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Abstract. Optical coherence tomography angiography (Angio-OCT), mainly based on the temporal dynamics of
OCT scattering signals, has found a range of potential applications in clinical and scientific research. Based on
the model of random phasor sums, temporal statistics of the complex-valued OCT signals are mathematically
described. Statistical distributions of the amplitude differential and complex differential Angio-OCT signals are
derived. The theories are validated through the flow phantom and live animal experiments. Using the model
developed, the origin of the motion contrast in Angio-OCT is mathematically explained, and the implications
in the improvement of motion contrast are further discussed, including threshold determination and its residual
classification error, averaging method, and scanning protocol. The proposed mathematical model of Angio-OCT
signals can aid in the optimal design of the system and associated algorithms. © The Authors. Published by SPIE under a

Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original

publication, including its DOI. [DOI: 10.1117/1.JBO.20.11.116004]

Keywords: medical and biological imaging; optical coherence tomography; statistical optics.

Paper 150422R received Jun. 22, 2015; accepted for publication Oct. 2, 2015; published online Nov. 2, 2015.

1 Introduction
Optical coherence tomography angiography (Angio-OCT) is
capable of contrasting the dynamic blood flow against the static
tissue bed with high spatial resolution and high motion sensi-
tivity (down to capillary level) in a depth-resolved manner. Up
until now, several Angio-OCT algorithms have been developed
for generating the motion contrast.1–17 Generally, each spatial
position should be sampled/imaged several times with a certain
time interval by using repeated10,13,16 or dense14,18 scanning pro-
tocols in the OCT system. Then the temporal changes in ampli-
tude (or intensity),2,4,10,11 phase,5,9,19 or complex-value7,13,17,20 of
OCT signals over such a time interval are analyzed with differ-
ent processing algorithms, such as speckle variance,2–4 Doppler
variance,7,8,14 phase variance,5,6 differential calculation,18 and
correlation mapping.11,21 By circumventing the exogenous con-
trast injection, such motion-contrast Angio-OCT provides great
advantages over conventional flourescence-based angiography.

Knowledge of the statistical properties of Angio-OCT sig-
nals would be helpful for further understanding the origin of
the motion-contrast and guiding the optimization of the system
and associated algorithms. It is well known that the motion-con-
trast Angio-OCT is mainly based on the temporal dynamics of
OCT scattering signals, and the algorithms of differential calcu-
lation are widely used for dynamics analysis, including the
amplitude differential (AD) and complex differential (CD) algo-
rithms. The temporal statistics of the OCT amplitude signals
have been well documented in the literature.22,23 In a similar
way, the temporal statistics of the complex-valued OCT signals
can be mathematically described based on the knowledge of

statistical optics.24 In this study, the statistical properties of
AD- and CD-Angio-OCT signals are derived in theory, and
the implications of the developed statistical model are briefly
illustrated.

This work is organized as follows. (1) The temporal statistics
of the complex-valued OCT signals were first described and the
mathematical statistics of AD- and CD-Angio-OCTwere further
deduced in Sec. 3. (2) The statistical properties derived in theory
were validated through the flow phantom and live animal experi-
ments in Sec. 4. (3) The potential implications of the statistical
properties were discussed in Sec. 5.

2 Materials and Methods

2.1 Flow Phantom and Animal Preparation

The flow phantom was made of an agarose gel mixed with ∼5%
milk to mimic the static scattering tissue background. A capil-
lary tube with an inner diameter of 0.5 mmwas embedded in this
tissue-like phantom. A 3% milk solution was pumped into the
tube at a constant rate with a syringe pump (KDS 100 series,
Stoelting Co., Wood Dale, Illinois) to simulate the flowing
blood.

C57BL/6 mice of 8 to 10 weeks old were used in animal
experiments. A mouse was anesthetized by intraperitoneal injec-
tion of 10% chloral hydrate (4 ml∕kg). Its head was fixed in a
stereotaxic frame (Stoelting), and the scalp was retracted. The
skull was thinned by using a saline-cooled dental drill to gen-
erate a window of 3 mm × 3 mm area and to facilitate the opti-
cal penetration within the cortex at an 850 nm wavelength. All
animals were provided by the Experimental Animal Center and
treated with the guidelines of the Institutional Animal Care and
Use Committee of Zhejiang University.*Address all correspondence to: Peng Li, E-mail: peng_li@zju.edu.cn
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2.2 System Setup and Scanning Protocol

The imaging system in this study was built based on a typical
configuration of spectral domain OCT (SDOCT). Briefly, the
light source is a broadband superluminescent diode with a cen-
tral wavelength of 850 nm and a full width at half maximum
bandwidth of 100 nm, theoretically offering a high axial reso-
lution of ∼3.2 μm in air. The measured lateral resolution is
∼15 μm. A high-speed spectrometer equipped with a fast line
scan CMOS camera was used as the detection unit in our sys-
tem, providing a 120-kHz line scan rate.

