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1 Introduction

Spatial frequency domain imaging (SFDI) is a promising tech-
nique for the characterization of absorption and scattering in tur-
bid media. Over the last decade, its principal capability to map
optical properties in both phantoms and human or animal tissues
has been successfully demonstrated.'™ The technique employs
spatially modulated light-intensity projections and captures the
diffuse reflectance signal with a digital camera. The obtained
spatially resolved intensity can be used to inversely derive
optical scattering and absorption parameters. These parameters
carry useful information about the metabolic and structural
tissue properties.” Tissue absorption is typically linked to
metabolic properties like perfusion, oxygenation, and chemical
content, whereas tissue scattering is more related to structural
properties like cell density or tissue type. Therefore, it is crucial
to understand the overall precision of derived scattering and
absorption values in order to correctly interpret the tissue optical
properties. We seek to enhance this understanding by our sub-
sequent error analysis.

In the first part of our study (Sec. 2), we focus on errors con-
nected to the theoretical evaluation of SFDI data. In this context,
we investigate the significance of applying the correct scattering
phase functions and analyze the impact of possible errors in refrac-
tive index. Furthermore, the common errors associated with
the diffusion approximation to radiative transfer are examined.

In the second part (Sec. 3), we shift the focus to experimental
sources of error such as incorrect height adjustment, projection
boundary effects, binning errors, and errors in the assumed
spatial frequency. Based on our comprehensive error analysis,
we finally discuss the overall precision of derived optical param-
eters using SFDL

SFDI is typically used to extract the reduced scattering
coefficient p! from the experimental data, as it is a much
better indicator for the turbidity of a system than the scattering
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coefficient pg, which quantifies the frequency but not the
efficiency of scattering. The derivation of u! = u (1 —g) is,
however, still slightly dependent on the assumption for the
asymmetry parameter g = (cos(6)), which is the mean cosine of
the scattering angle @ for a single scattering event. This depend-
ency will be analyzed in Sec. 2.1.

The sensitivity of SFDI varies with the reduced scattering
u! and absorption y,. Likewise, most errors in SFDI are depen-
dent on the scattering and absorption regime. Therefore, our
error analysis takes into account this dependency on u, and
u! and considers the absorption regime 0.003 mm™!' <
U, <03 mm~! and assumes the reduced scattering to be in
the range of 0.5 mm™' < y/ <5 mm™'. These absorption and
scattering ranges contain all optical properties typically found
for biological tissue.'”

In order to best comprehend the impact of various sources of
error, we assume semi-infinite and both homogeneously and
isotropically scattering media with the vertical projection of
spatially modulated sinusoidal patterns. Unless stated otherwise,
the surface of the media is assumed to be ideally flat and the
real part of the refractive index is set to n, = 1.4 and n, = 1.0
inside and outside the media, respectively. Specular reflection
of the incident light pattern is disregarded for all subsequent
analysis.

For the most part of our study, we model spatial frequency
reflectance using the Henyey—Greenstein scattering phase func-
tion with asymmetry g = 0.9, which is a typical value found
for biological tissue.!%!! Both experimentally and especially on
a theoretical level, the use of only two spatial frequencies is
sufficient for accurate derivation of both optical parameters.
Relating to the average of many experimental studies,>!?
we make use of two spatial frequencies, namely f = 0 mm™!
and f =0.24 mm™' (k=0 radmm™' and k = 1.5 rad mm™").
The use of more intermediate frequencies may be experimen-
tally advantageous, but generally does not provide additional
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information for semi-infinite and homogeneously scattering
media. Nevertheless, some of the presented errors also depend
on the spatial frequency range and this dependency will be
discussed in the corresponding sections.

2 Analysis of Errors Related to Theoretical
Assumptions

In this section, theoretical assumptions that typically arise in the
evaluation process of spatial frequency domain (SFD) reflec-
tance data are examined. The term SFD reflectance always
denotes the amplitude of the diffuse reflectance signal and in
the following, we consider three sources of errors and their
impact on the derived absorption and scattering coefficients.
In a first step, the relevance of the scattering phase function
and its scattering asymmetry g = (cos(d)) on the derived
parameters u, and y. is studied. Afterward, further analysis is
done on the error which corresponds to the diffusion approxi-
mation and which reduces the scattering phase function to
its simplest form. Finally, errors in the refractive index are
characterized as one further source of error in SFDI.

