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Abstract. Kubelka–Munk (K-M) theory is a phenomenological light transport theory that provides analytical expres-
sions for reflectance and transmittance of diffusive substrates such as tissues. Many authors have derived relations
between coefficients of K-M theory and that of the more fundamental radiative transfer equations. These relations
are valid only in diffusive light transport regime where scattering dominates over absorption. They also fail near
boundaries where incident beams are not diffusive. By measuring total transmittance and total reflectance of tissue
phantoms with varying optical parameters, we have obtained empirical relations between K-M coefficients and the
radiative transport coefficients for integrating sphere-based spectrophotometers that use uniform, nondiffusive inci-
dent beams. Our empirical relations show that the K-M scattering coefficients depend only on reduced scattering
coefficient (μ 0

s ), whereas the K-M absorption coefficient depends on both absorption (μa) and reduced scattering (μ 0
s )

coefficients of radiative transfer theory. We have shown that these empirical relations are valid in both the diffusive
and nondiffusive regimes and can predict total reflectance within an error of 10%. They also can be used to solve
the inverse problem of obtaining multiple optical parameters such as chromophore concentration and tissue thick-
ness from the measured reflectance spectra with a maximum accuracy of 90% to 95%. © 2012 Society of Photo-Optical

Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.11.115006]
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1 Introduction
A major challenge in tissue optics is to noninvasively character-
ize tissue properties for early diagnosis of disease. Optical prop-
erties such as scattering (μs) and absorption (μa) coefficients
provide information regarding the morphological and biochem-
ical composition of tissues. Various optical techniques are cur-
rently explored to obtain different parameters which represent
tissue conditions. One such technique is diffuse reflectance
spectroscopy,1–4 wherein the spectrum of light reflected from
tissue is analyzed to obtain its absorption and scattering proper-
ties. Diffuse reflectance needs an accompanying numerical
model to decipher the data for obtaining the optical parameters.
This can be achieved by solving the radiative transfer equa-
tions5,6 in tissues. However, due to the complexity of the pro-
blem, no analytical solutions exist between the measured
reflectance and the optical parameters. Accurate results can
be obtained by using Monte Carlo methods,7,8 which are inher-
ently very slow. Different authors9,10 have developed semi-
empirical relations for extracting optical parameters from the
reflectance spectra measured using fiber-optic probes with small
source-detector separations.

Diffusion approximation of the radiative transfer equation
has been used by many authors to obtain optical parameters

such as μa and reduced scattering coefficient (μ 0
s) from the mea-

sured diffused reflectance spectrum.11,12 Kubelka–Munk (K-M)
theory,13 one of the diffusion approximation-based theories, is
widely used to obtain optical properties from the measured
reflectance spectra. The advantage of this theory is that it pro-
vides simple analytical expressions for obtaining the optical
parameters from the measured reflectance and transmittance.
The reflectance and transmittance of a diffusive media of thick-
ness t is given by

R ¼ ð1 − β2Þ½expðαtÞ − expð−αtÞ�
ð1þ βÞ2 expðαtÞ − ð1 − βÞ2 expð−αtÞ

T ¼ 4β

ð1þ βÞ2 expðαtÞ − ð1 − βÞ2 expð−αtÞ ; (1)

where α ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðK þ 2SÞp

, β ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K∕ðK þ 2SÞp

, and K and S are
the K-M absorption and scattering coefficients, respectively.

K-M coefficients are only phenomenological approxima-
tions, because the theory assumes incident radiation is diffuse
and the scattering is isotropic. Similar to other diffusion approx-
imation–based models, K-M theory also assumes higher scatter-
ing compared to absorption. Although these conditions are not
completely met in many of the real systems, the theory none-
theless provides a simple quantitative way of describing light
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transport in diffused medium. Many authors14–17 have derived
relations between the K-M coefficients and the more fundamen-
tal radiative transfer coefficients (μa, μs, and g). Here μa is
the absorption coefficient, μs is the scattering coefficient, and
g is the anisotropy factor of the diffusive medium. In the diffu-
sive approximation regime (μs ≫ μa), the general form of the
relations between the K-M coefficients and the radiative transfer
coefficients derived by different authors can be written as