In this study, MB-mode scanning protocol was used for
dynamic analysis. Each B-scan was formed by 512 A-lines, deter-
mining a rate of 190 fps. Therefore, 1000 repeated B-scans were
sequentially acquired in the same cross-section within ∼5.3 s,
generating a three-dimensional (3-D) OCT data cube ðz; x; nÞ,
where n is the B-frame index, equivalent to the time dimension.
z and x represent the depth and transverse position, respectively,
as shown in Fig. 1(a).

2.3 Processing Algorithm

The depth-resolved complex reflectivity of a scattering sample is
reconstructed by performing Fourier transform of the spectral
interference fringe signals in SDOCT. The complex-valued
OCT signals of the n’th repeated B-frame is denoted as
Ãðz; x; nÞ. A map of the amplitude signals Aðz; x; nÞ is used
to generate the structural image. The differences of the ampli-
tude Aðz; x; nÞ18 and complex-valued Ãðz; x; nÞ17 OCT signals
between adjacent B-frames are computed for AD- and
CD-Angio-OCT, respectively, as follows:
EQ-TARGET;temp:intralink-;e001;63;418

AngioOCTAD ¼ aADðz; x; nÞ
¼ Aðz; x; nþ 1Þ − Aðz; x; nÞ; (1)

EQ-TARGET;temp:intralink-;e002;63;369

AngioOCTCD ¼ aCDðz; x; nÞ
¼ jÃðz; x; nþ 1Þ − Ãðz; x; nÞj; (2)

where aAD and aCD represent the amplitude of AD-Angio-OCT
and CD-Angio-OCT signals, respectively. Typically, the abso-
lute value of aAD is used in the final angiograms in AD-
Angio-OCT. The adjacent B-frames are acquired at the same
cross section with a certain time interval (t). Then thresholds
are used to identify the dynamic areas. Due to the bulk motion,
prior to the subtraction operation in Eq. (2), the global phase
fluctuations are determined and compensated by a histogram-
based phase selecting process.9,16,25–27

In this study, the measured data were statistically analyzed
with the histogram, and then compared with the statistical
model proposed in theory. R-square (R2) statistic was measured
to evaluate how well the experimental outcome fit the theoretical
prediction.28

3 Theory
The flow chart of the mathematical analysis is depicted in Fig. 1.
Because the complex-valued OCT signal is used in the CD-
Angio-OCT, the temporal distribution of the complex-valued
OCT signals was briefly described [Fig. 1(b)]. Then the math-
ematical statistics of Angio-OCT signals were deduced in theory
[Fig. 1(c)]. The following derivations are mainly based on the
knowledge of random phasor sums and transformations of
random variables which have been well elaborated in Ref. 24.
We focus on the physical plausibility and the associated assump-
tions used for solving OCT problems.

3.1 Temporal Statistics in Optical Coherence
Tomography

For brevity, at a given position, the complex-valued OCT signals
Ãðz; xÞ are denoted by a phasor ad∕s expðjθd∕sÞ

EQ-TARGET;temp:intralink-;e003;326;402Ãðz; xÞ ¼ ad∕s expðjθd∕sÞ; (3)

where the subscripts d and s represent the dynamic and static
signals, respectively. As a result of the coherence gating used
in OCT, the phasor ad∕s expðjθd∕sÞ is a complex addition of

Fig. 1 Flow chart of the statistical analysis in optical coherence tomography angiography (Angio-OCT).
Amplitude differential (AD) method is used as an example for illustration. (a) Three-dimensional (3-D)
OCT data cube ðz; x; nÞ. (b) Temporal distribution of the complex-valued OCT signals. (c) Statistical
distribution of the AD-Angio-OCT signals.
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many small phasors, arising from a collection of small scatters
that are distributed within the OCT voxel of interest.29

In the dynamic regions, the small scatters are mainly contrib-
uted by the moving red blood cells (RBCs). The corresponding
light scattering signals are time variant. Thus, the resultant pha-
sor ad expðjθdÞ can be regarded as a complex sum of a large
number of small, random phasors, usually referred to as random
phasor sum.

