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Abstract. Innovative diagnostic methods are the need of the hour that could complement conventional histopathol-
ogy for cancer diagnosis. In this perspective, we propose a new concept based on spectral histopathology, using IR
spectral micro-imaging, directly applied to paraffinized colon tissue array stabilized in an agarose matrix without
any chemical pre-treatment. In order to correct spectral interferences from paraffin and agarose, a mathematical
procedure is implemented. The corrected spectral images are then processed by a multivariate clustering method to
automatically recover, on the basis of their intrinsic molecular composition, the main histological classes of the
normal and the tumoral colon tissue. The spectral signatures from different histological classes of the colonic tissues
are analyzed using statistical methods (Kruskal-Wallis test and principal component analysis) to identify the most
discriminant IR features. These features allow characterizing some of the biomolecular alterations associated with
malignancy. Thus, via a single analysis, in a label-free and nondestructive manner, main changes associated with
nucleotide, carbohydrates, and collagen features can be identified simultaneously between the compared normal
and the cancerous tissues. The present study demonstrates the potential of IR spectral imaging as a complementary
modern tool, to conventional histopathology, for an objective cancer diagnosis directly from paraffin-embedded
tissue arrays. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.11.116013]
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1 Introduction
Over the last decade, several biophotonic approaches have been
undertaken in view of developing innovative diagnostic methods
to complement conventional histopathology. These techniques
are foreseen as nondestructive helping tools for pathologists in
their routine clinical practice. Among these, infrared (IR) spec-
troscopy is regarded as one of the candidate methods that could
be of valuable interest for cancer diagnosis. This technique
allows acquiring spectra from IR active biomolecules present
in cells and tissues, whose chemical bonds undergo changes
in their electric dipole moment during vibrations thus providing
a highly specific “vibrational fingerprint.”1 The spectral infor-
mation obtained in label-free and nondestructive manner offers
insights into the presence of these biomolecules, as well as into
their structural and metabolic changes, occurring on the onset
and during the course of the disease.2 Combined with a
micro-imaging device, IR spectroscopy can rapidly give spa-
tially resolved biochemical information of different tissue struc-
tures, where each pixel of an IR image provides a complete
spectrum.3 Via this modality, several studies have exploited
IR spectroscopy as a helpful tool with a potential diagnostic
value in various cancers like, but not limited to, skin,4 breast,5

cervix,6 colon,7 prostate,8,9 lung,10 esophagus,11 thyroid,12

brain.13 These IR studies were performed on tissues that
were either fresh,11,12 frozen,5,10,13 or formalin-fixed paraffin-
embedded (FFPE).6,8 Until recently, IR studies of FFPE tissues
necessitated chemical dewaxing prior to image acquisition
because of the strong contribution of IR absorption peaks of
paraffin, which interfere with the biochemical information ori-
ginating from the tissue. However, this procedure is time- and
reagent-consuming and has been shown to result in an incom-
plete deparaffinization.14 An alternative way to circumvent che-
mical dewaxing is to perform a numerical deparaffinization
directly on the IR spectral image. Thus, for the first time, the
feasibility of IR imaging combined with numerical deparaffini-
zation of paraffinized colon tissue arrays that are stabilized in an
agarose matrix, without any chemical deparaffinization, was
undertaken. In addition to paraffin, the agarose matrix also con-
tributes to the confounding spectral interferences. Therefore, an
algorithm based on extended multiplicative signal correction
(EMSC) was implemented to neutralize these spectral interfer-
ences from paraffin and agarose. The processed IR images were
then analyzed with a clustering method to identify and segment
the constituent tissue structures based on their intrinsic molecu-
lar composition. This statistical approach permitted to construct
color-coded images that were then compared with conventional
histology for morphological recognition. From this procedure,
identification of characteristic spectral signatures representing
the biomolecular changes, useful for differentiating between
normal and tumoral conditions, and tumor and tumor-associated
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stroma, was also undertaken. To demonstrate the proof-of-
concept of spectral histopathology, we selected one of the highly
incident cancers namely the colorectal cancer, that has an inci-
dence of 1.2 million cases and 608,000 deaths worldwide in
2008.15 Although fecal occult blood test (FOBT),16 colonos-
copy,17 and sigmoidoscopy18 are used for colorectal cancer
screening and detection, presently the diagnosis is settled upon
microscopic examination which remains the gold standard for
cancer diagnosis. Nevertheless, the staining and morphological
analyses do not allow interpretation of the molecular changes
occurring within the cancerous tissue at that particular time.
In such scenario, IR imaging could be a valuable comple-
mentary tool for conventional histopathological cancer tissue
examination.

