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Abstract. We report an anisotropic tissue model containing well-ordered birefringent cylinders. Using simula-
tions and experiments, we examined the different polarization features for nonbirefringent and birefringent cyl-
inders and analyzed the influence of the birefringent cylinders on the retardance obtained from Mueller matrix
polar decomposition. For the well-ordered birefringent cylinders, retardance increases linearly with the intrinsic
birefringence and the scattering coefficient. Furthermore, the cylinders with a larger diameter generate more
retardance. Compared with the cylinder-birefringence model, in which birefringent medium exists between
the scatterers, the intrinsic birefringence on the cylinders usually contributes much less to the total retardance.
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1 Introduction
Most biological tissues are optically anisotropic turbid media,
containing fibrous microstructures and birefringence optical
polarization effects.1–3 It is important to mimic and interpret
the structural and optical anisotropies using polarized scattering
models or phantoms for tissue characterization.4–7 There have
been many polarized scattering models for biological tissues.8

Wang et al. presented a sphere birefringence model, which con-
tains spherical particles randomly suspended in linearly birefrin-
gent media.9 He and Yun et al. proposed a sphere-cylinder
scattering model (SCSM) to characterize the anisotropic scatter-
ing property of fibrous tissues, such as skeletal muscles.10,11

Furthermore, Du et al. extended the SCSM to the sphere-cylin-
der birefringence model (SCBM) by introducing birefringence
to the medium between scatterers.12 In a previous study, we
examined the tissue anisotropy contributed by both the scatter-
ing of cylindrical scatterers and the birefringent media using
Mueller matrix polar decomposition.13 Lately, it has been
noticed that there exists intrinsic birefringence on intracellular
microtubules, microfilaments, and other fibrous scatterers in tis-
sues.14 Recently, in a study on the microstructures of textiles,
Peng et al. proposed a birefringent cylinder scattering model,
in which the textile fibers have different refractive indices in
the axial and radial directions; a corresponding Monte Carlo
simulation was also reported for textile fibers randomly distrib-
uted in the xy plane.15

In this article, we extend further the SCBM to include the
intrinsic birefringence on the cylindrical scatterers of arbitrary
spatial distributions. We also developed a newMonte Carlo sim-
ulation program to calculate the effects of well-ordered birefrin-
gent fibers to mimic the structure of biological tissues.16 After

verifying the validity of the new anisotropic tissue model and the
Monte Carlo simulation program, we then analyzed the contri-
butions of the well-ordered birefringent cylinders to the retard-
ance obtained from Mueller matrix polar decomposition. We
present the comparison of polarization characterization for
the birefringent cylinders model and the model of nonbirefrin-
gent cylinders with birefringence medium between them. The
study will help us to understand and mimic the polarization
behavior of photons in complicated tissues and explain the opti-
cal anisotropy and characteristic features of tissues based on
polarized photon scattering measurements.

2 Theory

2.1 Polarized Photon Scattering at a
Inhomogeneous Birefringent Cylinder

We have developed a SCSM and a SCBM to describe tissue
anisotropy.11,12 We assumed that the small spheres and infinite
cylinders are embedded in the medium of linear birefringence.
When photons transport through the media, they will be scat-
tered by the spherical and cylindrical scatterers. We extended
the SCBM by replacing the nonbirefringent cylinders with bire-
fringent ones. Peng’s calculation of single scattering for birefrin-
gent cylinders is referenced in this paper, but we corrected a
mistake in Eq. (9), and the dielectric coefficient and permeabil-
ity are replaced with refractive index, consistent with our pre-
vious notations.11

We can establish a coordinate system shown below in Fig. 1.
The refractive index of birefringent cylinders can be written as
axisymmetric tensors

n̿ ¼ n2⊥x̂ x̂þn2⊥ŷ ŷþn2jjẑ ẑ; (1)

where x̂, ŷ, and ẑ are the transverse and axial unit vectors.
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Then, we can write the internal electromagnetic field quan-
tities in the form

~E ¼ ~Et þ ẑEz
~H ¼ ~Ht þ ẑHz. (2)

Subscript t expresses the transverse plane, which is
perpendicular to the z axis. According to these, Maxwell’s equa-
tion can be expressed as17,18