EQ-TARGET;temp:intralink-;e004;63;664ad expðjθdÞ ¼
XM
l¼1

βl expðjφlÞ ¼ rd þ j · id; (4)

where β, φ, andM are the amplitude, phase, and total number of
the small independent phasor in the dynamic regions, respec-
tively. rd and id are the real and imaginary parts of the resultant
phasor, respectively. The properties of random phasor sum have
been detailed in Ref. 24. Briefly, in the limit of a very large M,
the resultant phasor ad expðjθdÞ is a circular complex Gaussian
random variable.24 And the joint probability density function
(PDF) of rd and id is

EQ-TARGET;temp:intralink-;e005;63;527fRdIdðrd; idÞ ¼
1

2πσ2d
exp

�
−
r2d þ i2d
2σ2d

�
; (5)

where σ2d represents the variance of the real and imaginary parts.
Using the transformation rd ¼ ad cos θd, id ¼ ad sin θd, the
temporal PDF of amplitude ad is derived.24

EQ-TARGET;temp:intralink-;e006;63;448fAd
ðadÞ ¼

(
ad
σ2d

exp
�
− a2d

2σ2d

�
ad ≥ 0

0 otherwise:
(6)

Therefore, in the dynamic regions, the amplitude of the OCT
signals obeys a Rayleigh distribution with mean

ffiffiffiffiffiffiffiffi
π∕2

p
σd

and variance ð2 − π∕2Þσ2d, which is in good agreement with
the literature.30

In the static regions, the light scattering signals are time
invariant, and can be regarded as a strong, constant phasor.
In this case, the system noise becomes the primary random con-
tribution, and the phasor anoise expðjθnoiseÞ of the noise can be
regarded as a weak random phasor sum

EQ-TARGET;temp:intralink-;e007;63;295anoise expðjθnoiseÞ ¼
XN
l¼1

αl expðjϕlÞ ¼ rnoiseþ j · inoise; (7)

where α, φ, and N are the amplitude, phase, and total number of
the small independent phasor in the static regions, respectively.
rnoise and inoise are the real and imaginary parts of the random
phasor sum, respectively. The weak random phasor sum is a cir-
cular complex Gaussian random variable with zero mean and
standard deviation σs. In most situations of interest, the OCT
signal C is much stronger than the system noise. Thus, the
resultant phasor as expðjθsÞ equals a strong constant phasor
C plus a weak random phasor sum, as follows:
EQ-TARGET;temp:intralink-;e008;63;146

as expðjθsÞ ¼ Cþ anoise expðjθnoiseÞ
¼ ðCþ rnoiseÞ þ j · inoise ¼ rs þ j · is; (8)

where rs and is are the real and imaginary parts of the resultant
phasor, respectively. The joint PDF of rs and is follows a two-
dimensional Gaussian distribution24

EQ-TARGET;temp:intralink-;e009;326;752fRsIsðrs; isÞ ¼
1

2πσ2s
exp

"
−
ðrs − CÞ2 þ i2s

2σ2s

#
; (9)

with C ≫ σs, the approximation is made that

EQ-TARGET;temp:intralink-;e010;326;700as ≈ Cþ rnoise: (10)

Variations in the amplitude as are primarily caused by the real
part rnoise of the weak random phasor sum, thus we have

EQ-TARGET;temp:intralink-;e011;326;647fAs
ðasÞ ≅

(
1ffiffiffiffi
2π

p
σs

exp
h
− ðas−CÞ2

2σ2s

i
as ≥ 0

0 otherwise:
(11)

In the static regions, the amplitude of the OCT signals obeys
a Gaussian distribution with mean C and variance σ2s , which is
also in agreement with the literature.30

3.2 Angio-Optical Coherence Tomography Statistics

3.2.1 Amplitude differential-angio-optical coherence
tomography

In AD-Angio-OCT, substituting Eq. (3) into Eq. (1) yields

EQ-TARGET;temp:intralink-;e012;326;492AngioOCTAD ¼ aADd∕sðnÞ ¼ ad∕sðnþ 1Þ − ad∕sðnÞ. (12)

