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Abstract. The diffusion approximation is useful for many optical diagnostics modalities, such as near-infrared
spectroscopy. However, the simple normal incidence, semi-infinite layer model may prove lacking in estimation
of deep-tissue optical properties such as required for monitoring cerebral hemodynamics, especially in neo-
nates. To answer this need, we present an analytical multilayered, oblique incidence diffusion model. Initially,
the model equations are derived in vector-matrix form to facilitate fast and simple computation. Then, the spa-
tiotemporal reflectance predicted by the model for a complex neonate head is compared with time-resolved
Monte Carlo (TRMC) simulations under a wide range of physiologically feasible parameters. The high accuracy
of the multilayer model is demonstrated in that the deviation from TRMC simulations is only a few percent even
under the toughest conditions. We then turn to solve the inverse problem and estimate the oxygen saturation of
deep brain tissues based on the temporal and spatial behaviors of the reflectance. Results indicate that temporal
features of the reflectance are more sensitive to deep-layer optical parameters. The accuracy of estimation
is shown to be more accurate and robust than the commonly used single-layer diffusion model. Finally, the
limitations of such approaches are discussed thoroughly. © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)
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1 Introduction
Near-infrared spectroscopy (NIRS) measures tissue optical
properties in the near-infrared wavelengths. Specifically, in
the 650- to 1300-nm range known as the “tissue optical win-
dow,” the main chromophores are the oxygenated (HbO2)
and nonoxygenated (Hb) hemoglobin.1 Thus, NIRS is suitable
for monitoring cerebral hemodynamics such as tissue oxygen
saturation, especially in premature neonatal patients. These
patients are at risk of suffering from hemodynamics instability,
which has a profound effect on adverse neurodevelopment.2,3

However, optical measurements of neonate and adult brains
present great challenges. This is due to deliberate and nondelib-
erate changes in deep-tissue cerebral hemodynamic variables,
which are masked by several superficial layers of highly turbid
tissue such as the scalp and the skull. In addition, the complex
multilayered geometry and diverse optical properties of the
different tissues prohibit simple quantification techniques and
necessitate multiple-wavelengths measurements.

Different types of methods are used for forward and inverse
modeling in order to extract anatomical information and tissue
optical parameters from the measurements performed in the
clinic. The most simple and common technique is the Beer–
Lambert law.4 In a typical time-resolved NIRS setup, the
source and detector are placed with sufficient separation so
the average photon path will sample the deep cerebral layers.

The reflectance is measured as a function of time in response to
a very short laser pulse.4 This method is subjected to some major
constraints which greatly restrict its performance and applicabil-
ity. In order to sample mainly the scarce photons which are
backscattered from deep layers, large source-detector separa-
tions and large delays must be used. Thus, only a very small
fraction (less than 10−6) of the photons that are launched into
the tissue are measured, causing significant degradation of
the signal-to-noise ratio (SNR). Moreover, the forward model
that is used provides only a crude estimation of the true absorp-
tion in deep layers. Although emphasizing the effect of deep
layers over superficial ones, such a model is unable to truly
separate the properties of different layers.

Stochastic Monte Carlo (MC) simulations for both time-
resolved or steady state are considered to be the most accurate
forward models available for macroscopic photon propagation
in turbid media. Thus, they serve as a gold standard for com-
parison and validation of other techniques to be used as forward
and inverse models in NIRS.5–11 The MCmethod may be used to
solve the inverse problems but due to its stochastic nature,
it is computationally intensive and requires time-consuming
algorithms.12 This is especially true when complex tissue geom-
etries, large source-detector separations, and/or oblique inci-
dence are present and require many millions of iterations to
reduce the variance to an expectable limit. Scaling methods,13,14

perturbation methods,15–17 and hybrid diffusion-MC18,19 meth-
ods are used in order to achieve some degree of acceleration
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of the simulations with minor losses in accuracy. Parallel com-
putation and implementation of the MC on graphics processing
units may reduce computation time significantly20,21 but are still
uncommon in practice.

On the other hand, the diffusion approximation of the radi-
ative transfer equation is considered to be quite accurate and
a useful and simple approximation in regions where scattering
dominates over absorption. This is the case in most biological
tissues for wavelengths in the tissue optical window. This
approximation tends to be more accurate when describing
the propagation of photons far enough from the boundaries
and the sources. Several analytical solutions for the diffusion
equation, in both time-dependent and steady state,7,8,22 may
be used for a single semi-infinite homogeneous medium.
These are based on Green’s function solution in response to
an isotropic point source in an infinite homogenous medium.23

A common, single homogenous layer solution for the reflec-
tance caused by a pencil beam source introduced by Patterson
et al.24 is commonly used in time-domain or frequency-domain
NIRS.25

For complex biological tissues such as the head, skin,
muscles, and different internal organs, a single semi-infinite
geometry is insufficient and a multilayer model is necessary.
This is especially true for monitoring cerebral hemodynamics
in neonates. A single-layer approximation, which is used in
the literature for this application,25,26 often causes significant
deviations from the actual values due to the strong effect of
the superficial layers such as scalp and skull.