The presented sources of error may have similar relevance
for other diffuse optical imaging techniques. As will be shown,
the impact of some of the presented errors varies strongly with
the spatial frequency. Errors that manifest themselves at high
spatial frequencies in SFDI will have similar relevance in real
domain spatially resolved systems, when looking at proximal
detection of photons. Nevertheless, focus of all subsequent
analysis is the qualitative dependency of errors over the SFD
together with a quantitative error analysis for a typical pair
of spatial frequencies.

2.1 Scattering Phase Function

Derivation of optical scattering and absorption parameters in
SFDI is usually either performed by look-up-table methods in
connection with Monte Carlo simulations” or by relying on
the diffusion approximation to radiative transfer.” Recently,
an analytical solution to the radiative transfer equation for
semi-infinite media has been found.''* This solution allows
for both fast and accurate modeling and evaluation of SFD
reflectance data. Both the use of Monte Carlo simulations
and analytical solutions to radiative transfer requires adequate
choice of the scattering phase function p(#). This function is
often unknown or approximated by analytical expressions
which are easy to work with, such as the Henyey—Greenstein
function.!” Due to its mathematical simplicity, this is one of
the most widely applied scattering phase functions in diffuse
optical imaging and beyond.”!® Therefore, we start by modeling
SFD reflectance using the Henyey—Greenstein function and
compare it to that of three different functions with identical
asymmetry (cos()). Afterward, we only focus on the
Henyey—Greenstein phase function and investigate the effect
of its asymmetry parameter, which can be easily adapted to
approximate the light scattering in various media. In this con-
text, the significance of a change in g on the derived optical
parameters is presented.

The inset of Fig. 1 depicts four different scattering phase
functions on a semi-log-scale with equal asymmetry g = 0.9.
In particular, the Henyey—Greenstein function is compared to
Mie scattering and two Reynolds—McCormick (Gegenbauer
kernel) scattering functions.'® Note that the Henyey—Greenstein
function equates to a Reynolds-McCormick function with
its second input parameter set to @ = 0.5. We therefore choose
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Fig. 1 Modeled spatial frequency domain (SFD) reflectance versus
spatial frequency f at u = 1.6 mm~" and p, = 0.03 mm~" for four dif-
ferent scattering phase functions p(6). The corresponding phase
functions share the asymmetry g = 0.9 and are depicted in the inset.

a=0.9 and a = 0.1 for the two other Reynolds—McCormick
functions for modeling of more or less pronounced forward
scattering, respectively. The selected Mie phase function corre-
sponds to a sphere of 0.5 ym diameter with a refractive index
mismatch of An, = 0.1 between its inside and outside, which is
illuminated by a plane wave with a wavelength of 1 = 650 nm
in the surrounding medium.

The main graph in Fig. 1 exemplifies SFD reflectance
for all four phase functions versus spatial frequency for
u, = 0.03 mm~! and p/ = 1.6 mm™!. These curves are derived
from Monte Carlo simulations using point illumination of
a semi-infinite media with spatially resolved detection of pho-
tons at the medium boundary. A convolution of this spatially
resolved reflectance with different spatial frequency patterns
(i.e., sine waves) is then used to derive the SFD reflectance
signal. Noticeably, the four curves almost coincide for f =
0 mm~! and their deviation increases with spatial frequency.
This deviation is more pronounced in the low scattering regime
and almost independent of absorption (assuming 0.003 mm~! <
#, < 0.3 mm™!). The deviation in SFD reflectance for differing
phase functions at high spatial frequencies can be understood
from the corresponding strong sensitivity to short-range photons
(i.e., light reflected in proximity to its entry point). Sampling of
these photons is enhanced for more intense scattering at larger
scattering angles, as observed for the Reynolds—McCormick
phase function with a = 0.1.

In the following, SFD reflectance data are computed for
various combinations of u, and u/, similar to the reflectance
curves in Fig. 1. Afterward, data corresponding to Reynolds—
McCormick (a =0.1 and a =0.9) or Mie scattering are
evaluated at two spatial frequencies (f =0 mm~! and f =
0.24 mm™!) incorrectly assuming Henyey—Greenstein scatter-
ing. This and all subsequent fitting procedures are performed
using the Gauss—Newton algorithm. Thereby, one arrives at
optical parameters which deviate from their original values.
This deviation Ay and Ay, is strongly dependent on the scat-
tering regime and almost independent of absorption. Figure 2
gives the obtained relative error of u/ over a wide scattering
range for the three different phase functions.