S ¼ xμ 0
s − yμa K ¼ zμa; (2)

where μ 0
s ¼ μsð1 − gÞ is the reduced scattering coefficient. For

an isotropic medium, Klier14 had shown that μa ¼ ηK and
μs ¼ χS, and the value of η ranges from 0.5 to 1 and the
value of χ ranges from 4∕3 to 3.33. van Gemert and Star15

extended this further to show that the K-M coefficients can
be related to the reduced scattering coefficient in an anisotropic
medium. For an anisotropic and highly scattering medium, they
showed that K ¼ 2μa and S ¼ ð3μsð1 − gÞ − μaÞ∕4. However,
in most of the measurement geometries, the condition that
the incident beam is diffusive is not met. It is either fully col-
limated or partly collimated and partly diffusive. Various authors
have extended this model further to include collimated incident
flux and have shown that the K-M theory is also applicable in
the case of collimated beam.18–20 Thennadil20 has shown that,
for a collimated incident beam in the high scattering regime,
S depends only on scattering; however, the relation should be
modified to include a function dependent on the anisotropy fac-
tor, S ¼ 12μ 0

s∕ð4.8446þ 0.472g − 0.114g2Þ2.
Here, we have developed an empirical relationship between

the K-M and the radiative transfer coefficients for a collimated
incident beam which is valid for both diffusive (μa ≫ μ 0

s) and
nondiffusive (μa < μ 0

s) regimes. This was achieved by measuring
the total transmittance T (collimated and diffuse) and total
reflectance R (diffuse and specular) of tissue phantoms with dif-
ferent set of optical parameters (μa and μ 0

s) and solving Eq. (1) to
obtain the corresponding K-M coefficients K and S.
The empirical relations between (K, S) and (μa, μ 0

s) were
obtained, and their applicability for obtaining tissue optical
parameters from measured reflectance spectra are discussed
in this article.

2 Materials and Methods

2.1 Tissue Phantoms

Liquid tissue phantoms with different optical parameters were
prepared in a 0.75-mm-thick glass cuvet by dispersing known
concentrations of polystyrene microspheres and one of the
two brown colored dyes in milliQ water. The Premium Dark
Chocolate dye was procured from Devarsons Industries,
India, and the Chocolate Brown TAS dye was procured from
Roha Dyechem, India. Polystyrene microspheres of 0.5- and
1-μm diameter were procured from Duke Scientific, USA.
Absorption coefficients of the dyes and the scattering coefficient
(μs) of the polystyrene spheres were measured using a Perkin
Elmer Lambda900 UV-Vis spectrophotometer. The wavelength-
dependent absorption coefficients of the two dyes for 10 ppm
concentration are shown in Fig. 1. The anisotropy factor g was
calculated using a web-based Mie scattering calculator devel-
oped by Philip Laven.21 The reduced scattering coefficients
were calculated using the relation μ

0
s ¼ μsð1 − gÞ.

2.2 Spectral Measurements

Total transmittance (collimated and diffuse) and total reflectance
(specular and diffuse), at 488 nm, of the tissue phantoms were
measured using an Ar-ion laser (Lexel, USA), a 90-mm-diameter
integrating sphere (Labsphere, USA), and a spectrometer (ILT
900 from International Light, USA). The configurations used
in these measurements are shown in Fig. 2(a) and 2(b). Reflec-
tance was measured relative to a Spectralon® reflectance standard
with a reflectance value of 99% in the 400- to 650-nm range. For
reflectance measurement, the sample was held at 8 deg with
respect to the direction of normal incidence, as shown in
Fig. 2(a), to include the specular component of the reflected
beam. The specular and the diffuse reflected light was collected
by the integrating sphere and measured using the spectrometer.
Reflectance from a water-filled reference cuvet was subtracted
from the measured reflectance to obtain reflectance from the tis-
sue phantom alone. During total transmittance measurement, the
transmitted light was collected by an integrating sphere and mea-
sured using a spectrometer as shown in Fig. 2(b). A water-filled
cuvet was used as reference during transmittance measurements
to account for reflectance losses from the cuvet walls.

For the validation study, the wavelength-dependent reflec-
tance spectra were measured using a handheld spectrophot-
ometer (CM-2600d, Minolta, Japan). The configuration of the
spectrophotometer is shown in Fig. 2(c). It is equipped with
two pulsed Xenon lamps and a 52-mm-diameter integrating
sphere. The sample was illuminated through an 8-mm-diameter
aperture. The integrating sphere and the small aperture ensure
that a broad collimated beam is incident on the sample. The
reflected light is collected through the same aperture in the
8-deg viewing angle and is analyzed using a diffraction grating
and a photodiode array. The reflectance was measured in the
wavelength range of 400 to 650 nm with a spectral resolution
of 10 nm.