To compensate the effect of multiple layers and to separate
the effects of the layers of interest from the superficial ones, sev-
eral approaches are taken. Numerical approaches which enable
reconstruction of complex tissue geometry are usually based on
the diffusion approximation to the radiative transport equation.
These include finite element method, finite volume method,
finite difference method, and boundary element method,27

which all require significant computation time. Moreover, these
require complex, accurate a priori anatomical information.
Such data can only be acquired by computerized tomography
or MRI scans which have obvious disadvantages that NIRS
aims to avoid. Derivation of analytical solutions for a two-
layered turbid medium using the diffusion equation has been
introduced by several researchers both in time-domain and in
steady state.28–31 Kienle et al.10 suggested an analytical solution
which enables calculation of the reflectance from a two-layered
turbid media having an infinitely thick second layer in the
steady state at frequency and time domains. These analytical
solutions have been used, and their accuracy was further
tested against MC simulations10,32,33 and experimentally.10,34,35

Martelli et al.36–38 introduced time-domain solutions for
two and three layers. Das et al.39 presented a solution incorpo-
rating a tilted interface and refractive index difference between
two layers.

For multilayered media, Tualle et al.40 investigated the
asymptotic behavior of reflectance in scattering multilayered
semi-infinite media in order to derive the optical properties
of the deepest layer. Wang and Wang41 have also extended
the solution of Kienle et al.10 for an N-layered mismatched
semi-infinite medium in the steady state and time domain and
compared it with MC simulations. Recently, Liemert and Kienle
have used a similar approach and developed a solution for an
N-layered turbid medium in both semi-infinite and finite. Their
solutions are presented in steady state,42 time domain,43 and

frequency domain43 and were compared with MC simulations.
However, to the best of our knowledge, no general multilayered
model was applied yet to the study of light propagation in neo-
nate heads or for the estimation of the cerebral hemodynamics
with NIRS.

Oblique incidence diffuse reflectance measurements have
many advantages over normal incidence measurements. An
oblique incidence setup can reduce detector saturation due to
specular-reflected photons while ensuring collection of the dif-
fusely reflected photons. These diffuse photons carry informa-
tion from structures deep within the tissue, thus increasing
their collection and the SNR. Oblique incidence is also advanta-
geous in fluorescence measurements, since it enables selection of
the depth of fluorescence origin by varying the angle of inci-
dence.26,44,45 Endoscopic probes, which are used in clinical
applications, often use oblique incidence, and different configu-
rations were designed for such purposes.46 Measuring the
reflectance in curvature geometry, such as neonate heads, may
cause some artifacts47 which could be reduced using oblique
incidence.

Wang and Jacques48 developed an oblique incidence
reflectance method which measures the reduced scattering
coefficient. This method was extended for determining both
reduced scattering and absorption coefficients,11 and the effect
of tissue structures on the estimated coefficients was further
investigated.49,50 Spatially resolved oblique incidence diffused
reflectance spectroscopy was used in vivo to discriminate
melanoma and carcinoma skin cancers from benign and pre-
malignant skin lesions.51 In these methods, only a single set
of absorption and reduced scattering coefficients is estimated
per wavelength, thus assuming a semi-infinite homogeneous
turbid media. Currently, to the best of our knowledge, a method
that combines oblique incidence with a multilayered model has
not been presented.

Here, we introduce an analytical model for calculating the
reflectance from a multilayered turbid media using normal or
oblique incidence. Such a model differs from previous works
as it is written in vector–matrix form to facilitate fast and simple
computation in MATLAB® environment. In addition, it allows
the simple integration of oblique incidence, complex beam
shapes, or arbitrary temporal modulation. Both time-resolved
and spatially resolved reflectance solutions are presented and
compared with MC simulations. We then assessed the appli-
cability of this model for monitoring cerebral hemodynamics
in neonatal intensive care using NIRS. The accuracy is evaluated
in different sets of absorption and scattering coefficients in
multilayered media for synthetic tissue models and real-life neo-
nate head models. The effects of changes in the optical coeffi-
cients in superficial and deep layers are tested and evaluated as
well as the effects of normal or oblique incidence. Finally, we
demonstrate the estimation of the deep-tissue oxygen saturation
with spatiotemporal NIRS using the multilayered model and
compare the estimated values to those estimated using the
semi-infinite homogeneous model.8

2 Methods

2.1 Theoretical Model

Presented here is a concise and rigorous mathematical develop-
ment for the multilayered diffusion model. To this end, let us
first consider the case of an incident pencil beam. Let the origin
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of a Cartesian coordinate system coincide with the beam inci-
dence described in Fig. 1.

Under the diffusion approximation in a N-layered turbid
medium, and for an incident pencil beam with azimuthal
angle γinc and polar angle θinc, the photon fluence rate obeys
a set of diffusion partial differential equations:�
∇2 −

ni
cDi

∂
∂t

−
μai
Di

�
ϕiðt; rÞ ¼ −

a 0
i

Di
δ½i − 1�δðtÞδðr − rsÞ

i ¼ 1; 2; : : : ; N; (1)

where c denotes the speed of light in vacuum, and the δ½·� and
δð·Þ denote the delta functions of Kronecker and Dirak, respec-
tively. ϕi denotes the spatiotemporal fluence rate at the i’th
layer, and ni, μai, and μ 0

si are the optical properties of the i’th
layer: the (real) refractive index, optical absorption coefficient,
and reduced scattering coefficient, respectively. Di and a 0

i are
the derived optical quantities: the optical diffusion coefficient
given by Di ¼ ½3ðμai þ μ 0

siÞ�−1 and the transport albedo defined
as a 0

i ¼ μ 0
si∕ðμai þ μ 0

siÞ. rs is the equivalent isotropic source posi-
tion vector given by Snell’s law52

rs ¼ ð3D1n0∕n1Þ
h
sinðθincÞ cosðγincÞ sinðθincÞ sinðγincÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21∕n20 − sin2ðθincÞ

p i
T
; (2)

where n0 is the refractive index of the ambient medium (usually assumed to be 1). The following boundary conditions
(B.C.) are applied for each layer

lim
x→∞

ϕi ¼ lim
y→∞

ϕi ¼ 0 Fluence vanishes at infinite radius

n2iþ1ϕijz¼zi
¼ n2iϕiþ1jz¼zi

Fresnel B:C:

Di
∂
∂zϕi

���
z¼zi

¼ Diþ1
∂
∂zϕiþ1

���
z¼zi

Current density continuity

ϕ1jz¼−zbu ¼ 0 Extrapolated B:C: at upper interface

ϕN jz¼zNþzbl ¼ 0 Extrapolated B:C: at lower interface

; (3)

where zi ¼
P

i
n¼1 dn is the cumulative depth of the i’th

layer, and zbu and zbl are the extrapolated boundary loca-
tions above and below the tissue, respectively. These
can be computed by numerical integration of the Fresnel
integrals presented by Haskell et al.22

One should note that under these B.C.s, the fluence rate is
time invariant and transversally shift invariant (x, y coordinates)
but not invariant to shifts at the longitudinal coordinate (z-coor-
dinate). Consider the transverse spatiotemporal Fourier trans-
form (TFT) defined with its inverse counterpart by

Φðω;kt;zÞ≡
Z
t∈R

Z
rt∈R2

ϕðt;rt;zÞe−jðωt−kt·rtÞdrtdt rt¼½x y�T

ϕðt;rt;zÞ≡
1

ð2πÞ3
Z
ω∈R

Z
kt∈R2

Φðω;kt;zÞejðωt−kt·rtÞdktdω

kt¼½kx ky �T; (4)

where j ¼ ffiffiffiffiffiffi
−1

p
is the unit imaginary. Such transform will trans-

form the set of diffusion equations into a set of a second-order,
nonhomogeneous, ordinary differential equations�
∂2

∂z2
− jktj2 −

μai
Di

þ j
ωni
cDi

�
Φiðω; kt; zÞ

¼ −
a 0
i

Di
δ½i − 1�δðz − rszÞe−jkt·rst ; (5)

where rst is the transverse component of the isotropic source posi-
tion vector. A note should be taken that the B.C.s are almost
unaffected by this transform, as the longitudinal coordinate is
unaltered. The frequency domain equations have a known solution

ΦH
i ðω;kt;zÞ¼Aiðω;ktÞeκizþBiðω;ktÞe−κiz

ΦP
1 ðω;kt;zÞ¼−

a 0
1

D1κ1
Hðrsz−zÞsinh½κ1ðrsz−zÞ�e−jkt·rst ; (6)

where κ2i ≡ jktj2 þ ðμai∕DiÞ − jðωni∕cDiÞ is the square of
the complex wavenumber, and Hð·Þ denotes the Heaviside step
function. The superscripts H and P denote the homogeneous
and particular solutions, respectively, such that Φiðω; kt; zÞ ¼
ΦH

i ðω; kt; zÞ þ δ½i�ΦP
1 ðω; kt; zÞ. Such private solution is similar

in form to the one presented by Kinele et al.10 The transverse func-
tions Ai andBi are to be defined by the various B.C.s. Considering
the Fresnel and photon current density conditions and applying
them on the solution given in Eq. (6), one can write the following
matrix relation

Fig. 1 Description of multilayer diffusion model’s geometry and
notation.
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�
Aiþ1

Biþ1

�
¼ 1

2

2
64
�

Diκi
Diþ1κiþ1

þ n2iþ1

n2i

�
e−ðκiþ1−κiÞzi −

�
Diκi

Diþ1κiþ1
− n2iþ1

n2i

�
e−ðκiþ1þκiÞzi

−
�

Diκi
Diþ1κiþ1

− n2iþ1

n2i

�
eðκiþ1þκiÞzi

�
Diκi

Diþ1κiþ1
þ n2iþ1

n2i

�
eðκiþ1−κiÞzi

3
75�Ai

Bi

�
: (7)

Denoting the matrix described in Eq. (7) by MðiÞ, one can repeat this process to get the matrix relation (denoted by Mtot)
between the first and last sets of transverse functions

�
AN

BN

�
¼

MðN−1Þ: : :Mð3ÞMð2ÞMð1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Mtot

�
A1

B1

�
: (8)

Applying the extrapolated B.C.s for the first and last layers yields a matrix equation with the following solution:�
A1

B1

�
¼ a 0

1

2D1κ1

e−ikt ·rstðeκ1rsz − e−κ1rsze−2κ1zbÞ
ðMtot

12 þMtot
22e

−2κNzN Þe−2κ1zb − ðMtot
11 þMtot

21e
−2κNzN Þ

�
Mtot

12 þMtot
22e

−2κNzN

−Mtot
11 −Mtot

21e
−2κNzN

�
: (9)

Thus, the frequency-domain fluence rate may be calculated
for all other layers by repeated application of Eq. (6). However,
for the sole calculation of the reflectance, this is not required as
it depends only on the fluence in the top layer.

To account for an arbitrary spatiotemporal beam shape,
Iðt; rtÞ, one can compute the spatiotemporal fluence rate by

ϕðt; rt; zÞ ¼ F−1fΦðω; kt; zÞF ½Iðt; rtÞ�g; (10)

where Ff·g and F−1f·g denote the forward and inverse TFTs
defined by Eq. (4). These can be easily and efficiently computed
numerically by the FFT algorithm implemented in MATLAB
and other environments.