D1ð∇tÞ · Hz þD3ð∇tÞ · Ez ¼ 0

D2ð∇tÞ · Ez −D4ð∇tÞ · Hz ¼ 0; (3)

where D1ð∇tÞ, D2ð∇tÞ, D3ð∇tÞ, and D4ð∇tÞ are quadratic func-
tions of ∇t, and ∇t is a differentiating operator. By using plane
wave expansion method, we can solve Eq. (3) to get internal

electromagnetic field quantities Ez and Hz, and get ~Et and
~Ht. Using the continuity conditions on the boundary, we can

get scattered field ~Es (parallel component ~Ejjs and perpendicular

component ~E⊥s)

�
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where ρ and z represent the radial and axial distances in the
cylindrical coordinates, a is the radius of the cylinder, n0 is
the refractive index and η is the wave impedance of the ambient
medium, k ¼ 1∕λ is the wave number, ζ is the angle between the
direction of incident light and the direction of cylinder, and Θ is
the azimuth angle of the scattered light on the scattering cone. Jn
is the Bessel function, Hn

ð1Þ ¼ Jn þ iYn and Hn
ð2Þ ¼ Jn − iYn,

respectively, expressing the first and second kind of Hankel
function.

From the above formulas, we can get Mueller matrix
Mðζ;ΘÞ and its elements as follows19

Mðζ;ΘÞ ¼ 2

πkρ sin3 ζ

0
BB@

m11 m12 m13 m41

m21 m22 m23 m42

m31 m32 m33 m43

m41 m42 m43 m44

1
CCA; (10)

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

m11 ¼ ðjJ1j2 þ jJ2j2 þ jJ3j2 þ jJ4j2Þ∕2
m12 ¼ m21 ¼ ðjJ1j2 − jJ2j2Þ∕2
m13 ¼ −m31 ¼ RefJ1J�4 þ J2J�3g
m14 ¼ m41 ¼ ImfJ1J�4 − J2J�3g
m22 ¼ ðjJ1j2 þ jJ2j2 − jJ3j2 − jJ4j2Þ∕2
m23 ¼ −m32 ¼ RefJ1J�4 − J2J�3g
m24 ¼ m42 ¼ ImfJ1J�4 þ J2J�3g
m33 ¼ RefJ�1J2 þ J�3J4g
m34 ¼ −m43 ¼ ImfJ1J�2 þ J3J�4g
m44 ¼ RefJ�1J2 − J�3J4g

: (11)

2.2 Validity for Single Scattering Process

In the present model, scattering by a birefringent cylinders with
equal axial and radial refractive indices should be equivalent to a
nonbirefringent cylinders studied in our previous work.11 Hence,
we test the validity of the new model and the new simulation
program by checking if the scattering behavior of birefringent

Fig. 1 Schema of the single light scattering by infinite cylinder.
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cylinders with equal axial and radial refractive indices coincides
with the situation that the cylinder scatters without the
birefringence.

Figure 2 shows the Mueller matrix elements as functions of
the azimuth angle Θ for a single scattering of a birefringent cyl-
inder with the different axial and radial refractive indices marked
by solid black line, and a birefringent cylinder with same axial
and radial refractive indices marked by dotted black line. All are
calculated using our newly developed program. The Mueller
matrix elements of nonbirefringent cylinder calculated with
our previous program are shown as the red dotted line com-
pletely overlapping with the dotted black line,11 which confirms
the validity of the developed program for birefringent cylinders.
In Fig. 2, Mueller matrixmij except form11 (i, j ¼ 1; : : : ; 4) are
all normalized by m11½mijðΦÞ∕m11ðΦÞ�. And m11 is normalized
by m11ðΦ ¼ 0°Þ, m11ðΦÞ∕m11ðΦ ¼ 0°Þ.

Figure 2 shows that the Mueller matrix elements for single
scattering by a birefringent cylinder are clearly different from
those by a nonbirefringent cylinder. To examine the polarization
features of fibrous tissue microstructures, contributions by the
intrinsic birefringence on the cylinders need to be considered.