2 Materials and Methods

2.1 Tissue Array Preparation

Tissue arrays are paraffinized tissue blocks in which chosen
tissue cores have been assembled. The tissue array blocks were
paraffinized and stabilized in an agarose matrix to reduce the
common problem of tissue loss during sectioning and were
manually prepared in the university pathology laboratory. Each
tissue array block consisted of 13 tissue cores of approximately
3 mm in diameter from normal and tumoral colonic tissue. Sam-
ples were selected by an expert pathologist using the hematox-
ylin, phloxine and saffron (HPS) stained image as the reference.
In this study, IR imaging analysis has been implemented on six
samples (three normal and three tumoral) of the colon tissue
array obtained from three different patients. From each patient,
a sample pair of normal and tumoral tissues was obtained to
avoid inter-patient variability, in order to optimize this novel
methodology. All the tumoral samples corresponded to moder-
ately differentiated adenocarcinoma and the normal samples
from the adjacent normal mucosa. This study was approved by
the Institutional Review Board of CHU Reims.

2.2 Fourier Transform Infrared (FTIR) Image
Acquisition

The methodology for IR imaging of a tissue array is shown in
Fig. 1. Three- and 10 μm thick adjacent microtome sections
were cut from the tissue array block. While the 3-μm section
was used by the pathologist for conventional histopathological
analysis via HPS staining, the first 10 μm section was used for
IR imaging analysis and the second for additional histopatholo-
gical comparison. The HPS stained sections were chemically
deparaffinized while the adjacent 10 μm paraffinized unstained
tissue section was mounted on an IR compatible calcium fluo-
ride (CaF2) window. This was directly imaged without deparaf-
finization, by an IR imaging system (Spotlight 300, Perkin
Elmer, Courtaboeuf, France) equipped with nitrogen-cooled
16-element MCT detector at a pixel size of 6.25 μm and spectral
resolution of 4 cm−1, averaged to 16 scans, in the mid-IR range
of 750 to 4000 cm−1. These acquisition parameters provided
good quality data with good enough spatial and spectral resolu-
tions for tissue investigation. The instrument and the sample
compartment were continuously purged with dry air and param-
eters like relative humidity and water vapor were kept constant
throughout the image acquisition time. The background spec-
trum from the CaF2 window, acquired prior to image acquisi-
tion, was subtracted from the dataset automatically. Each tissue

array-IR image of one circular spot (3 mm in diameter) consisted
of around 130,000 spectra, and each pixel element of 6.25 μm
contained a full spectrum.

2.3 Preprocessing of IR Spectra

The spectra from the IR images included atmospheric absorp-
tions of water vapor and CO2, chemical absorptions of paraffin
and agarose, and biochemical absorptions from the tissue itself.
In order to preserve only the biochemical information, stringent
preprocessing steps were employed to neutralize the contribu-
tions of noninformative spectra. For this, atmospheric correction
was performed to remove contribution from water vapour and
CO2 by the built-in software of Spectrum Image (Perkin Elmer).
Further analyses were performed using in-house algorithms
written in Matlab 7.2 (The Mathworks, Natick, MA). EMSC
was used for correcting paraffin, agarose, and baseline, followed
by normalization. Preprocessing, processing, and analysis of the
IR spectra were carried out on spectral images in the IR absorp-
tion range of 900 to 1800 cm−1 considered as the most infor-
mative region19,20 as far as the tissue features are concerned.

2.4 Construction of EMSC Model

EMSC was developed initially to correct the spectra from the
physical light scattering effects that are different from the che-
mical light absorbance effects.21,22 IR spectra of paraffinized
colon tissue array sections, along with the biochemical informa-
tion originating from the tissue, showed absorption bands of
paraffin (1378 cm−1 and around 1467 cm−1) and agarose
(1072 cm−1 and minor peaks at 932 cm−1, 1155 cm−1, and
1185 cm−1) in the 900 to 1800 cm−1 spectral region (Fig. 2;
box 1). For efficient classification and understanding of the
biochemical nature of the tissue, the variability of these contri-
butions (paraffin and agarose) had to be reduced and their influ-
ence circumvented, for which EMSC algorithm was employed
in this novel approach as shown in the form of a flowchart in
Fig. 2, box 2. According to our previous study23 EMSC models
linearly each spectrum of the data set as:

si ¼ aiŝþ biIþ ciPþ ei; (1)

where, si ∈ ℝ1×n is the i’th acquired spectrum of the data set,
i.e., a vector composed of n points, ŝ ∈ ℝ1×n is the target spec-
trum that is chosen as the mean spectrum of the studied dataset,
I ∈ ℝk×n is the interference matrix composed of k components,

P ¼

0
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. . .
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T

∈ ℝhpþ1i×n

is the transpose of the Vandermonde matrix of the n wavenum-
bers νj; this matrix is used to compute ciP, a p-order polynomial
function modeling for the baseline, ei ∈ ℝ1×n is the model error
vector, ai is the scalar fitting coefficient of ŝ to si , bi ∈ ℝ1×k is
the vector of the fitting coefficients of I to si , ci ∈ ℝ1×hpþ1i is
the vector of the fitting coefficients of P to si and represents the
coefficients of the p-order polynomial function.