Finally, the physical parameter commonly measured in prac-
tice is the spatiotemporal reflectance Rðt; rtÞ, which is related to
the upper layer fluence for a refractive index of 1.4 by8

Rðt; rtÞ ¼
�
0.118ϕ1ðt; rt; zÞ þ 0.306D1

∂
∂z

ϕ1ðt; rt; zÞ
	����

z¼0

:

(11)

For other refractive indices, the reflectance may be calculated
according to the general expression22

Rðt; rtÞ ¼ Reff

�
ϕ1ðt; rt; zÞ

4
þ D1

2

∂
∂z

ϕ1ðt; rt; zÞ
	����

z¼0

; (12)

where Reff is the effective reflection coefficient, which may be
calculated according to Haskell et al.22

2.2 Model Validation

The accuracy of the multilayered diffusion model was tested
against ad hoc spatially resolved MC simulation [Monte
Carlo multi-layered (MCML)]9 and oblique incidence time-
resolved MC simulation written in MATLAB environment
and based on the same principles as the MCML. This software
was developed by L. V. Wang, S. L. Jacques for steady-state
modeling of light transport in multi-layered tissue. These are
considered to be the gold standard solutions for the radiative
transfer equation. To simulate a scenario that resembles the
actual anatomy of a neonate’s head, both the diffusion model
and the MC simulations were tested on a head model composed

of four layers—scalp, skull, gray matter, and white matter. The
accuracy of the predicted reflectance was tested for a wide range
of optical properties, such as the absorption and scattering of the
gray and white matters, and for a different refractive index of the
scalp and skull. The variation of these properties simulates varia-
tion in human anatomy and different oxygenation levels of the
brain. The anatomical and optical properties which were chosen
for each layer are based on previous reports for NIR light47,53,54

and are summarized in Table 1. For each test, only one of the
optical properties was varied, keeping the rest with their default
values indicated in Table 1 by bold characters.

In order to evaluate the error between the diffusion model and
the MC simulations, the root mean square of the normalized
deviation (RMSND) was calculated using the following relation:

RMSNDðrtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

RMCðt; rtÞ − RModelðt; rtÞ
RMCðt; rtÞ þ RModelðt; rtÞ

�
2
�s
; (13)

where RMC and RModel are the MC and diffusion [calculated
using Eqs. (11) or (12)] spatiotemporal reflectances at a given
point on the tissue surface, and h·i denotes the time averaging.

Table 1 Optical parameters of the different tissues used in the model.

Tissue
type

Absorption
coefficient,
μai (cm−1)

Reduced
scattering
coefficient,
μ 0
si (cm

−1)
Refractive

index, ni (#)

Layer
thickness,
di (cm)

Scalp 0.18 19.0 1.4 (matched)
1.55 (mismatched)

0.2

Skull 0.16 16.0 1.4 (matched)
1.55 (mismatched)

0.2

Gray
matter

0.48 (High)
0.24 (Medium)

0.12 (Low)

10.0 (High)
5.0 (Low)

1.4 0.4

White
matter

0.37 (High)
0.19 (Medium)

0.09 (Low)

10.0 1.4 2.0
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2.3 Estimation of Oxygenation Level

The most valuable clinical parameter monitored using NIRS is
the tissue oxygen saturation (StO2). It is dependent on the con-
centrations of the nonoxygenated hemoglobin and oxygenated
hemoglobin according to the following relation:

StO2ð%Þ ¼ ½HbO2�
½Hb� þ ½HbO2�

· 100; (14)

where ½·� denotes the concentration of each analyte.
The absorption coefficients of the brain tissues in the NIR are

dependent on several chromophores concentrations including
mainly: water,HbO2, Hb, and the cytochrome aa3 in its oxidized
(aa3;oxi) and reduced (aa3;reduce) forms, whose oxidation state is
affected by the StO2 value. The water absorption can be ignored
for wavelength up to 950 nm, since it is negligible compared
with other chromophores.

Assuming that only these chromophores contribute to the
brain tissue absorption, the absorption coefficient of the brain
may be calculated according to the following equation:

μλa;brain ¼ ελHb½Hb� þ ελHbO2
½HbO2� þ ελaa3;oxi ½aa3;oxi�

þ ελaa3;reduce ½aa3;reduce�; (15)

where μa;brain is the brain tissue absorption coefficient,
εchromophore is the extinction coefficient, and the superscript λ
denotes the wavelength.

The brain absorption coefficient was calculated for different
oxygen saturation levels between 4% and 99%. The total con-
centration of cytochrome aa3 was chosen to be 22 μmol, and
the total hemoglobin concentration was chosen to be 65 μmol
based on the literature.1,26,47,55 The chosen wavelength was
λ ¼ 700 nm, and the extinction coefficients of each chromo-
phore were taken for this wavelength from literature.1,56

A set of time-resolved MC simulations was used to estimate
the performance of the multilayered diffusion model versus
the semi-infinite homogeneous diffusion model of Kienle and
Patterson.8 The simulation parameters were the same as pre-
sented in Table 1, apart from the absorption coefficient of the
gray and white matters, which was calculated according to
Eq. (15) for various levels of oxygen saturation from 4% to
99%. Normalized time-resolved reflectance curves were
deduced from the simulations for a source-detector separation
of 1.9 cm. A nonlinear least square curve-fitting algorithm57,58

was used for fitting the time-resolved reflectance predicted by
the single-layer and multilayer models. For the single-layer
model, both the absorption and reduced scattering coefficients
were estimated. For the multilayer model, the optical parameters
of the superficial layers were assumed to be known. The esti-
mated parameters were the gray and white matters’ absorption
coefficients and the white matter scattering coefficient. In both
cases, the brain tissue oxygen saturation levels were calculated
based on the estimated absorption coefficients according to
Eq. (15) and were compared with true values. The upper and
lower limits used in the curve fitting represent oxygen saturation
levels between 1% and 99%. The curve fitting was tested for
different combinations of reduced scattering coefficient limits,
initial guesses, and time ranges.