3 Samples and Experiments
For further verification of our Monte Carlo program for birefrin-
gent cylinders and demonstration of the influence of birefringent
cylinders on polarization measurements, we present the simula-
tion and experimental results of forward scattering Mueller
matrix of nonbirefringent and birefringent cylinders, respec-
tively. In the experiments, we prepare two samples by winding
either well-aligned nonbirefringent glass fibers or birefringent
silk fibers around small frames.20 The experimental setup has
been used in a previous study for forward scattering Mueller

Fig. 2 Single scattering Mueller matrix of a birefringent cylinder with the different axial and radial refrac-
tive indices of 1.57 and 1.53 (solid black lines), and a birefringent cylinder (dotted black lines) with the
same axial and radial refractive indices of 1.57. Calculations for a nonbirefringent cylinder with the refrac-
tive index of 1.57 are shown as the red dotted lines, which overlap completely with the dotted black lines.
The incident angle of light is ζ ¼ 45 × deg and the diameter of the cylinder is 1.5 μm. The abscissa is
azimuth 0–180 deg.
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matrix measurements.5 Before the experiments, we measured air
and a polarizer as the standard samples, and the calibration
errors can be estimated at about 5%.13

Figure 3(a) represents the experimental result for the silk
sample, and Fig. 3(c) is for the glass fiber sample. Earlier
studies have shown that the silk fibers contain fibrous substruc-
tures of 1.5-μm diameter,5 and the refractive indices along
radial and axial directions are 1.53 and 1.57.20 The glass
fibers have a refractive index of 1.547 and about 10 μm in
diameter (observed by SEM).13,20 The corresponding simula-
tion results of birefringent and nonbirefringent cylinders
are shown in Figs. 3(b) and 3(d) with the scattering coefficient
μs ¼ 30 cm−1 and the other parameters the same as the exper-
imental conditions; the wavelength in the simulation is 633 nm.
Figures 3(a)–3(d) show very good agreement between experi-
ments and simulations and confirm the validity of the scatter-
ing model and the corresponding Monte Carlo simulation
program for scattering medium containing orderly arranged
birefringent cylinders.

It can be seen from Fig. 3, for both the well-aligned nonbir-
efringent or birefringent cylinders,m12 andm21 are nearly equal,
andm22 is significantly bigger than the other polarization depen-
dent elements. For the Mueller matrix elements m33 and m44,
however, they are different for the birefringent and nonbirefrin-
gent cylinders, probably due to the intrinsic birefringence on
cylindrical scatters. Considering the possible small fluctuation
of arrangement and size for cylinders during the preparation
of experimental phantoms, the slight differences between
experiments and simulations are possibly due to the uncertainty
of the simulation approximation. Further simulations with dif-
ferent parameters in the model show that the effects on the
Mueller matrix elements due to the birefringence in the cylin-
drical scatterers are complicated and sensitive to the diameter
and refractive indices of the cylinders.

4 Results and Discussion
The Mueller matrix can characterize polarization properties of a
sample. There are several other methods to decompose Mueller
matrix; in a previous work,13 we used the Lu-Chipman Mueller
matrix polar decomposition method to “decompose” a Mueller
matrix M into three constituent “basic” matrices, representing
depolarization (MΔ), retardance (MR), and diattenuation
(MD).

21 From Eq. (10), we can see that the value of Mueller
matrix elements depends on various factors, but we focus on
the relationship between Mueller matrix and intrinsic birefrin-
gence of cylindrical scatterers. By Monte Carlo simulations,
we examine how the birefringent cylinders affect the retardance
(δ) for an anisotropic sample. We simulate Mueller matrix
images using different birefringence values of the cylinders,
evaluate the retardance (δ), depolarization (Δ), and diattenuation
(D) pixel by pixel using Mueller matrix polar decomposition,
and then calculate their mean values.

Figure 4 shows the retardance (δ) from the simulated data as
functions of the radial and axial refractive indices differenceΔnc
and diameters of the cylinders. The diameters of the cylinders
are from 0.6 to 2 μm, and the values of birefringence Δnc are
from 0 to 9 × 10−3; the thickness of the medium is 1 cm.
Figures 4(a)–4(c), respectively, represent three cases of different
scattering coefficients, μs ¼ 10, μs ¼ 20, μs ¼ 30 cm−1. It can
be seen that the contributions by the birefringent cylinders to the
retardance strongly depend on their diameter and density. For
Δnc ¼ 0, the retardance decreases as the diameter of the cylin-
ders increases and increases as the scattering coefficient
increases, as found in the previous work.13 There is a good pos-
itive linear relationship between δ and the intrinsic birefringence
of the cylinders, which appear to be very similar to the effects
due to the birefringent medium between scatterers.13 The slope
of the retardance-birefringence curves is shown in Fig. 4, which
represents how sensitively the retardance varies with the