The coefficients ai, bi, and ci are estimated by the traditional
least squares method in order to minimize the model error ei.
The corrected spectra could be then represented by the equation
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sicorr ¼ ŝþ ei
ai
: (2)

The aim of EMSC is to estimate the model coefficients ai, bi,
and ci in order to minimize the error ei, knowing ŝ, I , and P.
EMSC can also be viewed as a fitting of the recorded spectra
on the mean spectrum. Thus the biochemical differences of
different pixel spectra are modeled in the error ei. The interfer-
ence matrix and the Vandermonde matrix are uniquely used in
the EMSC model to adjust the paraffin and agarose signals and
baseline of the recorded spectra to the mean spectrum. The
EMSC protocol has been used to realize several corrections;
first, it corrects spectra from paraffin and agarose contributions.
Second, it corrects spectra for light scattering effects, and third,
it normalizes spectra on the mean spectrum ŝ. Briefly, in order
to achieve these corrections, an IR image consisting of 13,516
spectra was acquired from 10 μm thick paraffin (used for tissue
embedding in our laboratory) section using the same spectral
parameters as that of the TMA images. Principal component

analysis (PCA) was performed on these spectra to model
them with orthogonal components best explaining the variability
of paraffin. The interference matrix I of model Eq. (1) was con-
structed by retaining the first 10 principal components (PCs) and
the mean spectrum of paraffin. Another IR image consisting of
15,872 spectra was acquired from a 10 μm-thick section of a
mixture of paraffin and agarose, as agarose is a semisolid matrix
(at 2% used for TMA construction) and could not be sectioned
alone. The spectra of this image were then modeled using Eq. (1)
in which a fourth order polynomial function is assumed to con-
struct P to model baseline. Paraffin contributions were then neu-
tralized from agarose, by application of correction Eq. (2). Next,
PCAwas performed on these paraffin corrected agarose spectra
in order to model the IR signal of agarose. The first 10 signifi-
cant PCs and the mean spectrum of agarose were then added to
the interference matrix I . I is thus composed of 11 components
modeling paraffin and 11 components modeling agarose. I
being constructed and a fourth-order polynomial function being
still assumed for P, the model Eq. (1) was applied to the colon

Fig. 1 Infrared spectral imaging methodology of colon tissue arrays. A paraffinized tissue array core is imaged directly by infrared imaging system
that constitutes the unprocessed infrared spectral image, which harbors a full spectrum at each pixel size of 6.25 μm, using a conventionally stained
image as a morphological reference.
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IR spectral images acquired from the biopsies. The entire data
set was then corrected from the contributions of paraffin and
agarose, baseline corrected and normalized on the entire spectral

range using Eq. (2). Furthermore, a thresholding of ai and E ¼P
n
j¼1 ðeiðjÞai

Þ2 permitted to detect the outlier spectra (spectra with
a low ai value and a high E value, which correspond to spectra
with high paraffin and agarose contributions or spectra with a
poor tissue contribution) of paraffin and agarose, and to elim-
inate them from further analysis. In the k-means clustered
images, the pixels corresponding to these outliers are colored
white.

2.5 Image Clustering

The large numbers of IR spectra from each image were parti-
tioned using an unsupervised k-means clustering method
owing to its capability of rapid and huge data clustering.24

This method iteratively partitions the spectra into different
classes based on the spectral signatures. First, K spectra (K
is the number of searched clusters) are randomly chosen to
represent initial centroids which model the mean spectrum of
each cluster. Second, each spectrum is affected to the cluster
with the nearest centroid according to the Euclidean distance.
Third, each centroid is updated as the mean of the spectra