In the dynamic regions, we have

EQ-TARGET;temp:intralink-;e013;326;449aADdðnÞ ¼ adðnþ 1Þ − adðnÞ: (13)

Due to the moving of RBC, the variables adðnþ 1Þ and adðnÞ
which represent the amplitude of the scattering light can be
regarded to be independent and random, and they follow the
same but independent Rayleigh distribution, as described by
Eq. (6). The statistics of the random variable aADd can be
derived as follows:24

EQ-TARGET;temp:intralink-;e014;326;357

fAADd
ðaADdÞ¼−

Z þ∞

−∞
fAd

ðw−aADdÞfAd
ðwÞdw

¼
ffiffiffi
π

p
4σd

�
1−

a2ADd
2σ2d

��
1− erf

�
aADd
2σd

��

× exp

�
−
a2ADd
4σ2d

�
þaADd

4σ2d
exp

�
−
a2ADd
2σ2d

�
; (14)

where the w is an intermediate variable. The erf is the Gauss
error function. Unfortunately, we do not have a simplified
analytic expression of Eq. (14). According to numerical
simulation in MATLAB® as shown in Fig. 2, Eq. (14) is
extremely close to a Gaussian distribution with zero mean and
variance σ2d:

EQ-TARGET;temp:intralink-;e015;326;188fAADd
ðaADdÞ ≈

1ffiffiffiffiffi
2π

p
σd

exp

�
−
a2ADd
2σ2d

�
: (15)

And the absolute value jaADdj follows a truncated Gaussian
distribution with mean σd∕

ffiffiffiffiffi
2π

p
and variance ð1 − 2∕πÞσ2d:

EQ-TARGET;temp:intralink-;e016;326;120fjAADdjðjaADdjÞ ≈
(

2ffiffiffiffi
2π

p
σd

exp
�
− jaADdj2

2σ2d

�
aADd ≥ 0

0 aADd < 0:
(16)
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In the static regions, the OCT scattering signal C is time invari-
ant, and remains constant in all the B-frames for a given spatial
point. Substituting Eq. (10) into Eq. (12), we have

EQ-TARGET;temp:intralink-;e017;63;556aADsðnÞ¼asðnþ1Þ−asðnÞ≈rnoiseðnþ1Þ−rnoiseðnÞ: (17)

The rnoiseðnþ 1Þ and rnoiseðnÞ are random variables, which obey
the same but independent Gaussian distribution [Eq. (9)]:

EQ-TARGET;temp:intralink-;e018;63;503fRnoise
ðrnoiseÞ ¼

1ffiffiffiffiffi
2π

p
σs

exp

�
−
r2noise
2σ2s

�
: (18)

The statistics of the random variable aADs can be deduced by
a transformation of random variables:
EQ-TARGET;temp:intralink-;e019;63;435

fAADs
ðaADsÞ ¼ −

Z þ∞

−∞
fRnoise

ðv − aADsÞfRnoise
ðvÞdv

¼ 1ffiffiffiffiffi
2π

p � ffiffiffi
2

p
σs
� exp

2
4− a2ADs

2
	 ffiffiffi

2
p

σs


2

3
5; (19)

where v is an intermediate variable. It is a Gaussian distribution
with zero mean and variance 2σ2s . Similar to Eq. (16), the abso-
lute value jaADsj obeys a truncated Gaussian distribution with
mean 2σs∕

ffiffiffi
π

p
and variance ð2 − 4∕πÞσ2s :

EQ-TARGET;temp:intralink-;e020;63;306fjAADsjðjaADsjÞ ¼
8<
:

2ffiffiffiffi
2π

p 	 ffiffi
2

p
σs


 exp

�
− jaADs j2

2
	 ffiffi

2
p

σs



2

�
aADs ≥ 0

0 aADs < 0:

(20)

3.2.2 Complex differential-angio-optical coherence
tomography

In the CD-Angio-OCT, Eq. (2) can be rewritten as

EQ-TARGET;temp:intralink-;e021;63;191AngioOCTCD ¼ aCDd∕sðnÞ
¼ jad∕sðnþ 1Þ exp½jθd∕sðnþ 1Þ�
− ad∕sðnÞ exp½jθd∕sðnÞ�j