The relative error of y, is almost identical to that of x. and
therefore not shown in a separate graph. This similarity in both
errors can be qualitatively understood from a scaling property
in SFDI. We can observe in Fig. 1 that the variation of the scat-
tering function is very similar to spatial frequency scaling when
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Fig. 2 Relative error of u¢ in percent due to an incorrect scattering
phase function. Here, we use the Henyey—Greenstein function to
evaluate SFD data which corresponds to Reynolds—McCormick or
Mie scattering. The obtained relative error in x, (not shown) is almost
identical to that of /.

considering the effect on SFD reflectance. As will be discussed
in Sec. 3.4, spatial frequency scaling relates to the scaling of y,
and u! by a common factor and can therefore account for the
similarity in both errors.

As can be seen in Fig. 2, large errors arise from the choice
of incorrect scattering phase functions in both scattering and
absorption. These errors are profound in the low scattering
regime, where high spatial frequencies relate to photons, which
have undergone only a few scattering events.!” Therefore, one
should carefully consider the phase function of less intensely
scattering media. As a consequence, comparative studies across
different absorption or scattering regimes (such as dilution
series) or spectrally resolved measurements to compute absorp-
tion spectra may be falsified by the unawareness of the correct
scattering phase function. Note, however, that in order to sep-
arate this analysis from our successive study on the scattering
asymmetry, we chose all four functions such that g = 0.9.

In the next step, the influence of the scattering asymmetry g
is studied. We do this by calculation of SFD reflectance data for
g = 0.9 using the analytical radiative transfer solution'? and
the Henyey—Greenstein function. Subsequently, these data are
evaluated by means of the same analytical solution assuming
incorrect values of g. In consequence, incorrect values for p
and p, are obtained. Figure 3 gives the relative error of p! as
a function of the assumed asymmetry value g for four different
scattering regimes.

Variation in scattering asymmetry changes SFD reflectance
in a way similar to variations in the scattering phase function
(see Fig. 1). Likewise, SFD reflectance is mostly affected at
higher spatial frequencies and the relative error in u, related
to the asymmetry parameter is almost equal to that of u/ (see
Fig. 3) and therefore not shown.

According to Fig. 3, no error in g/ is obtained for g = 0.9 as
this asymmetry agrees with the previously calculated reflectance
data. The more the assumption for g deviates from the actual
asymmetry value, the higher the obtained relative error in u/.
The deviation of the four data curves shows larger errors for
media with low scattering. This is because a reduction in g
(and p,) corresponds to an upscaling in spatial frequency and
thus to a larger deviation in SFD reflectance, as will be further
discussed in Sec. 3.4. At the same time, the relative error in p
is almost independent of the absorption regime. This is indicated
by the error bars of the data points in Fig. 3, which correspond to
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Fig. 3 Relative error in u{ in percent related to an incorrect
assumption of the asymmetry value g. SFD data were calculated
for four reduced scattering values with g = 0.9 and evaluated assum-
ing different g-values. The obtained error scales almost linearly with
the incorrectness in g. The corresponding relative error in u, (not
shown) is almost identical to that of u.

the standard deviation for analogous computations over a wide
absorption regime (0.003 mm~! < g, < 0.3 mm™).

2.2 Diffusion Approximation

Having studied the potential error related to the scattering phase
functions, we now concentrate on the evaluation theories
for SFDI in general. Particularly, we are interested in the error
related to the diffusion approximation to radiative transfer,
where the angular scattering characteristics of single scatterers
are almost completely neglected.