Fig. 2 EMSC preprocessing. Box 1: (a) Average IR spectra of paraffin; (b) paraffin and agarose together; (c) a paraffinized colon tissue array section,
which includes spectral information from tissue, paraffin, and agarose, in the spectral range of 900 to 1800 cm−1. Box 2: Flowchart of the EMSC
protocol. Interference matrix 1 constructed from pure paraffin spectra (PCAþmean spectrum) and modeled into EMSC is employed on paraffin-
agarose spectra to neutralize the paraffin influence and retain only the agarose spectra. Interference matrix 2 is constructed from the paraffin corrected
agarose spectra (PCAþmean spectrum) and modeled into EMSC. Interference matrices 1 and 2 are then employed on the tissue spectra to neutralize
both paraffin and agarose influences and retain only the biochemical information. Box 3: Comparison of the application of EMSC, with and without
paraffin and agarose corrections, by k-means clustering of an FTIR spectral image (left panel). EMSC corrected pixels are colored in white. Corre-
sponding cluster centroids (middle panel) and the dendrogram (right panel) show the differences due to the influence of spectral interferences (paraffin,
agarose, and other interferences represented by clusters 2, 5, 8, and 9).
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belonging to its cluster. Steps 2 and 3 are repeated until the
convergence of the algorithm. Therefore spectra with similar
biological characteristics fall into the same cluster and spectra
with dissimilar biological characteristics fall into different clus-
ters. The spectral distance between different k-means cluster
centroids was visualized via a dendrogram obtained by hierarch-
ical clustering analysis using Ward’s linkage algorithm. In
k-means, each spectrum belongs to a unique cluster and can
thus be represented by a unique color distinct from those of the
remaining clusters and a color coded image can be reconstructed
for rapid and simple visual analysis of clustering results. These
were then compared to adjacent HPS stained sections to anno-
tate each spectral cluster to the tissue structural feature that it
belongs to by an expert pathologist.

2.6 Statistical Tests

Kruskal-Wallis (KW) test was performed on individual spectra
from two clusters, and the wavenumbers that were significantly
discriminant (p < 0.001) were retained. These are shown as grey
bars in the Fig. 3(a). In parallel, PCA, one of the commonly used
spectral data processing method, was applied on the same two
clusters (mean-centered data) for validation of the KW observa-
tions and better visualization of the spectral separation.

3 Results

3.1 Neutralization of Paraffin and Agarose
Contributions Using EMSC

Spectral interferences from paraffin and agarose were estimated
and corrected on the colonic tissues. Figure 2; box 3 shows a
representative k-means cluster image before and after the appli-
cation of the correction model for paraffin and agarose. In

the unprocessed image constructed using 10 clusters, spectra
corresponding to these outlier spectra were seen around the
tissue array sample spot (Fig. 2; box 3; top panel). Clustering
analysis of this unprocessed image showed less accurate corre-
lation with the adjacent HPS stained reference image [the HPS-
stained reference image is shown in Fig. 4(a), left panel] and
features such as the colonic epithelium could not be deciphered
accurately even when increasing the number of clusters (data not
shown). The cluster centroids showed the contribution of out-
liers to the image (specifically clusters 2, 5, 8, and 9), which
is also reflected in the dendrogram that separates the tissue fea-
tures from the outliers (Fig. 2; box 3; top panel). In the EMSC
corrected image, all the outlier spectra mostly corresponding
to the paraffin and agarose contributions are retrieved from the
data analysis and are shown as white pixels, which can be found
around, and within the clefts of the tissue array sample spot
(Fig. 2; box 3; bottom panel). The resulting high degree of
correlation of the FTIR image using eight clusters to the HPS-
stained reference image is shown in Fig. 4(a), which demon-
strates the importance of neutralizing the spectral interferences.

Further, as presented in Fig. 5, it was tested if the better
partition of the k-means image is due to EMSC or just outlier
removal. In this, the outlier spectra (corresponding to pure par-
affin and agarose spectra, and spectra with low signal to noise
ratio as represented in white pixels) were identified by EMSC,
and were removed from the data set. Then k-means clustering
was performed on the remaining spectra: 1. With EMSC and
without the model for paraffin and agarose [Fig. 5(a)]; and 2.
Without EMSC and without the model for paraffin and agarose
[Fig. 5(b)]. In both cases, the correlation between the k-means
images and the reference HPS image [Fig. 4(a)] was less in
comparison to Fig. 2, box 3 (bottom), in which EMSC is per-
formed with the paraffin and agarose model and where a better

Fig. 3 Discrimination of tissue features obtained by the Kruskal-Wallis test and validated by PCA between the following pair-wise comparisons: normal
crypts with adenocarcinoma (left panel); adenocarcinoma with the associated stroma (middle panel); lamina propria with submucosa (right panel). The
most discriminant spectral wavenumbers between the compared clusters identified by the Kruskal-Wallis test (p < 0.001) are represented as gray bars.
They are superimposed by PCA loadings showing the two PCs with the highest explained variance (a). The PCA score plot showing the separation
between the compared clusters (b).
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correlation is obtained. In this circumstance, the centroids and
the dendrograms also remain unexploitable.

