similarity can be seen among spectra, especially in normal
conditions. Hence, it is a big challenge to classify an individual
condition in the complex situation as exists in our study. We
have explored the feasibility of classifying them by different
discrimination algorithms based on PCA, FDA, PLSDA, and
decision tree models.

4.2 Linear Discriminant Methods
As mentioned earlier, three approaches were employed for spec-
tral data analysis. In the first approach, spectra of breast, oral,
cervix, larynx, and colon were pooled for PCA and scores of
the factors were explored for discrimination in an unsupervised
manner. The results indicate that spectra of any given normal

Fig. 1 Mean Raman spectra of normal (black) and malignant tissues (gray). (a) breast, (b) oral, (c) cervix, (d) larynx, (e) colon.
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Table 1 Representative best cases of limit test analysis.
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N
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N
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N,N,N,N,
N,N,N,N,
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tissue are exclusive and segregate from their malignant coun-
terpart. But, when we consider findings in the broader prospec-
tive, i.e., across different origin, a huge overlap was observed
among clusters (data not shown). In supervised analysis, PCA
score, spectral residuals, and Mahalanobis distance were used
as discriminating parameters. M distance is measured in terms
of standard deviations from the mean of the training samples.
It is a statistical measure of proximity of two spectra.29, 30 Once
again, as in the case of unsupervised PCA, this analysis did not
yield segregation for all the cancers (data not shown). In the
third approach, the limit test was performed. As an example,
the typical limit test results of breast normal and oral cavity
malignant models are shown in Table 1. Results suggest that the
spectral models of breast normal, oral cavity malignant were
very specific. In this case, the spectra of breast normal, oral ma-
lignant only match (Y) and the rest do not match (N) the standard

model of breast normal and oral malignant, respectively. Limit
test results of cervix normal and cervix malignant models are
shown in Table 2. In this analysis, in addition to the spectra
from cervix normal, cervix malignant (11/31), colon malignant
(1/15), breast malignant (10/21), and larynx malignant (11/28),
spectra also matched the cervix normal standard model. In the
case of the cervix malignant model, besides cervix malignant,
spectra of cervix normal (13/21), colon malignant (15/15), colon
normal (11/11), breast malignant (15/21), oral malignant (2/23),
larynx malignant (28/28) and larynx normal (8/25) were match-
ing the cervix malignant standard model. Similarly, we have
also observed cross-matching for a few other models. A con-
cise account on the findings of the limit test for all spectroscopic
models is given in Table 3. This study reveals the high sensitivity
of the limit test but this approach suffers from poor specificity,
as is seen for a few spectral models.

Table 2 Representative worst cases of limit test analysis.

Breast
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(25)

Breast
Malig (21)

Cervix
Norm (21)
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Malig (31)

Colon
Norm (11)
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Malig (15)

Larynx
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N,N,N,N,
Y,Y,Y,N,
Y,Y,Y,N

Y,Y,Y,Y,Y,
Y,Y,Y,Y,Y,
Y,Y,Y,Y,Y,
Y,Y,Y,Y,Y,
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N
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N,N,N,N,
N,N,N,N,
N,N,Y,N,
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N,N,N,N,
N,N,N,N,
N,N,N,N,
N,N,N,N,
N,N,N,N,
N,N,N,N,
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N,Y,N,N,
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N
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N,N,N,N,N,
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N
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Table 3 Limit test analysis (diagonal elements are true positive pre-
dictions and ex-diagonal elements are false positive predictions).

PCA CeM CeN CoM CoN BrM BrN OrM OrN LaM LaN

CeM 31 13 15 11 15 0 2 0 28 8

CeN 11 21 1 0 10 0 0 0 11 0

CoM 0 0 15 0 1 0 0 0 0 0

CoN 1 0 0 11 2 0 0 0 7 0

BrM 3 0 15 0 21 0 0 0 2 0

BrN 0 0 0 0 0 25 0 0 0 0

OrM 0 0 0 0 0 0 24 0 0 0

OrN 0 0 0 0 0 17 9 22 0 4

LaM 17 0 3 3 2 0 0 0 28 0

LaN 0 0 0 0 0 20 0 4 0 25

The abnormal findings of the limit test could be attributed
to the spectral range that was used for analysis. As is well
known, spectra at several ranges need to be explored to bring
out classification which often varies from one cancer to another.
In our earlier studies, we have used different spectral ranges to
bring out classification among normal and malignant classes. For
example, short spectral range of 1400 to 1700 cm− 1 and 1200 to
1800 cm− 1 were used to bring out classification among breast
and oral tissues, respectively. Longer spectral ranges of 800 to
1800 cm− 1, 900 to 1750 cm− 1, and 1000 to 1800 cm− 1 gave
good classification for cervix, larynx, and colon tissues.9–16 But,
in the present study, we have restricted analyses to a common
range of 1200 to 1700 cm− 1. This could be a limitation in
applicability of this approach. Therefore, we have also explored

other multivariate methods such as FDA, PLSDA, and decision
trees to bring out the classification.