Data evaluation in SFDI is frequently approximated by dif-
fusion theory due to its simplicity and very high computational
speed. In contrast, Monte Carlo simulations can be more accu-
rate, but suffer from relatively long yet decreasing'® computa-
tional times. In order to study the frequently accepted error’™>
associated with the diffusion approximation, we use our
analytical solution to the radiative transfer equation'*'* for
the computation of SFD reflectance data at the frequencies f =
0 mm~! and f = 0.24 mm~'. Thereby, we assume the Henyey—
Greenstein function with g = 0. This computation is performed
systematically for various absorption and scattering combina-
tions and the obtained reflectance data are evaluated using
the corresponding diffusion approximation for the same exper-
imental geometry'? and a nonlinear regression routine. Thereby,
one arrives at scattering and absorption values, which deviate
from the correct optical parameters. This deviation is shown
in two contour plots in Figs. 4 and 5, where different contour
levels correspond to different relative errors in p, and u/,
respectively.

We observe that the diffusion approximation causes errors
which largely depend on the absorption and scattering regime.
Expectedly, largest errors are found for media of low scattering
and high absorption, where the preconditions for the diffusion
approximation are least fulfilled. However, even with highly
scattering media, errors in excess of 10% can arise. For high
scattering, we learn from Figs. 4 and 5 that diffusion theory
underestimates both p, and /. This can be understood from
the corresponding overestimation of short-range photons in
diffusion theory.

Based on this error analysis, the benefit of an analytical radi-
ative transfer model for SFDI can be quantitatively understood.
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Fig. 4 Relative error of the absorption coefficient Au,/u, in percent
due to the diffusion approximation. The contour lines give the error
over a wide scattering and absorption regime.

Similarly, also combined Monte Carlo look-up-table approaches
have the potential to overcome the presented errors, which may
be large for particular combinations of y, and u/ even in the very
high scattering and low absorption regime.

2.3 Refractive Index

The refractive indices of most samples investigated in SFDI are
oftentimes only approximately known. Typically, the real part
of the refractive index of biological tissue is in the range of
1.35 < n, < 1.50 with some wavelength dependency of about
1% across the optical window (650 nm < A < 1050 nm).'*%!
Uncertainty in refractive index implies inaccuracy in the derived
optical parameters. In the following section, this inaccuracy in
determining p, and . is quantified as a function of the error in
refractive index An,. It should be noted that we consider the
average refractive index of the scattering media and not that
of single scattering particles. In consequence, we still make
the simplifying assumption of a homogeneously scattering
media with scattering and absorption properties, that are inde-
pendent of the media’s refractive index. Therefore, the assumed
refractive index value merely controls the amount of transmitted
and reflected light on both sides of the medium surface, as given
by the Fresnel equations. In order to study the impact of the
refractive index on the derived absorption and scattering coef-
ficients, we calculate SFD reflectance using our analytical
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Fig. 5 Relative error in the reduced scattering coefficient Ap/ué
due to the diffusion approximation. The contour lines give the relative
error in percent and as a function of the scattering and absorption
coefficients.
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Fig. 6 Relative error of the absorption coefficient Au, /u, in percent
for incorrect assumption of the refractive index. Here, the refractive
index is assumed to be too large by An, = 0.05. SFD reflectance
data were calculated for n, = 1.4 and evaluated assuming n ¢ =
n,+ An, = 1.45.

radiative transfer solution for semi-infinite media assuming a
refractive index of n, = 1.40. Subsequently, this data is evalu-
ated by falsely assuming n, ., = 1.45 which ultimately produ-
ces errors in y, and p. Figures 6 and 7 give these relative errors
in absorption and scattering, respectively, over a wide scattering
and absorption range.

An increase in the refractive index increases both the amount
of specularly reflected light at the medium surface and the
number of diffuse photons reflected at the internal medium
boundary. In our analysis, we focus only on the latter effect,
since specular reflections have a strong dependence on surface
properties of the sample and are oftentimes avoided by oblique
projection”1222 and the use of crossed-linear polarizers. >
The effect of the internal reflection increases the average lateral
propagation distance of diffuse light inside the media. This
increases the probability for absorption and reduces SFD reflec-
tance especially for high spatial frequencies. Hence, an over-
estimation in the refractive index is mostly compensated by
an apparent decrease in absorption or an apparent increase in
scattering.

Qualitatively, the two contour plots in Figs. 6 and 7 are also
correct for different errors An,. Our computations show that the
relative error in p, and y/ is almost linearly proportional to An,
in the range 1.35 < n, < 1.50. It is therefore possible to simply

0.3
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p 5.25
£
£ 003}
©
5
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0.003 S - ' :
0.5 1 2 5
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Fig. 7 Relative error in the reduced scattering Au{ /ug in percent over
a wide absorption and scattering range for an error in refractive index
of An, = 0.05.
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scale the contours in Figs. 6 and 7 by An,/0.05 to obtain the
error for any uncertainty An, in the refractive index.