It has to be noted that although the IR tissue spectra still
exhibited the characteristic paraffin and agarose bands
(1378 cm−1 and around 1467 cm−1 for paraffin and, 1072 cm−1

and minor peaks at 1155 cm−1 and 1185 cm−1 for agarose), the
influence of their spectral variability is neutralized in the clus-
tering scheme by EMSC. Therefore the EMSC model does not
completely remove the spectral features of paraffin and agarose,
but neutralizes them. Thus, in the image analysis by chemo-
metric methods, only the biochemical information is taken
into account. The signals from paraffin and agarose are disre-
garded. Along with the neutralization of intra-sample variability
arising from paraffin and agarose contributions, the inter-sample
variability is avoided by using a single common target spectrum
(the average spectrum on which the spectra are fitted) for all
the samples.

3.2 IR Image Clustering

After EMSC correction, k-means clustering was employed to
partition the spectra of paraffinized normal and tumoral colonic
tissue sections. Figure 4(a) and 4(b) show the corresponding
k-means images of these samples partitioned into eight and
14 clusters, respectively. These cluster numbers permitted to
retrieve the principal histological structures, when compared to
the HPS stained images. For example, as shown in Fig. 4(a), it

was possible to identify mucosa of the normal colon that com-
prises of; the lamina propria (cluster 1), the loose connective
tissue in which the crypts are organised; crypts (cluster 6 and
7) comprising the central part and the peripheral parts, the func-
tional glands of a colon composed of various epithelial cell
populations like goblet cells, absorptive cells, endocrine cells,
or stem cells. Mucus (cluster 2) as seen in the crypt lumen
and also secreted out of the crypts, submucosa (cluster 4) the
fibrous connective tissue usually rich in collagen, and the
blood vessels (cluster 8) in the submucosa, were also identified.
Finally, clusters 3 and 5 present in minute percentage were not
assigned to any specific histological structure and seem to repre-
sent extra mucus structures (appear on the periphery of the
mucosa, or tired out mucosa). The spectral distances between
the eight cluster centroids are computed and shown in the
form of a dendrogram (Fig. 4, right panel). In the case of tumoral
tissue, characterization by spectral imaging was illustrated in a
sample of moderately differentiated colon adenocarcinoma as
shown in Fig. 4(b). K-means clustering using 14 clusters per-
mitted to highlight two informative clusters: one attributed to
the epithelial component (cluster 12) and the other to tumor-
associated stroma (cluster 8). The latter, clearly demarcated
from tumor, necessitated a minimum of 14 clusters to be seg-
regated out of the tumor. The close spectral signature of the
epithelial component to its associated stroma is clearly demon-
strated by the corresponding dendrogram. Increasing the

Fig. 4 K-means clustering of FTIR spectral images (middle panel) with the respective dendrograms (right panel) compared to the HPS-stained colon
tissue sections (left panel). Normal colonic tissue section (a) partitioned using eight clusters representing the major normal colonic tissue features by
random pseudo-colors. The representation is as follows: Cluster 1: lamina propria; cluster 2: mucus; cluster 4: submucosa; clusters 6 and 7: crypts
(central and the peripheral parts); cluster 8: blood vessel and other undefined tissue. Clusters 3 and 5: extra mucus structures. A moderately
differentiated adenocarcinoma of a colon tissue section (b) partitioned using 14 clusters representing the major tumoral tissue features by random
pseudo-colors. The representation is as follows: Cluster 8 represents tumor-associated stroma, and cluster 12 represents tumor epithelial component.
Remaining clusters are not attributed to any histological class. Scale bar indicates 500 μm.

Journal of Biomedical Optics 116013-6 November 2012 • Vol. 17(11)

Nallala et al.: Infrared spectral imaging as a novel approach for histopathological recognition in colon . . .



number of clusters did not provide any further exploitable infor-
mation for spectral histology. The k-means clustering results
of the other samples used in the study are shown in Fig. 6.
Note that a common color-code is used for histologically attrib-
uted classes, while random colors are used for histologically
unattributed classes.

3.3 From Spectral Data to Biomolecular Level
Information

From the k-means images, it was possible to assign specific
spectral signatures to histological structures that were then
exploited to gain insight into the biomolecular characteristics
of the normal and the tumoral colonic tissues. For this, statistical
data processing using the KW test was performed on individual
spectra from two clusters of interest each time, to find the spec-
tral differences. As an example, the spectra corresponding to the
normal crypts from all the normal samples [Figs. 4(a), 6(a), and
6(c)] were grouped together as normal crypts, and the spectra
corresponding to the adenocarcinoma from all the tumoral
samples [Figs. 4(b), 6(b), and 6(d)] were grouped together as
adenocarcinoma. Then the KW test was performed, on all the
spectra, between these two groups. Other comparisons including
the adenocarcinoma with the associated stroma and lamina
propria with submucosa were carried out in the same way.
Complementarily, PCA was also performed to confirm these
differences by considering the two first principal components
(PC1 and PC2) that carried the highest explained variance.
Figure 3(a) shows the most discriminating spectral regions