4.3 Factorial Discriminant Analysis
The PCA scores calculated using spectral models [Fig. 2(a)]
were further processed using the linear discrimination func-
tion, FDA. FDA is extremely useful whenever there are grounds
to postulate the existence of a number of groups (categories)
into which the samples may be classified, and one has to
look for the best discrimination and for a quantitative eval-
uation of the differences between these groups. In FDA,
sample cases are attributed to the group on the basis of clas-
sification probability of each spectrum, computed from the
distance in discriminant space of PCA scores between the spec-
trum and the centroid of the nearest class. FDA aims to find
out a small number of generalized variables (or factors) that
can describe most of the variances and correlations of the ini-
tial variables (in this case, Raman shift wave number), reduc-
ing the dimension of the measurement space without a loss of
information.

In this study, the first 20 factors were used for FDA
which provides a classification efficiency of 95.07% [Fig. 2(b)].
Figure 3 shows that the 10 groups of samples are clearly sep-
arated except a few cases where some overlaps are seen. The
summarized class prediction results are shown in Table 4. Except
for a few samples, most of the datasets do not cross-match with
other classes (e.g., cervical normal, colon normal, breast malig-
nant, breast normal, larynx malignant). Most overlapping is seen
in cervix malignant, where two samples have been misclassified
as cervix normal and three samples as larynx malignant. Other
mismatches include: one colon malignant sample misclassified
as breast malignant, one oral malignant sample as larynx malig-
nant, two oral normal samples as oral malignant, and two larynx
normal samples as breast normal. The overall classification ef-
ficiency of this methodology is 95.07%, i.e., 212 of 223 spectra
are classified correctly.

Fig. 2 (a) Cumulative percent variance contribution of PCA factors used for FDA. (b) Representation of variation of correct classification percentage
in validation data set against number of scores used.
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Fig. 3 Scatter plot for factorial discriminant analysis: (1) colon malig-
nant; (2) colon normal; (3) oral malignant; (4) oral normal; (5) breast
malignant; (6) breast normal; (7) cervix malignant; (8) cervix normal;
(9) larynx malignant; (10) larynx normal.

4.4 Partial Least Square Discriminant Analysis
PCA-based models are based on the variance within the data
set, irrespective of the fact that the variance may or may not be
useful for separating classes. Therefore we have explored such
a method which captures variance that is useful in separating
classes and ignores variance within the class. PLS is one such

Table 4 Results obtained using linear multivariate analysis methods
(total number of misclassified instances observed using different dis-
criminant methods is shown using roman numbers, while each mis-
classified instance type is mentioned in parentheses).

No. of misclassified instances (class of
misclassified instance)

Original class
(number of spectra) FDA PLS-DA

CeM (31) V (2 CeN, 3 LaM) V (2 CeN, 3 LaM)

CeN (21) – –

CoM (15) I (BrM) I (BrM)

CoN (11) – –

BrM (21) – I (CoM)

BrN (25) – –

OrM (24) I (LaM) –

OrN (22) II (2 OrM) II (2 OrM)

LaM (28) – –

LaN (25) II (2 BrN) I (BrN)

Classification
efficiency

95.07% (212/223) 95.52% (213/223)

Fig. 4 Representation of variation of percentage of correct classifica-
tion against number of PLS factors used.

multivariate regression method which establishes a relationship
between one or more dependent variables (class membership
of sample cases) and a group of descriptors (group of spectra
representing intensity values at different wavenumbers). These
are modeled simultaneously, to find the latent variables (LVs)
in descriptors that will predict the LVs in dependent variables.
In contrast to PCA, which works to explain maximum variation
between descriptors, PLSDA explains maximum separation be-
tween defined response variables based on descriptors. Since
PLS factors are computed hierarchically, the first factor con-
tributes to the maximum variability in data relevant for classifi-
cation, while the last factors are mostly responsible for random
variations and experimental errors. Hence the optimal number
of PLS factors, i.e. those modeling information in descriptor
useful to predict the response variable but avoiding overfitting,
is determined on the basis of the classification efficiency of the
model developed using these factors (Fig. 4). In this analysis,
we have chosen the first 14 PLS factors depicting 95.5% of
classification efficiency and the PLSDA model has been devel-
oped and validated by predicting class membership for blinded
training samples. The findings of PLSDA results are shown in
Table 4 wherein samples from the class comprising of cervical
normal, colon normal, breast normal, oral malignant, and larynx
malignant shows no cross-matching with other classes. But 10
instances of misclassification were seen. Five samples of cervix
malignant were misclassified—two as cervix normal and three
as larynx malignant. Two samples of oral normal were misclas-
sified as oral malignant, one colon malignant sample as breast
malignant, one breast malignant sample as colon malignant, and
one larynx normal as breast normal. Overall, 213 out of 223
spectra are classified correctly, indicating that the classification
efficiency of this methodology is 95.52%.