Fig. 3 Experimental and simulation results of forward scattering Mueller matrix. (a) and (b) are exper-
imental and simulated results of birefringent cylinders (well-aligned silk fiber). (c) and (d) are experimental
and simulated results of nonbirefringent cylinders (well-aligned glass fiber).
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Fig. 4 The relationship between the birefringence of the cylinders and the retardance δ. Different curves
represent different diameters of birefringent cylinders, (a)–(c) represent different scattering coefficients of
the sample.

Fig. 5 Slopes extracted from Figs 4(a)–4(c), (a) and (c) represent the relationship between the diameter
and scattering coefficient μs and δ, (b) and (d) represent the relationship between the product of diameter
d and scattering coefficient μs and δ.
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birefringence on the cylinder, and also increases with the diam-
eter of the birefringent cylinders and the scattering coefficient.
We extract the values of slopes of the curves by linear function
fitting. We plot in Figs. 5(a) and 5(c) these slopes as functions of
the diameter and scattering coefficient of the birefringent
cylinders. After a normalized transformation of abscissa axis
by d · μs, Figs. 5(a) and 5(c) change into Figs. 5(b) and 5(d);
there is a clear positive and approximately linear correlation
between the slope and the product of cylinder diameter and
density.

In addition, we did some investigation about depolarization
(Δ) and diattenuation (D) in the birefringent cylinders model.
We can find that, compared with the retardance, Δ and D
just have a small fluctuation with the birefringence on the bire-
fringent cylinders.

In the previous study,13 we have analyzed the contributions
of retardance by the nonbirefringent cylinders with the birefrin-
gent medium between scatterers. According to our previous
research work, Fig. 6 shows δ as functions of the medium bire-
fringence in the cylinder-birefringence sample. The retardance δ
increases linearly with the birefringence of the ambient medium
Δnm and decreases with the diameter of the cylinders. Here, we
compare two types of birefringence, respectively, in the birefrin-
gent cylinders and the cylinder-birefringence sample. For the
birefringent-cylinder scattering samples (Figs. 4 and 5), the
diameter of the cylinders plays an important role on the retard-
ance. However, for the cylinder-birefringence model, the bire-
fringent medium surrounding the nonbirefringent cylinder is
the major source of the total retardance.

In Fig. 6, the well-aligned nonbirefringent cylinders are in
parallel to the birefringence axis of the birefringent medium,
where the Δnm range is set to a smaller scale to ensure δ
stays in the range of 0 to π. The scattering coefficient of cylin-
ders affects only the initial value of the retardance, but not the
slope of the curve.

For the birefringent medium, the retardance can be written as
δ ¼ 2πnmsΔnm∕λ, where s is the projection along the x direc-
tion of the moving distance between two successive scattering
events, Δnm is the birefringence of the medium, nm is the aver-
age refractive index, and λ is the wavelength of light. If we set
the same birefringence parameter as Fig. 6, the coefficient
2πnms∕λ is nearly equal to the slope of curves in Fig. 6,
which is around 104–105. By contrast, in the birefringent cyl-
inders samples, the slope of the curves shown in Fig. 5 is

only on the order of magnitude of 102, indicating that the intrin-
sic birefringence of cylindrical scatterers has weaker influence
on the total retardance than the birefringence of the ambient
medium.

5 Conclusion
We established an anisotropic scattering model including bire-
fringent cylinders with different refractive indices along the
radial and axial directions and developed the corresponding
Monte Carlo simulation program. The validity of simulation
program is tested by experiments using well-aligned nonbire-
fringent and birefringent cylinders. The present study shows
that the retardance due to scattering of well-ordered birefringent
cylinders comes from two sources: scattering by nonbirefringent
cylinders and an additional part associated with the intrinsic
birefringence on cylinders. Moreover, the retardance increases
linearly with Δnc and almost linearly with the diameter of
the birefringent cylinder. We also compare the influence of
the birefringent cylinders on the retardance with our previous
cylinder-birefringence model. For the same birefringence, the
birefringent cylinders usually contribute much less to the retard-
ance δ than the birefringent medium.
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