identified by the KW test (grey bars) superimposed over the
PCA loadings for the following pair-wise comparisons: normal
crypts with adenocarcinoma corresponding to the epithelial
components (left panel); adenocarcinoma with the associated
stroma, which is the seat of the changes associated with the
tumor environment during carcinogenesis and progression (mid-
dle panel); and in the normal tissue, lamina propria with submu-
cosa (right panel). The discriminant wavenumbers identified by
KW test corresponded principally to the first PC that was found
to be visually the most discriminant in the pair-wise compari-
sons of right and left panels, and the second PC that was most
discriminant in pair-wise comparison of the middle panel, as
also represented in the PCA score plots in Fig. 3(b). The most
clear-cut discrimination as shown in the score plot of Fig. 3(b),
left panel (in the form of separation between the two clouds) was
observed between the normal crypts and adenocarcinoma that
reflect the overall biochemical alterations in this malignancy.
When comparing the adenocarcinoma cluster with its associated
stroma (middle panel), or the lamina propria and the submucosa
(right panel), the separation is possible but with some spectral
overlapping between the clouds. From the wavenumbers iden-
tified as discriminant by the KW test for all comparisons, we
have tentatively attempted to correlate some of the IR vibrations
to the biomolecular information contained in the colonic tissues
as shown in Table 1. At the same time, the PC scores and load-
ings were also exploited to interpret the differences of spectral
intensities between the compared classes. As an example, in the
case where the first PC is the most discriminant [Fig. 3(b), left
panel], the spectra are mathematically approximated by the first

Fig. 5 Comparison of different EMSC parameters without the outlier spectra. Comparison of the k-means clustered images (a) with EMSC and without
the model for paraffin and agarose; and (b) without EMSC and without the model for paraffin and agarose. Corresponding cluster centroids and the
dendrogram are shown in the middle and the right panels respectively. The outlier spectra (corresponding to pure paraffin and agarose spectra, and
spectra with low signal to noise ratio as represented in white pixels) are identified by EMSC and are removed from the data set prior to the clustering
analysis.
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Fig. 6 K-means clustering of FTIR spectral images (middle panel) with the respective dendrograms (right panel) compared to the HPS-stained colon
tissue sections (left panel). The histologically attributed clusters are color coded using Fig. 4 as reference, and the unattributed structures are represented
by random colors. Normal colonic tissue sections (a) and (c) are clustered using 11 and 9 clusters respectively representing the major normal colonic
tissue features. The representation for the normal tissues is as follows: (a) Cluster 1: muscularis propria; clusters 2, 5, 6, and 7: submucosa; cluster 4:
lamina propria; clusters 8, 9, and 10: crypts (central and peripheral parts); clusters 3 and 11: undefined tissue; (c) Cluster 2: lamina propria; clusters 3, 6,
and 8: crypts (central and peripheral parts); clusters 4 and 5: submucosa, clusters 1, 7, and 9: undefined tissue. The moderately differentiated colon
adenocarcinoma tissue sections (b) and (d) are clustered using 11 and 14 clusters, respectively, representing the major tumoral tissue features by
random pseudo-colors. The representation for the tumoral tissues is as follows: (b) clusters 2: tumor epithelial component, and cluster 9: tumor-
associated stroma; (d) cluster 5: mucin; clusters 13: tumor epithelial component; and cluster 12: tumor-associated stroma. Remaining clusters are
not attributed to any histological class. Scale bar indicates 500 μm.
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PC loading weighted by the first PC score. Thus the represen-
tative peak at 1658 cm−1 (amide I region) of the first PC loading
and the first PC scores of adenocarcinoma being positive, their
product is positive and hence correspond to higher spectral
intensity. On the contrary, the PC scores of the normal crypts
being negative their product with the positive peak at 1658 cm−1

of the first PC loading is negative and, hence, represents a
decrease of spectral intensity. This spectral difference attrib-
ution becomes more complex when there is more than one

discriminant PC as several PCs can have an opposing contribu-
tion to the peak intensity.

For the normal crypts and the adenocarcinoma, the discrimi-
nant spectral features were particularly attributed to PO2− sym-
metric and asymmetric stretching vibrations of nucleic acids,
which exhibited relatively higher intensities in the normal
crypts. Other differences included those originating from the
phospholipids (C═O stretching vibrations); and those from the
carbohydrates (C─O stretching vibrations). These signals were

Table 1 Infrared spectral peak attribution.