3 Results

3.1 Empirical Relations between K-M and
Radiative Transfer Coefficients

The method used to obtain the empirical relations between the
radiative transfer and K-M coefficients is schematically shown
in Fig. 3. First, the total reflectance (R) and total transmittance

Fig. 1 Absorption spectra of the colored dyes used in the tissue
phantoms.
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(T) values of a diffusive layer were measured for various sets of
μa and μ 0

s. For a given set of R and T values, there is a unique set
of K and S values that can be obtained by solving the coupled
relations shown in Eq. (1). Finally, empirical relationships are
obtained between the calculated sets of K and S values and the
sets of radiative transfer coefficients (μa and μ 0

s) used in the
tissue phantom.

For R and T measurements, tissue phantoms with six differ-
ent μ 0

s values—0, 0.22, 0.41, 0.54, 0.81, and 1.63 mm−1—were
obtained by varying the concentration of the 0.5-μm-diameter
microspheres. For a constant μ 0

s, μa was varied from 0 to
0.25 mm−1 by varying the concentration of the Premium
Dark Chocolate dye shown in Fig. 1. The measured T and R
values for various values of μa and μ 0

s at 488 nm are shown in
Fig. 4. For increasing μa, both R and T decrease. With increas-
ing μ 0

s, T decreases while R increases. The measured R and T
values are functions of K and S as shown in Eq. (1), which in
turn depend on μa and μ 0

s.
Earlier authors18–20 have shown that the K-M theory is also

applicable to collimated incident beam in the regime where
μ 0
s ≫ μa. In the current measurement geometry, the incident

beam is collimated. However, not all the tissue phantoms
fall in the regime μ 0

s ≫ μa. Assuming that K-M theory is applic-
able for all ranges of μa and μ 0

s, including μa ≥ μ 0
s, the values of

K and S were calculated by solving the coupled equations in
Eq. (1) for various values of R and T shown in Fig. 4. The

Fig. 2 Measurement configuration used to measure total reflectance (a) and total transmittance (b). (c) Measurement configuration of the commercial
spectrophotometer used in validation measurements.

Fig. 3 Schematic diagram of the method used to obtain empirical rela-
tions between radiative transport coefficients and the Kubelka–Munk
(K-M) coefficients. From the measured total reflectance (R) and transmit-
tance (T), the K-M coefficients were calculated and related to the tissue
phantom’s radiative transport coefficients (μa and μ 0

s ).
Fig. 4 Measured values of total reflectance (a) and total transmittance
(b) (at 488 nm) of tissue phantoms for various values of μa and μ 0

s .
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calculated S and K values are plotted as a function of μa
for constant values of μ 0

s and are shown in Fig. 5(a) and 5(b),
respectively.

From Fig. 5(a), it is clear that S depends strongly on μ 0
s and

not on μa even in the diffusive regime μ 0
s ≫ μa. This is different

from earlier reports which showed that the S depends on μa and
μ 0
s as shown in Eq. (2). Our measurement agrees with derivations

of Gate17 and Thennadil20 where y was zero. By fitting the
experimental values to Eq. (2), we find the value of x to be
0.408. Thus

S ¼ 0.408μ 0
s: (3)

Figure 5(b) shows the dependence of K as a function of μa
and μ 0

s. Unlike S, K depends on both μa and μ 0
s. K-M absorption

coefficient K increases as μa increases. In the absence of scat-
tering, K is equivalent to the absorption coefficient μa. Increas-
ing μ 0

s at a given μa further increases K. In the presence of
scattering, K has an additional term which we can attribute
to the absorption due to scattered photons. The absorption of
the scattered photon depends not only on the absorption coeffi-
cient of the medium but also on the mean average distance tra-
veled by the scattered photon, which is proportional to its
scattering coefficient.10 A photon in a highly scattering medium
will travel larger distances compared to a photon in a low-
scattering medium. Hence the effective absorption of the

scattered photon will depend on both the absorption coefficient
and the scattering coefficient. We find that K follows the follow-
ing empirical relation:

K ¼ μa þ aðμaμ 0
sÞb; (4)

where μa and μ 0
s are expressed in units of mm−1. By fitting our

data to the above empirical relation, we find the parameter
values as a ¼ 2.43 and b ¼ 0.72. Figure 6 shows predicted
values of S and K using the empirical relations in Eqs. (3)
and (4) against values of S and K calculated from measured
R and T values using Eq. (1). We see an excellent fit, with R2

values of 0.97, implying that our empirical relation is applicable
to a wide range of μa and μ 0

s.