3 Results

3.1 Comparison with Semi-Infinite Homogeneous
Solution

In order to validate the accuracy of the multilayer model, it was
first compared with the semi-infinite homogeneous solution of
Kienle and Patterson.8 For this comparison, four identical layers
were used for the multilayer model with the default optical
parameters of the skull detailed in Table 1. The time-dependent
reflectance was calculated using the multilayer diffusion
analytical model according to Eq. (11). For the semi-infinite
homogeneous model, the same parameters of the skull were
chosen and the time-resolved reflectance was calculated accord-
ing to the extrapolated B.C. solution presented by Kienle and
Patterson.8 The time-resolved reflectance of both models was
calculated in a radius of 1.9 cm, and the high correlation
between both solutions is presented in Fig. 2. The RMSND
between the two curves presented in Fig. 2 is 5.5%.

3.2 Model Validation against MC Simulations

The diffusion approximation is known to be accurate in regions
far from sources, since the ballistic photons are neglected and
only the diffuse photons are taken into account.

In close proximity to the source, the portion of the ballistic
photons is large compared with the diffused ones. Thus, the
accuracy of the diffusion approximation increases with an
increase of source-detector separation. This limitation is demon-
strated in Fig. 3 where the time-resolved reflectance is presented
for several distances from the incident light source, in the range
of 1 to 2 cm, which is suitable for efficient sampling of photons
propagating through brain tissue. The optical parameters for
all three cases are identical and taken as the default values in
Table 1. The time-dependent reflectance was calculated for
each case using the diffusion analytical model according to
Eq. (11). The intensity of reflectance is always displayed in
logarithmic scale on all graphs to emphasize differences in both

Fig. 2 Comparison between the time-resolved reflectance curves
calculated using the multilayer diffusion model for four identical layers
(solid line) and the semi-infinite homogeneous model (dashed line).
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large and small scales between the MC simulation and the ana-
lytic calculation.

It is clear that the correlation between the diffusion model
and the MC simulations increases with the increase in the dis-
tance from the source. In addition, even for the largest distance
case, the model fails to accurately predict the MC reflectance at
short times after the incident light pulse. This inaccuracy is
again due to the larger portion of ballistic photons at short times
compared with long times after incident pulse. The RMSND
was calculated for the decaying part of the time-resolved reflec-
tance of each case presented in Fig. 3 and was found to be
6.8%, 14.7%, and 22.7% for a distance of 1.8, 1.4, and 1 cm,
respectively.

3.3 Assessment of Model’s Accuracy for
Different Optical Properties

The absorption coefficients of the gray and white matter are
affected by the cerebral oxygenation and hemodynamics. In
order to simulate these changes, several representative absorp-
tion coefficients were used for the gray and white matter in the
head model. Three cases were tested—low, medium, and high
brain absorption, as indicated in Table 1. Figure 4 demonstrates
the effect of the brain absorption on the accuracy of the diffusion
model compared with MC simulations at a distance of 1.9 cm
from the incident light source. Only the decaying part of the
time-resolved reflectance is presented due to the inaccuracy
of the diffusion approximation in short times after the incidence,
which is caused by the contribution of the ballistic photons to
the reflectance.

As evident from Fig. 4, the decay of the fluence rate is highly
sensitive to absorption of the deep layer. For the case where low-
and medium-absorption coefficients were used for the brain
tissue, the model and the MC are highly correlated. However,
for the high brain absorption case, the diffusion model is less

accurate in predicting the reflectance although the time deriva-
tives of the reflectance are very similar. This case presents some
extremity where the absorption approaches its upper limit. The
RMSND was calculated for the cases presented in Fig. 4. The
RMSND for the decaying reflectance was 10.7%, 7.2%, and
35% for the low, medium, and high brain absorption cases,
respectively. These results suggest that the correlation between
the MC simulations and the diffusion model is rather high for
a broad range of absorption coefficients. In many cases, these
errors are comparable with measurement errors often encoun-
tered in clinical practice.

The influence of changes in the scattering coefficient was
investigated as well. Previously reported reduced scattering
coefficients for neonates in the NIR region47,53,54 are in the
range of 4 to 10 cm−1. The high scattering is often correlated
with higher absorption (as both are dependent on the density).
Thus, the combination of high or low scattering with high
absorption was studied. Figure 5 displays the MC and the mod-
el’s time-dependent reflectance for low- and high-reduced scat-
tering coefficients in the gray matter at a distance of 1.9 mm
from incident light source.

The correlation between the decaying reflectance of the
model and the MC is shown to be stronger in the high gray mat-
ter scattering case than in the low scattering case. The RMSND
for the decaying reflectance decreased from 35% in the low scat-
tering case to 12% in the high scattering case.

Finally, the multilayered diffusion model takes into account
the refractive index mismatch between layers. In order to test the
influence of such an internal mismatch on the model’s accuracy,
two cases were compared. In the first case, a refractive index of
1.4 was used for all four tissue layers and in the second case,
a refractive index of 1.55 was used for the superficial layers
(scalp and skull), while a refractive index of 1.4 was used
for the brain tissue layers (gray and white matter).

Fig. 3 Comparison between the time-resolved reflectance simulated
by MC and calculated using the diffusion model for three distances
from incident light. The MC simulations are presented using the circle,
triangle, and asterisk symbols for a distance of 1, 1.4, and 1.8 cm,
respectively. The diffusion model reflectance is presented in the dark
dashed, solid, and light dashed lines for a distance of 1, 1.4, and
1.8 cm, respectively.