4.5 Decision Trees
In view of the complex multicancer scenario, the input data
possesses a nonlinear structure. In order to map spectral
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Fig. 5 Decision trees for CART (a) and J48 (b) showing discrimination map for spectra of different tissue types. Ellipses represent intermediate nodes
and rectangles final nodes (leaves). The condition for splitting is represented in the branches connecting the nodes. The number of samples classified
as a particular class is shown in the rectangle.

instances correctly in such a nonlinear feature space, we have
explored nonlinear discrimination algorithms like the decision
tree. Decision trees are classifiers that predict class labels for
data instances. As mentioned earlier, the performance of multi-
variate analysis depends on the size of the training dataset. The
presence of a large number of variables might mislead the classi-
fication and affect classification efficiency. Hence, decision tree
algorithms follow selective utilization of important variables (in
this case, Raman shift wave number) in data for binary discrimi-
nation. This is essentially based on a series of if–then statements
that, when applied to an instance (in this case, a spectra) in a
data set, results in its classification. Decision trees classify in-
stances by sorting them down the tree from the data mining root
node to some leaf node, which provides the classification of
the instance. Each node in the tree specifies a test rule for some

attribute (in this case, Raman shift wave number) of the instance,
and each branch descending from that node corresponds to one
of the possible values for this attribute. Thus, decision trees se-
lectively utilize important variables (Raman shift wave number)
in data for binary discrimination.

The algorithms that are used for constructing decision trees
work by choosing a variable at each step that is the next best
variable to use in splitting the set of items. “Best” is defined
by how well the variable splits the set into subsets that have
the same value of the target variable. Different algorithms use
different formulas for measuring best (e.g., entropy function,
gini index, and classification error method). These formulas are
applied to each candidate subset, and the resulting values are
combined (e.g., averaged) to provide a measure of the quality of
the split.

Table 5 Results obtained using nonlinear multivariate analysis methods (total number of misclassified instances observed using different discriminant
methods is shown using roman numbers, while each misclassified instance type is mentioned in parentheses).

No. of misclassified instances (class of misclassified instance)

Original class
(number of spectra) CART J48 RFM

CeM (31) III (CeN, CeN, CoM) I (CoN) –

CeN (21) I (CeM) I (CoN) –

CoM (15) – – –

CoN (11) II (BrM, BrM) – –

BrM (21) I (OrM) I (CeM) –

BrN (25) – – –

OrM (24) – – –

OrN (22) I (OrM) I (OrM) –

LaM (28) II (CeM, CeM) – –

LaN (25) II (BrN, OrN) II (BrN, OrN) –

Classification
efficiency

94.618% (211/223) 97.31% (217/223) 100% (223/223)
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Table 6 A summary of the efficiency of all the classifiers used in the
study.

Method Efficiency (%)

Limit test

Best case (Breast Normal) 100

Worst case (Cervix Malignant) 71

FDA 95.07

PLS-DA 95.52

CART 94.618

J48 97.3094

RFM 100

The algorithm used for CART utilizes gini index (1 − ∑
j p2

j )
as a classification criterion, where pj represents the proportion
of instances from different classes at each node. The tree gen-
erated through CART is shown in Fig. 5(a). CART led to a
high number of misclassifications. Following are the details of
misclassification: three samples of cervix malignant were mis-
classified, two as cervix normal and one as colon malignant, one
sample of cervix normal was misclassified as cervix malignant,
two colon normal as breast malignant, one oral normal as oral
malignant, two larynx malignant as cervix malignant, one larynx
normal as breast normal, and one larynx normal as oral normal.
In this case, the total misclassifications are 12 (Table 5). The
overall success rate is 94.6%, i.e., 211 spectra of 223 spectra
are correctly classified. But the point to be noted here is that,
although the number of misclassifications is quite similar to that
obtained for FDA or PLSDA, they spanned across many classes
of samples, indicating poor sensitivity of this methodology.