3 Analysis of Errors Related to the
Experimental Parameters

In the following sections, we focus on sources of error which are
more related to the collection of experimental data in the SFD. In
particular, we study four experimental sources of error, namely
projection boundary effects, binning of SFD images, inaccura-
cies in the sample-camera distance, and errors due to improper
calibration of spatial frequencies.

3.1 Projection Boundary Errors

Experimentally, the projection of spatial frequency patterns is
typically restricted to a limited spatial projection area. This gives
rise to boundary effects close to the border of the projection
field. Underneath projection boundaries, diffusing light scatters
away from the projection area without being compensated
by diffuse light from outside the projection field. Therefore,
reflectance at f = 0 mm™' [which is typically denoted as direct
current (DC) component] decreases and approaches zero at
further distance from the projection area.

A similar effect is observed for experiments on phantoms,
where the finite phantom size causes a drop in reflectance near
the phantom boundaries. This decline is even larger than that of
the projection boundaries, since diffusing light which leaves
the phantom to the side cannot scatter back into the media.

The SFD reflectance for frequencies above zero is usually
termed AC component and is calculated using the following
formula:

V2
AC= T\/(RO —Ryz/3)* + (Rons3 = Ruzy3)* + (Razys = Ro)*
ey

where Ry, R»,/3, and Ry, /3 are the three phase projections with
zero, 120 and 240 deg phase shift.>*%12 However, due to overall
decline in reflectance across the projection boundaries for all
three phase projections, the AC component as computed with
Eq. (1) undergoes strong oscillations and is no longer properly
determined. At the same time, the DC component, which is the
average reflectance of the three phase projections, decreases
smoothly at the projection boundaries.

We are interested in an estimation of the required distance
from the projection boundaries for the error in SFD reflectance
to be below 1% for both spatial frequencies (DC and AC com-
ponents). Figure 8 gives this distance in millimeters by means of
a contour plot as a function of reduced scattering and absorption.
The data are based on Monte Carlo simulations for semi-infinite
media with vertical point illumination and spatially resolved
detection of photons at the medium boundary. A convolution
of this reflectance signal with a finite sinusoidal projection pat-
tern is used to compute the change in SFD reflectance at the
projection boundaries. Upon the examination of Fig. 8, it is
important to understand that an error of 1% in reflectance
may give rise to a relative error in g, or u; of several percents.
Due to strong oscillation of the AC component at the projection
boundaries, as calculated by Eq. (1), it is however difficult to
directly state the errors in u, and p, as they depend on the rel-
ative behavior of the DC and the AC components. As a rule of
thumb, the relative error in u, and u! for the stated distances
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Fig. 8 Required distance from the projection boundaries in milli-
meters in order to achieve a deviation in SFD reflectance of <1%.
Doubling of the stated values gives an error in SFD reflectance of
<0.1%.

from the projection boundaries (see Fig. 8) is mostly within
5%. Our computations show that the absorption parameter is
more sensitive to small deviations in reflectance than the
reduced scattering parameter p. Indeed, the obtained error in
u! is often below 2% for errors in reflectance below 1%.
However, in the very low absorption and high scattering regime,
the error in y, may rise to values close to 20% for the same
accuracy in reflectance. Especially in this regime, the experi-
mentalist is advised not to consider SFD data closer than twice
the values stated in Fig. 8, thus achieving an error of < 0.1% in
(both DC and AC) reflectance.

Accuracy in SFD reflectance close to the projection bounda-
ries is to a smaller extent also dependent on the spatial fre-
quency. The presented boundary errors are based on the spatial
frequencies f =0 mm~' and f=0.24 mm~'. For higher
spatial frequencies, the relative error in SFD reflectance at the
projection boundaries increases slightly, in spite of their higher
sensitivity to short-range photons.

3.2 Binning Error

Spatial resolution in diffuse optics is fundamentally limited
by the underlying scattering and absorption properties and is
clearly outperformed by the resolution of commercial CCD
cameras. Therefore, binning of captured SFD images can
achieve a reduction in pixel noise at the expense of unsubstantial
pixel resolution. At the same time, binning is of additional
benefit due to an increase in evaluation speed.