Fig. 4 Comparison of the time-resolved reflectance as simulated by
MC and calculated using the diffusion model for three cases: low,
medium, and high brain absorption. The MC simulations are pre-
sented using the circle, triangle, and asterisk symbols for the cases
of low, medium, and high absorption, respectively. The diffusion
model reflectance is presented in the dark dashed, solid, and light
dashed lines for the cases of low, medium, and high absorption,
respectivley.
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Figure 6 demonstrates the high correlation between the
decaying time-resolved reflectance of the model and the MC
simulation, in both cases, at a distance of 1.8 cm from incident
light source. The RMSND for the decaying reflectance pre-
sented in Fig. 6 is 7.9% for the refractive index matched
case and 7.2% for the refractive index mismatched case.

3.4 Spatially Resolved Reflectance

The multilayered diffusion model provides a simple calcula-
tion of the spatially resolved reflectance for steady state or
modulated illumination. The steady-state, spatially resolved
reflectance from the MC simulations was compared with the
diffusion model for two cases where both the scattering and
absorption were changed: case A, medium brain absorption and
low scattering, and case B, high brain absorption and high
scattering.

The correlation between the reflectance simulated by MC
and that calculated using the diffusion model was very high.
However, there was a significant overlap between reflectance
in the two cases and distinguishing between the cases was
quite difficult. In order to enable distinguishing between the
two cases, additional analysis was performed. Since our
model provides us the spatially resolved reflectance as a func-
tion of both horizontal and vertical distances from incident
light source, the reflectance along the horizontal coordinate was
calculated for three fixed vertical positions: x1 ¼ 0.7 cm,
x2 ¼ 1.2 cm, and x3 ¼ 1.6 cm. To be able to distinguish
between the two cases, the following ratios were calculated:
Rðx2; yÞ∕Rðx1; yÞ and Rðx3; yÞ∕Rðx1; yÞ. Figure 7 demonstrates
these ratios for both the MC simulations and the analytical
model.

One can see that the MC simulation and analytical model
predictions are highly correlated. For both reflectance ratios
Rðx2; yÞ∕Rðx1; yÞ and Rðx3; yÞ∕Rðx1; yÞ, the difference between
cases A and B is easily noticeable. However, these differences
are accentuated in the time-resolved reflectance, and thus
it is preferable to work with time-resolved or modulated
(frequency-resolved) measurements. For comparison, Fig. 8
presents the time-resolved reflectance for both cases at a dis-
tance of 1.8 cm from the source. One can easily notice the
profound effect that the two cases have on the decay rates of
the fluence.

Fig. 5 Comparison between the time-resolved reflectance simulated
by MC and calculated using the diffusion model for two cases: low and
high gray matter scatterings with high brain absorption in both cases
at a distance of 1.9 cm from source. The MC simulations are repre-
sented using the triangle and circle symbols for the cases of low and
high scattering, respectively. The diffusion model reflectance is rep-
resented in the solid and dashed lines for the cases of low and high
scattering, respectively.

Fig. 6 Comparison between the time-resolved reflectance simulated
by MC and calculated using the diffusion model for two cases: refrac-
tive index matching and internal mismatching between layers
(nscalp;skull ¼ 1.4 or 1.55). The head model presented is the medium
brain absorption with low gray matter scattering at a distance of
1.8 cm from incident source. The MC simulations are presented
using the circle and triangle symbols for the cases of refractive
index mismatching and matching, respectively. The diffusion model
reflectance is presented in the dashed and solid lines for the
cases of refractive index mismatching and matching, respectively.

Fig. 7 Comparison between the ratios of the spatially resolved
reflectance in several vertical locations for two cases: Case A,
medium brain absorption and small scattering, and Case B, large
brain absorption and large scattering. The ratios presented
are Rðx2 ¼ 1.2 cm; yÞ∕Rðx1 ¼ 0.7 cm; yÞ and Rðx3 ¼ 1.6 cm; yÞ∕
Rðx1 ¼ 0.7 cm; yÞ. The ratios were calculated using both MC simu-
lations (presented using the symbols) and the diffusion model
(presented using the lines).
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3.5 Oblique Incidence

The spatially resolved reflectance is highly dependent on the
angle of incidence. In most multilayered models, normal inci-
dence is assumed. However, in the presented multilayered
diffusion model, cases of oblique incidence were taken into
account. The effect of oblique incidence on the fluence in the
case of medium brain absorption is demonstrated for an incident
angle of θinc ¼ 60 deg and γinc ¼ 0 deg. Figure 9 presents the

fluence as a function of depth (z-axis) and x-axis for different
times after light incidence, for the oblique case (upper images)
and normal incidence case (lower images). The offset of the iso-
tropic source location from the x-axis in the oblique incidence
case is demonstrated. Notice that the depth of the isotropic
source is also shifted compared with the normal incidence case
due to the oblique incidence.

In order to emphasize the difference between the reflectance
of oblique and normal incidences, the superficial layers of the
head model were neglected and a simplified two-layered case of
gray and white matter in an ambient cerebrospinal fluid was
tested. The optical parameters of the layers are detailed in
Table 2. The angle of incidence for the oblique case was chosen
to be θinc ¼ 60 deg and γinc ¼ 0 deg. The refractive index of
the ambient medium was similar to a watery medium, such
as the cerebrospinal fluid, and was chosen to be n0 ¼ 1.33.
Figure 10 compares the normal and oblique incidence spatially
resolved reflectances as a function of the y coordinate for
x ¼ 1.2 cm. The correlation between the model and the MC
is high for both cases, which are clearly distinguishable.