The other decision tree method J48 utilizes entropy function
(
∑

j −p j log2 p j ) as classification criteria, where pj again rep-
resents the proportion of instances from different classes at each
node. In this case, misclassified instances included: one sample
of cervix malignant misclassified as colon normal, one cervix
normal as colon normal, one breast malignant as cervix malig-
nant, one oral normal as oral malignant, one larynx normal as
breast normal, and one larynx normal as oral normal. The tree
generated through J48 is shown in Fig. 5(b). Decision trees made
using the J48 method perform better than CART as it accurately
classifies 217 of 223 samples (Table 5). Like CART analysis,
J48 also shows poor specificity as it misclassifies a number of
classes, but these results are comparable with results of other
discrimination methods such as FDA and PLSDA as shown in
Table 4.

The results for RFM suggest that efficiency of decision trees
increases significantly by aggregation. RFM uses bagging or
boosting which allows accurate classification of data. In this
study, the RFM model is built with 10 constituent trees. The
results using this model which has no misclassified instances
as shown in Table 5. Trees are not shown here for RFM, as it
generates a forest of trees to classify different classes.

4.6 Comparative Note
The main aim of this study is to evaluate the performance of
various multivariate statistical tools with a view to provide ro-
bust diagnostic results. Hence, dealing with a complex problem
like discrimination of multiple-cancer dataset, should provide
a more reliable merit about performance efficiency of various
discriminant algorithms. We have compared the performance
of different discrimination methods to evaluate the specificity
of Raman spectral models of normal and malignant tissues of
five different types. A concise summary of the results is shown
in Table 6. In the case of linear discrimination models, PCA
shows a wide range of classification efficiency with minima of
71% (cervix malignant) and maxima of 100% efficiency (breast
normal, oral malignant). All the other linear methods show a
classification efficiency of ≥95%. For nonlinear discrimination
models, variable efficiency is observed when different algo-
rithms are used to build decision trees. The accuracy of decision
trees can be improved using aggregation. In fact we have ob-
tained 100% efficiency using the Random forest method.

We have not considered simple accuracy percentage as the
sole criterion for deciding the efficacy of a method. The number
of classes accurately predicted is a weightier criterion as com-
pared to simple accuracy percentage. Since FDA and PLSDA
both misclassify five classes as compared to seven in the case
of CART (Table 5), CART is considered to be less efficient as
compared to FDA and PLSDA even though the number of mis-
classified instances are comparable. The classification results
for J48 vis a vis FDA and PLSDA are fairly comparable.

It seems simple classifiers belonging to discrimination meth-
ods work well as compared to complex methods like decision
trees (CART and J48) as conclusions reached in our study are
based on very small datasets by machine learning standards.
As more data become available we expect to observe an im-
provement in the performance of CART and J48 in prediction
accuracy, but the ability to classify different classes may not
improve any further.

In addition to accuracy, there are other factors which con-
tribute to the merits of a given classifier. These include simplicity
and insights gained into predictive structure of the data. Though
discrimination methods such as FDA or PLSDA show satis-
factory results, they are unable to handle interactions between
different variables. Also these are black boxes giving very lit-
tle insight into the structure of the data. By contrast, decision
trees are able to exploit and reveal the relationship between vari-
ables. Trees are easy to interpret and provide information about
the relationship between predictor variables and responses by
performing stepwise selection of variables.

All these discriminant methods have advantages as well as
disadvantages. But application of multiple discriminant meth-
ods (both linear and nonlinear) utilizing their significant features
to develop a single discrimination model will help improve clas-
sification. For example, PCA scores of factors can be fed first
to a decision tree algorithm as a training dataset. The decision
tree model for discrimination thus developed can be used to
enumerate the factors participating in the model. These factors
contribute to the variation in data that is important for classifica-
tion. PCA scores of these enlisted factors can be used further to
process FDA. The model thus generated will be more robust be-
cause of supervised selection of PCA scores instead of selection
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based only on variance, irrespective of their role in classifica-
tion. Though this method overrides the problem of over-fitting
caused by PCA factors selection for the FDA model, it suffers
from the fact that the model generated lacks linearity which is
present in the spectral data. Many such prospects are available
to utilize the spectral data in a wiser manner.

In conclusion, this study supports the applicability of Raman
spectroscopic models in two different aspects: (1) for efficient
discrimination of tissues even in a multicancer scenario thus
strengthening the confidence regarding the power of Raman
spectroscopy for objective classification with the help of multi-
variate tools, and also (2) for development of a single platform
spectral library which can be utilized for diagnostic purposes
instead of following different spectral models developed indi-
vidually, thus simplifying the process.
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