3.2 Validation of Empirical Relations
Using Tissue Phantoms

To validate the applicability of the empirical relations in Eqs. (3)
and (4), tissue phantoms were prepared using 1-μm polystyrene
spheres and five different concentrations (0, 10, 20, 30, and
40 ppm) of the Chocolate Brown TAS dye whose extinction
coefficient is shown in Fig. 1. Total reflectance of the tissue
phantoms was measured in the wavelength range of 400 to
650 nm using a commercial spectrophotometer as shown in
Fig. 2(c). In this range, there is large variation of absorption
as a function of wavelength. In certain regions μa < μ 0

s; in
other regions μa ≥ μ 0

s. Because μ 0
s and μa of the tissue phantoms

are known for all the wavelengths, K and S values can be
calculated using Eqs. (3) and (4), and the reflectance for the
entire wavelength range can then be predicted using Eq. (1).

Fig. 5 K-M scattering coefficient S (a) and K-M absorption coefficient K
(b) for tissue phantoms with various values of μa and μ 0

s . K and S were
obtained from the measured total reflectance (R) and total transmittance
values (T) by solving the K-M equations.

Fig. 6 Predicted values of S and K using the empirical relations in
Eqs. (3) and (4) as a function of S and K values calculated frommeasured
R and T using Eq. (1).
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In Fig. 7(a), the measured reflectance spectra (dots) of tissue
phantoms with various dye concentrations are shown along with
the reflectance spectra predicted (solid lines) using Eqs. (3) and
(4). Good agreement was obtained between the predicted and
measured reflectance spectra. The errors in the predictions
are shown in Fig. 7(b). The maximum error in prediction was
about 6%, implying that the empirical relation between the opti-
cal parameters and K-M coefficient is valid over a wide range of
optical parameters.

3.3 Extracting Optical Parameters from Measured
Reflectance

Because the empirical relations in Eqs. (3) and (4) are valid over
wide range of optical parameters and wavelengths, it is possible
to solve the inverse problem of extracting various optical para-
meters from the measured reflectance spectra. For example,
parameters such as concentration of the chromophores and
thickness of the scattering layer can be extracted simultaneously
from the measured reflectance if the scattering parameters are
known. This is feasible, since at different wavelengths, relations
in Eqs. (3) and (4) are valid and independent of each other. One
needs to solve for two unknown parameters using more than two
equations. To verify the feasibility of simultaneously extracting
dye concentration and layer thickness from the measured reflec-
tance, tissue phantoms of two different thicknesses (450 and
750 μm) were prepared using 1000-nm polystyrene spheres

and different concentrations of the Chocolate Brown TAS
dye shown in Fig. 1. The reflectance of the tissue phantoms
in the range of 400 to 650 nm was measured, and best fits to
the reflectance curves were obtained using Eqs. (1), (3), and
(4) by freely varying the two fitting parameters, namely the con-
centration of the dye and thickness of the phantom layer. The
best fit obtained is shown in Fig. 8, and the parameters used
to obtain the best fit are shown in Table 1 along with the actual
parameters. The extracted concentration values were within an
error of 2% to 10% whereas the extracted thickness values were
within 2% error.

4 Discussion
In most biological tissues, diffusion approximation is valid only
in the wavelength region between 600 and 900 nm where scat-
tering is larger than the absorption. Sometimes, even in the
highly scattering regime, collimated incident beams do not
become diffusive if the tissues studied are very thin. For exam-
ple, the epidermis of skin is only about 50 to 100 μm thick,
where absorption is more than the scattering in the 400- to

Fig. 7 (a) Measured reflectance spectra and predicted reflectance spec-
tra for tissue phantoms with different concentrations of the Chocolate
Brown TAS dye. (b) Error in prediction.

Fig. 8 Solving for optical parameters from the measured reflectance
spectra of tissue phantoms. The best fits were obtained by varying
two fitting parameters, namely dye concentration and layer thickness.
The symbols show measured reflectance, and solid lines show the best
fit from the model. The actual parameter values and the predicted
values are shown in Table 1.

Table 1 Actual and extracted values of dye concentrations and
phantom thicknesses along with error in prediction.

