
Three-dimensional model for human
anterior corneal surface

Suilian Zheng
Jinglu Ying
Bo Wang
Zhonghao Xie
Xueping Huang
Mingguang Shi



Three-dimensional model for human anterior
corneal surface

Suilian Zheng,a* Jinglu Ying,a,b* Bo Wang,c Zhonghao Xie,d Xueping Huang,d and Mingguang Shia
aThe Second Affiliated Hospital of Wenzhou Medical College, Department of Ophthalmology, Wenzhou 325027, China
bZhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Department of Ophthalmology, Hangzhou 310016, China
cNanjing University of Finance and Economics, School of Applied Mathematics, Nanjing 210046, China
dWenzhou Medical College, Department of Computer Science, Wenzhou 325035, China

Abstract. The anterior corneal asphericity (Q) with the tangential radius is calculated, and a three-dimensional (3-
D) anterior corneal model is constructed. Tangential power maps from Orbscan II are acquired for 66 young adult
subjects. The Q-value of each semimeridian in the near-horizontal region is calculated with the tangential radius.
Polynomial fitting is used to model the 360-semimeridional variation of Q-values, and to fit the Q-values in the
near-vertical region. Furthermore, a customized 3-D anterior corneal model is constructed. The 360-semimeri-
dional variation of Q-values is well fitted with a seventh-degree polynomial function for all subjects. The goodness
of fit of the polynomial function was >0.9, and the median value was 0.94. TheQ-value distribution of the anterior
corneal surface showed bimodal variation. Additionally, the Q-values gradually become less negative from the
horizontal to the vertical semimeridians in the four quadrants. The 3-D surface plot of the anterior corneal surface
approximated a prolate ellipsoid. Using a method to calculate theQ-value with the tangential radius combined with
polynomial fitting, we are able to obtain the Q-value of any semimeridian. Compared with general models, this
method generates a complete shape of the anterior corneal surface using asphericity.© TheAuthors. Published by SPIE under a
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1 Introduction
The anterior surface of the human cornea is a major refractive
element. A sound understanding of the corneal shape is needed
for the design of the rigid gas permeable (RGP) contact lens and
corneal laser refractive surgery (LASIK). Several mathematical
models have been proposed to describe the anterior corneal
shape.1–4 In particular, asphericity is an important parameter
of the corneal shape that is widely used by corneal topographers.

Guillon et al.1 and Bennett5 assumed that the human cornea
had a conic section describable by Baker’s equation: y2 ¼
2r0x − px2, where p represents the corneal asphericity.6

Bennett and Rabbetts7 derived the conic equation, r2s ¼ r20þ
ð1 − pÞy2, to calculate the asphericity by the sagittal radius
of curvature (rs) from keratometry. However, although
Bennett’s equation is widely used in the studies of corneal
shape,8–12 the sagittal radius of curvature is spherically biased
and is not a true radius of curvature.13–15 Other researchers
have described the corneal shape by using the least-squares fit-
ting of zernike polynomials to the data from the corneal height
(elevation) map.16 Recently, Laliberté et al.17 proposed a method
to construct a three-dimensional (3-D) average human corneal
model using the data from the elevation map from Orbscan II.

Most previous studies have reported that Q-values are
representative of all or two principal corneal meridians.
Dubbelman et al.18 measured the k-values (where k ¼ Qþ 1)
of six semimeridians (0 deg, 30 deg, 60 deg, 90 deg, 120 deg,
and 150 deg) using Scheimpflug photography and modeled the
meridional variation of the k-values using the cos2 function.
However, the results indicated that the cos2 function was not
an adequate model to describe the variation.

Corneal topography is commonly presented as an axial
(sagittal) power, tangential power, or elevation map. The tangen-
tial radius of curvature (rt) is a true radius of curvature that can
better represent the corneal shape and local curvature changes.19

However, to the best of our knowledge, no study has calculated
corneal asphericity with the tangential radius of curvature from
the tangential power map.

In this study, we calculated theQ-values of the semimeridian
based on the tangential radius of curvature using linear reg-
ression. For the first time, we elucidated the 360-semimeridional
variation rule of the Q-value using the polynomial fitting and
constructed a customized 3-D model of the anterior corneal sur-
face. Ourmathematical model could be useful in the back-surface
fitting of the RGP lens or Q-value-guided customized LASIK.

2 Methods

2.1 Subjects

The right eyes of 66 healthy, young adult volunteers (25
females, 41 males; mean age 24 years; range 18 to 36 years)
were evaluated in this study. Inclusion criteria were: (1) refrac-
tive spherical equivalent to > − 0.25 diopter sphere (DS) and
<þ 0.50 DS, (2) corneal astigmatism <1.00 diopter cylinder,
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and (3) absence of detectable ocular disease or history of ocular
surgery.