The spatial shift of the maximal intensity presented in
Fig. 10, calculated by both the MC simulation and the diffusion

Fig. 8 Comparison between the time-resolved reflectance simulated
byMC and calculated using the diffusionmodel for two cases: Case A,
medium brain absorption and low scattering, and Case B, high brain
absorption and high scattering. The simulations are presented using
the triangle and circle symbols for cases A and B, respectively. The
diffusion model reflectance is presented in the solid and dashed lines
for cases A and B, respectively.

Fig. 9 The fluence rate in the case of medium brain absorption. (a and b) the fluence rate as a function of
ðz; xÞ with y ¼ 0 for an oblique incidence with θinc ¼ 60 deg, and (c and d) for a normal incidence. The
left figures are for t ¼ 0, and the right figures are for t ¼ 0.06 ns after light incidence.

Table 2 Optical parameters of the layers used for normal and oblique
incidences comparison.

Tissue type

Absorption
coefficient
μai (cm−1)

Reduced
scattering
coefficient
μ 0
si (cm

−1)
Refractive

index, ni (#)
Thickness,
di (cm)

Gray matter 0.12 4.0 1.4 0.4

White matter 0.09 10.0 1.4 2.0
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model, is about 2 mm. Wang and Jacques48 presented a formula
for the spatial shift of the maximal intensity in case of oblique
incidence. Adapting their formula to account for ambient media
with nonunity refractive index yields

Δx ¼ 3D1 sinðθincÞn0∕n1: (16)

Calculation of the predicted shift using the above equation
yields 1.95 mm, which is just shy of the accurate value.

3.6 Estimation of the Oxygenation Saturation Level

Finally, the use of a semi-infinite homogeneous diffusion model
was tested against the multilayer model in order to compare their
accuracy in estimating the oxygenation saturation level in neo-
nates. In clinical systems and applications, many parameters
such as energy loss in the optical path and coupling efficiency
may affect the measurement, therefore only uncalibrated curves
are measureable. Thus, in order to make the comparison more
realistic, the MC simulations, which provide reflectance in abso-
lute units, were normalized at their maximal value. The curve
fitting was then performed on the normalized MC curves and
diffusion curves in order to avoid over-estimation of the algo-
rithm performance compared with a true optical setup.

Using a nonlinear least square curve fitting, normalized MC
time-resolved reflectance curves were fitted to normalized four-
layer diffusion reflectance curves, assuming known optical
properties of the superficial layers ðμa; μs; g; nÞ and the length
of each layer. The curve fitting was tested in different combina-
tions of reduced scattering coefficient limits, initial guesses, and
time ranges. Variation in the initial guesses rarely changed the
results of the curve fit in both models. However, the reduced
scattering coefficient limits and mainly the variations of the
time range of the curve did affect the fit results. For the case
of the homogeneous model, the chosen time ranges adversely
affected the accuracy of the estimated parameters, causing

significant errors. On the other hand, the four-layer model
was robust to changes in the data range, and the accuracy
remained high.

The estimated oxygen saturation levels using the four-layer
model and the homogeneous diffusion model were compared
with the true oxygenation levels used in the MC simulations.
Figure 11 presents the mean estimated saturation levels with
90% confidence intervals for the homogeneous model and
the four-layer model [shown in Figs. 11(a) and 11(b), respec-
tively]. The average error of all oxygen saturation levels esti-
mated by the four-layered model was 3.8% with a maximum
error of 12.4%. For the semi-infinite homogeneous model,
the average error of all estimated saturation levels was 14.2%
with a maximal error of 35%.

4 Discussion
This work describes the development and application of a multi-
layer model for light propagation in tissue based on the diffusion
approximation. It was used for prediction of the spatiotemporal
reflectance in response to normal or oblique excitation. The val-
idity of this model was tested against MC simulations under
various conditions. Finally, the proposed model was applied
for NIRS, which monitors cerebral hemodynamics in neonates.
The more realistic multilayer model was proven to be more
accurate and robust to the choice of numerical scheme. This is
in contrast to the simplistic semi-infinite homogeneous model
used today.

The effects of changes in the various optical parameters of
deep brain tissue on superficial reflectance were thoroughly
studied and compared with gold-standard MC simulations. The
model was found to be quite accurate as long as the assumptions
of the diffusion approximation were respected. Typical RMSND
values indicate less than 12% error in prediction of the spatio-
temporal reflectance decay. This is true even for complex
multilayered tissue with varying optical parameters and external
and internal index mismatches. Even under the most difficult
physiologically feasible scenario, in which the absorption is
highest compared with the scattering, the typical error is
35%. Thus, this model is suitable to serve as a flexible, computa-
tionally light, forward solution for the estimation of optical
parameters. It has advantages over the computationally heavy
stochastic models such as time-resolved MC. Thus, this method
can be easily implemented for the estimation of hemodynamic
variables of clinical importance using spatiotemporal NIRS for
neonates.

Fig. 10 Comparison between the spatially resolved reflectance simu-
lated by MC and calculated using the diffusion model for two cases:
normal and oblique incidences. The reflectance was calculated for a
two-layer model, detailed in Table 2, at a location of x ¼ 1.2 cm. The
MC simulations are presented using the triangle and circle symbols
for the normal and oblique incidence cases, respectively. The diffu-
sion model reflectance is presented in the solid and dashed lines
for the normal and oblique cases, respectively.