Apart from the reduction in spatial resolution, strong binning
of SFD images before the computation of the AC value using
Eq. (1) gives rise to errors in SFD reflectance. Similar to the
Nyquist sampling criterion for signal transmission, spatial res-
olution of SFDI data should be large enough to guarantee sev-
eral sampling points within one spatial oscillation. Otherwise,
oscillations in SFD data are averaged out in the binning process.
Due to its infinite spatial wavelength, the DC component
(f = 0 mm™!) is not affected by this error.

The relative error 0Rpjpging 0f SFD reflectance based on
excessive binning scales inversely with the number of sampling
points per spatial oscillation. In order to quantify the binning
related error, three phase shifted sine waves were computation-
ally binned with a particular bin size and the AC component was
subsequently computed using Eq. (1). Repetition of this calcu-
lation for different bin sizes and oscillation frequencies gives
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the error in the AC component dependent on the oscillation
frequency and bin size. Equation (2) is a power law which
was fitted to the computational results and which describes the
binning related error to a high precision. It gives an estimate of
the percentage error in AC reflectance based on the binning x
(number of pixels per bin):

flx) 2.113

5RBinning =209 < (2

N

where N is the number of pixels in one-dimension and [ is
the corresponding projection length in millimeters.

As an example, a typical SFD camera image with resolution
N/l =1024/(50 mm) along the direction of spatial oscillations
with f = 0.24 mm™! allows for binning of x = 8 pixels in order
for the error in SFD reflectance to be below 1.4%. Note that
excessive binning always underestimates the real SFD reflec-
tance values. If only one AC component is used, the binning
related error corresponds to an error in spatial frequency (see
discussion in Sec. 3.4). In this case, the obtained relative errors
in p, and p/ are both linearly proportional to the error in AC
reflectance.

It is worth pointing out that for particularly high spatial
frequencies, diffraction and aberration in the optical imaging
system may be additional limiting factors for precise determi-
nation of the SFD reflectance signal.

3.3 Height Adjustment Error

Precise sample and camera positioning are a prerequisite for
accurate measurement of SFD reflectance. Although sample
movements also affect the projection geometry and may
cause spatial frequency errors (see Sec. 3.4), we now focus
on the effect of incorrect adjustment of the distance between
sample and camera. Thereby, we assume that this error in cam-
era height is static and equally large for the measurement of all
spatial frequencies (i.e., f = 0 mm~! and f = 0.24 mm™') and
phase projections.

Variations in height alter the camera aperture angle and
thus the captured light intensity. The additional effect of
defocusing of the camera image and also the variation of
the detection acceptance angle for points with different lateral
separation from the optical axis is neglected in the following
analysis. For simplicity, we approximate the angle resolved
reflectance by Lambert’s law?® and thus the intensity of SFD
reflectance captured for a particular camera height 4 and
aperture radius r is

/ 2” / " cos(0) sin(0)d0dg = x(1 — cos(a)), 3)
0 0

with a = arcsin(r/h). If the camera height is changed by
a distance x, the relative change in reflectance ORyign; iS
equally large for all spatial frequencies. This relative change
can be approximated using a Taylor expansion and is given in
percent by the following expression:

SR 2007 cos(r/h)
Heisht = g2 T cos?(r/h)

“)

Note that Eq. (4) is unit-of-length independent. As an exam-
ple, for a camera aperture radius of » = 1.5 cm and a camera
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Fig. 9 Contour plot for the relative error in p, in percent based on
a sample distance error which causes an increase in reflectance of
1%. According to Eq. (4), this error could be due to an unwanted
decrease in sample-camera separation of x = -1 mm (assuming
h=20cmand r =1.5 cm).

height of &7 = 20 cm, a relative error in reflectance of 1% is
obtained for height inaccuracy x = —1 mm. With respect to
this sample calculation, we now present the impact on y, and
u! for a 1% increase in SFD reflectance. In Figs. 9 and 10,
the relative errors in u, and u/ are given, respectively.