2.2 Data Acquisition

The Bausch & Lomb Orbscan II corneal topographer (version
3.00) was used to acquire topographic images of the right eye of
each subject. Three images were obtained from each subject.
Topographic images, in which ≥75% of the data were available,
were selected for further analysis. The tangential radius of cur-
vature (rt), the perpendicular distance from the point to the opti-
cal axis (y) of all data points on a semimeridian, and the vertex
radius of curvature (r0-value) were obtained from the raw data
of the tangential power map of the anterior corneal surface. The
data points were arranged on a semimeridian at 0.1-mm inter-
vals. The interval between two semimeridians was 1 deg.

2.3 Q-Value Calculation by Tangential Radius of
Curvature

A 3-D Cartesian coordinate system was set with its origin (O) at
the vertex normal to the corneal intersection of the optic axis of
the corneal topographer.20 The Z-, Y-, and X-axes of the coor-
dinate system represent the optical axis, vertical, and horizontal
directions, respectively. θ was the angle between the corneal
meridian section and the XOZ plane. Our published paper21

has introduced the derivation of the equation in detail for the
Q-value calculation by tangential radius. The equation of the
corneal meridian section of any angle θ could be expressed as

rt ¼
1

r20
½r20 −Qy2�3∕2; (1)

where rt, r0, Q, and y refer to the tangential radius of curvature,
vertex radius of curvature, corneal asphericity, and perpen-
dicular distance from the point to the optical axis, respectively.

As rt was a nonlinear function of y in Eq. (1), it was difficult
to calculate the Q-value. To transform the nonlinear problem
into a linear one, Eq. (1) was converted into the form y2 ¼
bþ cr2∕3t , where b and c were constants. A straight-line
graph of y2 (on the ordinate) versus r2∕3t (on the abscissa)
was plotted. Using linear regression, we obtained b ¼ ðr20∕QÞ
and c ¼ −ðr4∕30 ∕QÞ; that is, Q ¼ −ðb2∕c3Þ. The straight line
gives the coefficient of determination (R2). Considering the reli-
ability of the linear regression equation, the coefficient of deter-
mination (R2) should be >0.5. The Q-value of a given
semimeridian was calculated from the first point at 0.1 mm
to the peripheral point. The mean of three Q-values of a
given semimeridian was regarded as the final value.

2.4 Modeling the 360-Semimeridional Variation
Rule of the Q-Value

We previously found that the near-horizontal region showed a
good coefficient of determination (R2), whereas the coefficient
of determination for the near-vertical region was relatively poor.
This difference between the coefficients of determination may
have been due to problems associated with acquiring a good
image or because the eyelids induced a nonconic form on the
corneal meridian section. Thus, in our previous studies, we
were unable to obtain the Q-values of the near-vertical region.

In the present study, according to the Q-value of each semi-
meridian in the near-horizontal regions, including 0 deg to
50 deg, 130 deg to 180 deg, 181 deg to 230 deg, and 310 deg
to 359 deg, the 360-semimeridional variation of theQ-values for
each subject was modeled by polynomial fitting with MATLAB
(MathWorks, Inc., Natick, Massachusetts). Then, we fitted the
Q-value of each semimeridian in the near-vertical regions,
including 51 deg to 129 deg and 231 deg to 309 deg. The poly-
nomial function took the form fðxÞ ¼ p0 þ p1xþ p2x2þ
p3x3 þ p4x4 þ : : : , where x is the semimeridian angle θ (deg)
and fðxÞ is the corresponding Q-value. The degree was con-
verted to a radian when we performed the polynomial fitting.

3 Construction of a 3-D Model of Corneal Shape

3.1 Rotation of the Coordinate System

A new coordinate system (X̄OȲ) was obtained by rotating the
original coordinate system (XOY) counter-clockwise by θ deg
(Fig. 1). P was an arbitrary point in the coordinate system, with
Pðx; yÞ in the original and Pðx̄; ȳÞ in the new coordinate sys-
tems, respectively. We obtained the following coordinate rota-
tion formula: �

x̄ ¼ y sin θ þ x cos θ
ȳ ¼ y cos θ − x sin θ

: (2)

3.2 Generation of a 3-D Corneal Model

We set the angle between a given corneal meridian section
and the XOZ plane to be θ deg. A new coordinate
system (X̄OȲ) was obtained by rotating the original coordinate
system (XOY) around the Z-axis counterclockwise by
−ð90 deg−θÞ deg. Thus, the ȲOZ plane coincided with the
corneal meridian section in the new coordinate system (X̄OȲ).
The equations of the corneal meridian section in the new coor-
dinate system (X̄OȲ) were as follows:

�
x̄ ¼ 0

ȳ2 ¼ a1zþ a2z2 ¼ 2r0z − ð1þQÞz2 ; (3)

where ðx̄; ȳÞ are the coordinates of the new coordinate system
(X̄OȲ). By substituting −ð90 deg−θÞ into θ in Eq. (2), we
obtained the following coordinate rotation equations of our cor-
neal model:

Fig. 1 Schematic diagram of the rotation of the coordinate system.
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�
x̄ ¼ x sin θ − y cos θ
ȳ ¼ y sin θ þ x cos θ

: (4)

We substituted x̄; ȳ in Eq. (3) to Eq. (4). The equations of the
corneal meridian section in the original coordinate system
(XOY) were as follows:�

x sin θ − y cos θ ¼ 0

ðy sin θ þ x cos θÞ2 ¼ 2r0z − ð1þQÞz2 : (5)

Finally, we transformed Eq. (5) into the following form:

�
x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r0z − ð1þQÞz2

p
cos θ

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r0z − ð1þQÞz2

p
sin θ

; (6)

where θ is any semimeridian angle (deg) and z is a parameter in
the equation group.

A total of 360-semimeridianswere chosen, and each point had
ðx; y; zÞ coordinates. The z-value of each semimeridian was
selected from 0 to 3.5 mm at 0.1-mm intervals. The x and y
coordinate value of every point was calculated by substituting
the corresponding z-value into Eq. (6). Finally, a 3-D corneal
surface plot was generated with the Visual C++ 6.0 program.22

4 Results
The Kolmogorov–Smirnov test showed that the parameter dis-
tributions were not significantly different from normal, except
for the goodness of fit (r2) of the polynomial function.

4.1 Function Relationship

The peripheral points of the semimeridians in the near-horizon-
tal region deviated from the corneal center by up to 4 mm.
Figure 2 shows the function scatterplot of the perpendicular dis-
tance squared (y2) versus the tangential radius of curvature to the

two-thirds power (r2∕3t ) on the nasal horizontal principal semi-
meridian of the right eye for subject number 1. The coefficient of
determination (R2) in the near-horizontal region of most of the
right eyes was >0.85.

4.2 360-Semimeridional Variation Rule
of the Q-Value

To determine which degree of polynomial would provide an
optimal fit to the 360-semimeridional variation of the Q-value,
we calculated the root mean square error (RMSE) of the fit of
the polynomial function from the fifth to ninth degrees. The
RMSE was relatively stable at approximately 0.02 for fits higher
than the sixth degree. The 360-semimeridional variation of the
Q-value was well fitted with a seventh-degree polynomial func-
tion for all subjects.

Figure 3 shows an example of the variation of the asphericity
(Q) as a function of the semimeridian for subject number 22
with the following seventh-degree polynomial function:

fðxÞ ¼ −0.528þ 0.1977xþ 0.3934x2 − 0.3198x3

þ 0.06382x4 þ 0.004282x5 − 0.002427x6

þ 0.0001822x7:

Most right eyes displayed a good fit ðr2Þ > 0.9 for the
asphericity of all subjects (Fig. 4). The median value was
0.94, and the mean RMSE was 0.02� 0.008.

Table 1 shows the mean values of Q at different semimeri-
dian regions in the four quadrants of the anterior corneal surface.
The Q-values for the sample analyzed in our study displayed
negative values (−1 < Q < 0), which gradually became less
negative as one moved from the horizontal to the vertical
semimeridian regions in each quadrant. Figure 5 shows the
variation in asphericity with the semimeridian region of the ante-
rior corneal surface for all subjects. The Q-value distribution of
the anterior corneal surface presented bimodal variation with the
two peak values representing the least-negative Q-values. The
360-semimeridional variation of Q-values in subjects in
Fig. 3 were similar to that of the subjects in Fig. 5.

Fig. 2 Scatterplot of perpendicular distance squared (y2) versus tangen-
tial radius of curvature to the two-thirds power (r

2
3
t ) on the nasal horizon-

tal principal semimeridian of the right eye for subject number 1.

Fig. 3 Typical example of the variation of the asphericity (Q) as a func-
tion of semimeridian for subject number 22. Blue: Q-value of each
semimeridian in the near-horizontal region. Red: Fitted curve of 360-
semimeridional variation of theQ-value. r2: Goodness of fit of the poly-
nomial function. RMSE: RMS fit error.
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4.3 3-D Corneal Model

Figure 6 shows a colorized 3-D surface plot of the anterior cor-
neal surface described by asphericity (Q) from the different per-
spectives of the same subject in Fig. 3. The color variation
reflects the semimeridional variation of the Q-value with 0.02
color steps. The Q-value gradually becomes more negative
from the top to the bottom of the color scale. Because the
Q-value of each semimeridian was a negative value
(−1 < Q < 0) corresponding to the most common corneal
shape,23 the 3-D surface plot of the anterior corneal surface
approximated a prolate ellipsoid.