Fig. 11 Estimated saturation, using (a) the homogeneous model and
(b) the four-layer model, versus the true saturation. The solid line
represents the 1∶1 ratio between the estimated and true saturation
values. The stars represent the mean estimated values with 90%
confidence intervals.
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The estimation of the optical properties from the spatial dis-
tribution was also investigated. The effect of major changes in
deep brain tissue on the spatial distribution of the diffusely
reflected photons is almost nonexistent. Under such conditions,
estimation of deep-tissue optical parameters is impossible unless
some processing is performed to stress the effect of deeper
layers. We demonstrated such a process by normalizing the spa-
tial distribution along one dimension with respect to a parallel
distribution closer to the equivalent isotropic source, as shown in
Fig. 7. This process has successfully emphasized the spatial
changes due to different optical properties of the deep layers.
However, it seems less accurate than time-resolved measure-
ments, as demonstrated in Fig. 8.

Reduction in the number of unknown optical parameters is
possible by the use of oblique incidence, as demonstrated in
Fig. 10. The work of Wang and Jacques48 showed that for a sin-
gle-infinite layer, if the refractive index of the superficial layer is
known, then the optical diffusion coefficient can be simply
deduced from the shift in the location of maximal reflectance.
The model presented here, to the best of our knowledge, is the
first to take into account oblique incidence in a multilayered
diffusion model. Although a rigorous multilayer model is pre-
sented here, it is evident from Fig. 10 that this relation still
holds provided that the depth of the superficial layer is suffi-
ciently large compared with l 0s. In the example shown in
Fig. 10, the depth of the superficial layer is 1.6 times l 0s and
it is clearly evident that the estimation presented in Eq. (16)
approximates well the results of both the MC and diffusion
model. Another advantage of oblique incidence is evident
when the detectors used for measuring the reflectance are not
in contact with the tissue (such as in the case of cameras).
The use of oblique incidence allows deflecting the intense
specular Fresnel reflection away from the detector and avoiding
saturation.

Finally, an inverse algorithm was applied in order to extract
the brain oxygen saturation level using both the multilayered
model and the commonly used semi-infinite homogeneous
model. The estimated values using the homogeneous model
were highly sensitive to the chosen curve-fitting conditions
such as the reflectance time range on which the fit was per-
formed. This caused high errors in the estimated oxygen satu-
ration level, in some cases reaching 35%. However, the inverse
algorithm applied on the multilayer model was robust to
changes in the curve-fitting conditions and in all cases, the esti-
mated saturation level was accurate with less than 12% error.

Although useful, the diffusion approach suffers from some
apparent drawbacks which reflect from the results shown earlier.
One of the major drawbacks of such a model is its inherent inac-
curacy near the incident beam or the equivalent isotropic source.
It is commonly accepted that at distances of 10 mean free paths
(MFP ≡ 1∕μ 0

s) from the isotropic source, the diffusion approxi-
mation becomes accurate. Since the superficial layers of the
body such as skin, or the combined skin and scalp tissues for
the head model presented here, are highly scattering, this restric-
tion is not severe in most cases. For example, Fig. 3 demon-
strates that at distances above 20 MFP (∼1 cm), the RMSND
is less than 20% and at distances above 30 MFP (∼1.6 cm),
the RMSND decreases below 10%. For neonates with thin
scalp and skull tissues of 4 mm and more in thickness, a
source-detector separation of 0.8 to 1.6 cm is required for cover-
ing the gray matter, and even larger separations are required in
order to efficiently sample the white matter. These are large

distances since the separation must be at least twice the
depth of the tissue to be probed, thus the loss of accuracy in
lower distances does not pose serious difficulties.

Another assumption which needs to be respected is that scat-
tering should dominate absorption. The reduced albedo defined
as a 0 ¼ μ 0

s∕ðμa þ μ 0
sÞ should not fall below a certain value in

order for the model results to be sufficiently accurate. This is
well evident in Figs. 4 and 5. For high brain absorption, the
reduced albedo is ∼0.9, which leads to some small discrepancies
between the MC simulations and the diffusion approximation.
For low and medium absorptions, the reduced albedos are ∼0.95
and ∼0.97, respectively. In these cases, the matching between
the MC simulation and analytical model is almost perfect. It
is expected that for reduced albedos of 0.8 and below, the dif-
fusion model will not be accurate enough. However, determina-
tion of the exact deterioration of performance as a function of
the deterioration in the albedo is beyond the scope of this article
and requires further investigation.

Additionally, the head model, which was used for this analy-
sis, consists of the scalp, skull, gray matter, and white matter. A
more realistic model should take into account also the cerebro-
spinal fluid layer, which is between the skull and the gray matter.
The cerebrospinal fluid is known to be a clear medium with low
scattering compared with absorption, and therefore the accuracy
of the diffusion model in the presence of this layer may be
decreased. However, since the thickness of this layer is very
small compared with the gray and white matter, it may be com-
bined with these layers47 without significant loss of accuracy of
the diffusion approximation.

To conclude, this work outlines the derivation and validation
of a multilayer diffusion model for NIR monitoring of cerebral
hemodynamics in neonates. It was demonstrated that even for
complex media such as neonate heads, our approximated
model is highly accurate and its predictions are very similar
to those of the gold standard MC simulations. This model is
robust and accurately coincides with any type of MC simula-
tions—whether spatially resolved or temporally resolved, nor-
mal or oblique incidence, single or multiple layers. Since this
model predicts the fluence accurately and much more rapidly
compared with MC simulations, it may be used to solve inverse
problems where the optical coefficients are to be estimated by
iterating the forward solution proposed by this model. Finally, it
was demonstrated on pure theoretical grounds that deep-tissue
optical properties and consequently hemodynamics status can
be estimated easily and accurately from the spatiotemporal
reflectance curve using a quick and simple curve-fitting algo-
rithm. This is even in the presence of unknown optical param-
eters of the superficial layers.
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