Normal crypts—Adenocarcinoma
Adenocarcinoma—Tumor

associated stroma Lamina propria—Submucosa Other spectral attributes

Peak position
(cm−1) Biomolecular attribution

Peak position
(cm−1)

Biomolecular
attribution

Peak position
(cm−1)

Biomolecular
attribution

Peak position
(cm−1)

Biomolecular
attribution

1080 PO2− symmetric stretch
of nucelic acids9

1212 Collagen25 1526–1536 Amide II of
proteins

1036 Mucin2,7,24,25

1240 PO2− asymmetric stretch
of nucelic acids25

1280 1552–1566 1072

1155 C─O stretch of
carbohydrates26

1526 and 1534 Amide II of
proteins

1642–1650 Amide I of
proteins

1122

1162 H-bonded C─O stretch
of proteins26

1554–1568 1672–1674 1314

1176 Non-H-bonded C─O
stretch of proteins26

1378 Paraffin

1654 Amide I of proteins 1467

1724–1756 C═O stretch of
phospholipids9

932 Agarose

1072

1155

1185

Fig. 7 Discrimination of tissue features obtained by the Kruskal-Wallis test and validated by PCA between the pair-wise comparisons of normal crypt
periphery with mucinous tumor. The most discriminant spectral wavenumbers between the compared clusters identified by the Kruskal-Wallis test
(p < 0.001) are represented as gray bars. They are superimposed by PCA loadings showing the two first PCs with the highest explained variance (a).
The PCA score plot showing the separation between the compared clusters (b).
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relatively more intense in normal crypts than in adenocarcinoma
while the opposite tendency was observed for the amide I band
of proteins. The hydrogen bonded C─O groups of proteins in
the normal tissue was seen to decrease in the tumoral tissue.

It was examined if the discrimination potential of the
methodology between the normal and the tumoral tissues is
influenced by the tumor type with respect to certain biomole-
cules. For this, the spectra originating from the tumor and
the secreted mucin clusters, of one of the tumoral samples that
was mucinous adenocarcinoma were compared with the spectra
from the nonmucinous regions of the normal crypts (crypt per-
iphery) of the same patient. The statistical analysis revealed
appearance of mucin peaks (1036 cm−1, 1072 cm−1) as discri-
minant vibrations that were of high intensity in the tumoral tis-
sue as shown in the Fig. 7. When comparing adenocarcinoma
and tumor-associated stroma, the discriminating spectral fea-
tures corresponded to collagen features, and amide II of pro-
teins. For lamina propria and submucosa clusters, the amide
regions of proteins appeared to contribute to the discriminant
wavenumbers.

4 Discussion
Very few studies have combined IR imaging with tissue micro-
array (TMA) technology,27,28 and none have involved direct
analysis of the paraffinized tissue arrays or tissue arrays stabi-
lized in an agarose matrix.29 This study is a first attempt to apply
IR spectral imaging to a paraffinized tissue array stabilized in
an agarose matrix, without any chemical deparaffinization, for
comparing normal and tumoral colonic tissue samples. Along
with the reduction in the tissue preparation steps, an additional
advantage of IR imaging on paraffin embedded and agarose sta-
bilized tissues is that the scattering effects due to the differences
in the refractive indices are reduced by index matching. EMSC
initially developed to correct light scattering effects,21,22 and
water vapor and carbon dioxide,30 has also been previously
implemented by our group to neutralize paraffin contributions
in paraffinized tissues.23,31,32 In this study, it was employed
for the first time, a step ahead to neutralize spectral interferences
from both paraffin and agarose, projecting EMSC as a “custom-
made correction method,” which could be adapted to correct
a variety of spectral interferences and permit to test tissues in
different embedding materials.

K-means clustering of the EMSC corrected IR spectral
images allowed identification of various histological structures
of the normal and the tumoral colonic tissues. The colonic tissue
structures like the lamina propria, the submucosa, the crypts,
and the blood vessels were easily identified in the normal his-
tological and the spectral images. The spectral signatures
associated with the biomolecular differences between these his-
tological groups were highlighted by the KW test and confirmed
by PCA analysis. In the normal tissue, k-means clustering dif-
ferentiated well between the lamina propria and the submucosa,
which are both connective tissues. Based on the multivariate
statistical analyses, the biomolecular discrimination can be asso-
ciated to the changes in the spectral profiles of the amide regions
of proteins.