Concentration Thickness

Actual
(ppm)

Extracted
(ppm)

Error
(%)

Actual
(μm)

Extracted
(μm)

Error
(%)

35 32 8.6 450 444 1.3

50 49 2.0 450 455 1.1

20 18.1 9.5 750 752 0.3

43 45 4.7 750 763 1.7

The dye concentration and phantom thickness were used as fitting
parameters in the model and simultaneously varied to obtain the
best fit to the reflectance curves shown in Fig. 8.
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600-nm region and the transport is not diffusive.22 Also, in most
of the measurement geometries, light is not diffusive, especially
near the tissue boundaries. Hence, most of the diffusion theory-
based models relating K-M coefficients to the radiative transfer
coefficients have limited practical applicability. In this paper, a
simple and practical empirical relation is developed between
K-M and radiative transfer coefficients for a collimated incident
beam (either narrow or broad), which is typical of most of the
measurement geometries, for example, integrating sphere-based
reflectance measurements. The relations developed are also
shown be to be applicable in the nondiffusive regimes where
absorption is larger than scattering.

The empirical relation in this model was derived by measur-
ing the total reflectance and total transmittance of the tissue
phantoms. One of the key challenges in measuring total reflec-
tance using integrating sphere geometry is the collection of all
scattered light with minimal loss. An incident beam diverges
within the sample due to scattering, and the reflected beam
size is always larger than the incident beam. In the case of
thin or low-scattering samples, the beam divergence will be
minimal and hence the error in reflectance measurement will
be small. For thick and highly scattering samples, the divergence
of the beam will be higher. The error in reflectance measurement
can increase, thereby decreasing the accuracy of this method.
This error can be reduced by the use of integrating spheres
with a larger aperture size. In the current study, we find that,
in the typical tissue scattering regime (μ 0

s ¼ 0.5–2 mm−1), the
empirical relations seem to works well with less than 10%
error in solving the inverse problem.

Most of the existing empirical models for studying tissue
reflectance are applicable only to homogeneous tissues and can-
not be extended to inhomogeneous or layered tissues. Many
authors have developed multi-layer models to describe reflec-
tion from inhomogeneous tissues. Similarly, since the K-M the-
ory provides analytical expression of both transmittance and
reflectance of the diffusive layers, it can be extended to describe
layered tissues also. If R1; R2 : : : ; Rn and T1; T2 : : : ; Tn are the
reflectance and transmittance of the different layers that can be
calculated using Eq. (1) and the empirical relations shown in
Eqs. (3) and (4), then the total reflectance and transmittance
of the layers can be calculated in the following way. If In is
the light flux traveling in the forward direction and Jn is the
light traveling in the reverse direction from the nth layer, respec-
tively, then we can write

I1 ¼ I0T1 þ J1R1 and J0 ¼ J1T1 þ I0R1

I2 ¼ I1T2 þ J2R2 and J1 ¼ J2T2 þ I1R2

..

.

In ¼ In−1Tn þ JnRn and Jn−1 ¼ JnTn þ In−1Rn

: (5)

The total reflectance R ¼ J0 and total transmittance T ¼ In.
With I0 ¼ 1 and Jn ¼ 0 as boundary conditions, these equations
can be solved self-consistently to obtain the values of R ¼ J0.
For example, for a two-layer tissue, solving Eq. (5) self-consis-
tently results in the following relation:

R ¼ R1 þ
T2
1

1 − R1R2

and T ¼ T1T2

1 − R1R2

: (6)

Similarly, for a tissue with inhomogeneous distribution of
chromophores, a multilayer model can be built by discretizing

the layers with a distribution of absorption and scattering coef-
ficients. However, like any other multilayer model, the current
model also will have multiple parameters describing the layers,
and hence one needs to solve the inverse problem of obtaining
these parameters from the measured reflectance.

5 Conclusions
In summary, by measuring total transmittance and total reflec-
tance of tissue phantoms with varying optical parameters, we
have obtained empirical relations between K-M coefficients
and the radiative transport coefficients for integrating sphere-
based spectrophotometers that use uniform, nondiffusive inci-
dent beams. We have shown that the K-M scattering coefficient
depends only on reduced scattering coefficient, while the K-M
absorption coefficient depends on both the absorption and
reduced scattering coefficients of the radiative transfer theory.
We have also shown that these empirical relations are valid
in both the diffusive and nondiffusive regimes. Using these rela-
tions, we could predict reflectance spectra of tissues within an
error of 6%. The empirical relations were used to predict the
chromophore concentration and the tissue thickness simulta-
neously by solving the inverse problem from the measured
reflectance. The error in the prediction of chromophore concen-
tration and tissue thickness was less than 10%.
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