Generally, an increase in the SFD signal leads to an under-
estimation of absorption and an apparent increase in scattering.
From Fig. 9, we learn that the error in y, is heavily dependent on
the absorption and scattering regime and much larger than that
of y! in Fig. 10. Errors in both y, and p are almost proportional
to the error in SFD reflectance as calculated by Eq. (4).
Therefore, Figs. 9 and 10, which correspond to an error in reflec-
tance of 1% can be used to approximate the error in u, and p
based on any height inaccuracy. In this case, the contour values
are scaled by the expected error in reflectance according to
Eq. (4).

3.4 Spatial Frequency Error

Correct determination of the dimension of projected spatial
frequencies is a prerequisite for accurate evaluation of SFD
data. If only one AC frequency component together with the
reflectance at f =0 mm~! (DC) is used to determine the
absorption and scattering, potential errors in spatial frequency
are linearly proportional to the obtained relative errors in y,

0.3~ — 06

0.1t

0031 : o7

Mg (mm™)

0.011

0.003 1
0.5

Ms (mm=7)

Fig. 10 Relative error in u¢ in percent based on an incorrect separa-
tion of camera and sample. Similar to Fig. 9, the contour lines corre-
spond to an increase in reflectance of 1% due to a reduction in
the sample-camera distance.
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and /. This is because scaling of y, and u. by the same factor
does not change the probability for photons to exit the media,
but only scales the distance of their reflectance. Consequently,
the obtained errors are independent of the absorption and
scattering regime. This behavior is expressed by the following
scaling property for SFD reflectance Rggp

Repp (f Has is) = Rspp(cf s cpy, cpts), (@)

where ¢ can be any positive real number.

Accordingly, a 5% inaccuracy in the projected spatial fre-
quency pattern gives rise to 5% error in both y, and .. This
underlines the necessity for accurate calibration of spatial
frequencies. However, errors in spatial frequency do not only
stem from improper calibration, but also from variations in
the projection geometry. Furthermore, especially for oblique
projection geometries, careful correction of frequency distortion
is necessary.

4 Conclusion

Based on our systematic analysis on various sources of error in
SFDI, we have provided the experimentalist with a realistic esti-
mate of the significance of distinct experimental and theoretical
parameters on derived scattering and absorption values. In con-
trast to our discrete analysis of single errors, realistic experi-
ments will, however, always face an unknown combination
of multiple errors. Prediction of the accuracy for any combina-
tion of errors is challenging, especially as many of the presented
sources of errors are interdependent. For example, an incorrect
height adjustment of the sample can also be the cause of spatial
frequency errors and the error associated with the diffusion
approximation is dependent on the actual scattering phase func-
tion of the sample. Generally, a potential compensation of errors
in u, or u; due to multiple sources of error should not mislead
over the actual precision in both optical parameters. Due to their
interdependence, uncertainties in u, and p/ for different sources
of error do not add up like statistically independent variables.
Instead, a more realistic error estimate is given by the sum of
their absolute values. This is especially true, as more errors
beyond the presented selection can arise.

Additional effects like camera nonlinearity, instability of
the light source, the impact of surface roughness and specular
reflections or more difficult experimental geometries, such as
oblique projection or the use of multilayered media, can
cause additional uncertainty. So far, little is known about the
surface properties of biological tissue. Therefore, this and all
related errors for diffuse optical imaging will be the focus of
future work.

It is very common to employ calibration measurements
with phantoms as an absolute reference for quantification in
SFDI. #1222 This approach properly accounts for the light pro-
jection intensity and the camera sensitivity. Unfortunately, most
of the presented errors cannot be reliably reduced by the use of
calibration measurements, unless reference phantom and final
probe are equally affected by the existing errors. Even if the
effect of various sources of errors is known, their dependence
on the absorption and scattering regime and their interdepend-
ence render correction difficult. In some cases, calibration
measurements on phantoms can even increase the overall uncer-
tainty if phantom properties do not match that of subsequent
specimens.

In conclusion, careful consideration should be made for the
presented theoretical and experimental parameters in order to
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achieve the best accuracy in the obtained experimental results.
Little importance is usually attached to parameters like the scat-
tering asymmetry or the scattering phase function, even though
they can cause significant quantitative and qualitative deviations
in both p, and p/. Our error analysis provides a means to esti-
mate this uncertainty in g, and u. based on the existence of
various sources of errors.
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