Normal crypts are the functional glands of the colonic
mucosa, where the molecular transformations in the event of
carcinogenesis take place. The k-means cluster image allowed
to clearly distinguish both the central and the surrounding
nuclear part of the epithelial glands and the lamina propria in
which the glands were organized. In the case of malignant

tissue, the crypts were no longer well differentiated, and no
particular cluster could be attributed to either the central or
the nuclear part. The mucosal structures were no longer indivi-
dualized, and only two components could be distinguished: the
epithelial one and the associated stroma.

By comparing the normal crypts and the adenocarcinoma,
surprisingly the IR spectra of normal crypts were associated
with relatively higher intensities of nucleic acids than in the ade-
nocarcinomatous epithelial component. This is in contrast to
other studies that have showed increased nucleic acid intensities
in tumoral samples when compared to the normal samples.9

Another study has shown decreased intensity of PO2− asym-
metric stretch of nucleic acids in tumoral tissue while increased
intensity of PO2− symmetric stretch of nucleic acids.33

One of the possibilities for this observation is likely that the
spectral alterations involving nucleic acids are less marked since
the normal colon cells themselves are highly proliferative and
have a high mitotic rate, and, in tumors that are moderately dif-
ferentiated, the cellular proliferation is only slightly increased.24

Interestingly, there are also studies that have shown that the
spectral differences observed between a normal and a tumoral
tissue actually may correspond to the differences originating
from the different phases of cell cycles, since the opacity of
DNA to IR radiation is based on the cell cycle phase which is
related to the DNA packing and condensing.34

Usually, the normal colon crypts are rich in mucin. However,
its corresponding peaks were not discriminatory when all the
normal and the tumoral samples were compared. This could
be explained from the fact that the presence of a mucinous
tumor diminishes the spectral differences between the mucin
rich normal crypts and the tumoral tissues. Interestingly, in
comparison of the mucinous adenocarcinoma tissue with the
nonmucinous regions of the normal crypts, mucin correspond-
ing peaks reappeared as discriminant features. These results,
which corroborated with the histopathology show the ability of
IR spectroscopy in identifying biomolecular changes in respect
to the analyzed tissue types based on the spectral characteristics.
The identification of subtle changes involving mucin could be
used to characterize tumor types in colon cancers.

The same tendency of higher intensities was observed for
carbohydrate and phospholipids between the normal and the
tumoral tissues. On the other hand, higher amide I intensities
were associated with adenocarcinoma probably indicating
greater accumulation of proteins during carcinogenesis and
progression.

Another interesting observation arises from changes in the
relative intensities of the vibrations involving the H-bonded
C─O and non-H-bonded C─O bond vibrations of proteins.
While the former is more pronounced in the normal tissues,
the latter is more in the tumoral tissues. Similar changes have
been observed in earlier studies on colon cancers that probably
indicate the molecular changes associated with the amino acid
side chains involving tyrosine, serine, and threonine.25,26,33

Finally, the observed difference in the spectral profiles of
nucleotides, proteins, phospholipids, and carbohydrates, be-
tween the benign and the malignant tissues appears as an
interesting discriminating feature in moderately differentiated
colon cancers.

The IR spectral region around 1000 to 1300 cm−1 contains
vibrational bands from several biomolecules like nucleotides,
carbohydrates, mucin etc. Additionally, agarose, which although
is found only around the tissue array cores, have signatures in
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this region, which does make the analysis of the data sets more
complicated.

For characterizing the tumoral tissue [Fig. 4(b)], 14 clusters
were necessary to identify the tumor together with its associated
stroma. These two clusters showed very close spectral profiles,
an observation that supports the view that stroma is intimately
associated to its tumor. In spite of this, the highly sensitive sta-
tistical methods enabled to depict subtle differences that could
be probably associated with the spectral profiles of collagen fea-
tures together with the amide II regions of the proteins, and other
stroma-associated proteins in malignancy.

5 Conclusion
This study demonstrates the potential of IR spectral imaging
for identifying and differentiating various histological features
of normal and tumoral paraffin-embedded colon tissue arrays.
An important aspect is that large spots (3 mm diameter) of
the paraffinized tissue array stabilized in an agarose matrix
could be directly analyzed without chemical dewaxing thus sim-
plifying the experimental protocol. This procedure was enabled
by the implementation of an optimized version of the EMSC
algorithm permitting to numerically neutralize both paraffin and
agarose spectral contributions. Additionally, using multivariate
analysis, complementary information on the changes associated
with the biochemical properties between normal and malignant
tissues could be also recovered, in a single measurement and in
a label-free manner. The translation of this methodology of IR
imaging is envisaged to paraffinized tissue microarrays that can
enable high-throughput, molecular level analysis of large tissue
archives. These optimistic results open a new way for develop-
ing spectral biomarkers and libraries, which could be used, in
complement to conventional histopathology, for early diagnosis
and also potentially for prognosis and theranostics of cancers.
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