5 Discussion
Douthwaite et al.24 used linear regression to calculate Q-values
with the sagittal radius of curvature (rs) according to Bennett’s
equation r2s ¼ r20 þ ð1 − pÞy2. There are two differences
between Q-values calculated using the sagittal or tangential
radius of curvature. First, because the sagittal radius of curvature
(rs) is spherically biased, it is not a true radius of curvature. The
tangential radius of curvature (rt) is a true radius of curvature

that better represents corneal shape and local curvature changes.
Second, Bennett’s equation does not include rotation of the
coordinate system. Therefore, it can only be used to calculate
Q-values of the principal semimeridians or principal semiaxes.
Although theQ-value calculation of our method was more com-
plex, it could calculate Q-values of the four principal semiaxes
as well as those of other semimeridians. Current corneal topog-
raphers provideQ-values that are representative of all or the two
principal corneal meridians. We modeled the 360-semimeri-
dional variation of the Q-value, which was well fitted with a
seventh-degree polynomial function for all subjects.

Laliberte et al.17 proposed a method for constructing an aver-
age 3-D human corneal model based on elevation data from
Orbscan II. They used the best-fit sphere (BFS) as a reference
surface. The colorized anterior elevation map showed that the
elevation with respect to the BFS (green) was slightly positive
(yellow-red) in the central region. Additionally, a mid-peripheral
yellow-green pattern was located above the BFS.

In our study, we proposed a method for constructing a
customized 3-D human corneal model by asphericity based
on the tangential radius of curvature. Figure 6 shows a typical
3-D surface plot of the anterior corneal surface, which was
approximated as a prolate ellipsoid. The corneal curvature
gradually became flatter from the center toward the periphery.
Q-values in the near-vertical region were less negative (warmer
colors) than those in the near-horizontal region, and those in the
nasal cornea were more negative (colder colors) than those in the
temporal cornea. A corneal model constructed from elevation

Table 1 Values for asphericity (Q) at different semimeridian regions in four quadrants of the anterior corneal surface.

Corneal semimeridian region (deg)

n ¼ 66 0 to 30 31 to 50 51 to 70 71 to 90 91 to 110 111 to 129 130 to 150 151 to 180

Mean�
SD

−0.38� 0.13 −0.28� 0.10 −0.18� 0.07 −0.12� 0.06 −0.10� 0.07 −0.12� 0.08 −0.17� 0.10 −0.22� 0.10

Range −0.72 to −0.10 −0.61 to −0.07 −0.42 to −0.06 −0.29 to −0.01 −0.31 to 0.01 −0.44 to −0.01 −0.55 to −0.04 −0.54 to −0.06

n ¼ 66 181 to 210 211 to 230 231 to 250 251 to 270 271 to 290 291 to 309 310 to 330 331 to 359

Mean�
SD

−0.24� 0.11 −0.23� 0.09 −0.18� 0.07 −0.14� 0.06 −0.12� 0.05 −0.14� 0.06 −0.20� 0.09 −0.32� 0.13

Range −0.56 to −0.05 −0.47 to −0.03 −0.36 to −0.02 −0.30 to −0.02 −0.27 to −0.02 −0.29 to −0.03 −0.45 to −0.05 −0.70 to −0.07

Note: n ¼ number of eyes; SD ¼ standard deviation.

Fig. 5 Variation in asphericity as a function of the semimeridian region
of the anterior corneal surface for all subjects. Bars denote 95% con-
fidence interval (CI).

Fig. 4 Box and whisker plot for the goodness of fit (r2) of the polynomial
function for the right eyes of all subjects for the asphericity (Q).
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data does not have a specific mathematical equation to describe
the corneal shape and cannot describe the corneal asphericity
(Q). Instead, such a model shows the elevation difference at
each point on the corneal surface from the BFS. In contrast,
we constructed a corneal model that was quantitatively
described by asphericity.

Anterior corneal asphericity is an important parameter for
back-surface fitting of the RGP lens and for Q-value-guided
customized LASIK. The goal of the aspheric back-surface
RGP lens design is to optimize alignment with the anterior cor-
neal surface. The goal of the Q-value-guided customized
LASIK is to maintain the physiological asphericity of the ante-
rior corneal surface. At present, Q-values of the two principal
meridians or the four principal semimeridians are used to guide
RGP lens fitting and LASIK design. Our mathematical model
improves on previous methods by providing 360 Q-values of
the semimeridians of the whole anterior corneal surface.

In conclusion, we have proposed a method to calculate the
anterior corneal asphericity (Q) of the semimeridian using the
tangential radius of curvature (rt). Furthermore, our study pro-
vided 360 Q-values of semimeridians of the whole anterior cor-
neal surface, and we constructed a customized 3-D corneal
model that was completely described by asphericity. Our math-
ematical model could help to optimize the back-surface fitting of
the RGP lens or Q-value-guided customized LASIK, thereby
improving a patient’s visual quality.
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