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½rd∕sðnþ 1Þ − rd∕sðnÞ�2 þ ½id∕sðnþ 1Þ − id∕sðnÞ�2

q
:

(21)

Here, we define four intermediate random variables ξd∕s and
ηd∕s:

EQ-TARGET;temp:intralink-;e022;326;752

ξd∕s ¼ rd∕sðnþ 1Þ − rd∕sðnÞ

¼
(
rdðnþ 1Þ − rdðnÞ dynamic region

rnoiseðnþ 1Þ − rnoiseðnÞ static region;
(22)

and
EQ-TARGET;temp:intralink-;e023;326;682

ηd∕s ¼ id∕sðnþ 1Þ − id∕sðnÞ

¼
(
idðnþ 1Þ − idðnÞ dynamic region

inoiseðnþ 1Þ − inoiseðnÞ static region:
(23)

Referring to Eq. (5), rdðnþ 1Þ, rdðnÞ, idðnþ 1Þ, and idðnÞ fol-
low the same but independent Gaussian distribution. According
to Eqs. (17)–(19), the subtraction of two independent Gaussian
distributions remains Gaussian with a modified variance. Thus,
the random variables ξd and ηd have the same but independent
Gaussian distribution with zero mean and variance 2σ2d.
Referring to the derivation from Eqs. (5) to (6), in the dynamic
regions, the amplitude aCDd obeys a Rayleigh distribution with
mean

ffiffiffi
π

p
σd and variance ð4 − πÞσ2d, as follows:

EQ-TARGET;temp:intralink-;e024;326;520fACDd
ðaCDdÞ ¼

(
aCDd
2σ2d

exp
�
− a2

CDd

4σ2d

�
aCDd ≥ 0

0 aCDd < 0
: (24)

Similarly, in the static regions, the statistics of the variable aCDs
obey a Rayleigh distribution with mean

ffiffiffi
π

p
σs and variance

ð4 − πÞσ2s , as follows:

EQ-TARGET;temp:intralink-;e025;326;436fACDs
ðaCDsÞ ¼

�
aCDs
2σ2s

exp
�
− a2

CDs

4σ2s

�
aCDs ≥ 0

0 aCDs < 0
: (25)

In this section, the mathematical statistics of the AD-Angio-
OCT and CD-Angio-OCT were further deduced. According
to Eqs. (16), (20), (24), and (25), the Angio-OCT statistics
depend on the variances of the OCT statistics, i.e., σ2d and
σ2s . As a summary, the OCT and Angio-OCT statistics of
the dynamic and static signals were tabulated, as shown in
Table 1.

4 Experimental Validation

4.1 Flow Phantom Imaging

Figure 3(a) is a representative OCT structural cross section of
the flow phantom. The transparent tube is clearly visualized.
The regions inside and outside the tube correspond to the
dynamic fluid and the static solid gel, respectively. Figures 3(b)
and 3(c) show the corresponding cross-sectional angiograms of
AD- and CD-Angio-OCT, respectively. As indicated in Fig. 3(a),
in the recorded cross section, two spatial points were randomly
selected from the regions of static solid-gel ðzs; xsÞ and dynamic
fluid ðzd; xdÞ, respectively, and used for the statistical analysis of
the OCT amplitude signals and the Angio-OCT signals.

The temporal statistics of the OCT amplitude signals at the
selected points are reported in Fig. 4. The histograms present the
statistical distributions of the measured data. The variances σ2d
and σ2s are computed from the measured data. Substituting the
variances σ2d and σ2s into Eqs. (6) and (11) yields the theoretical
predictions of OCT statistics, as plotted by the dashed curves in
Fig. 4. The high R-square statistics (R2 > 0.95) indicate the

Fig. 2 Numerical simulation of AD-Angio-OCT signals in the dynamic
region. The solid lines are the numerical simulation of Eq. (14) with
different variances. The dash lines are the corresponding Gaussian
distributions of Eq. (15). The R-square value (R2) is 0.99.
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well-matched agreement between the experimental outcome and
the theoretical model.

Figure 5 reports the statistical analysis of the Angio-OCT
signals. Figures 5(a) and 5(b) correspond to the dynamic and
static regions in AD-Angio-OCT, respectively. Figures 5(c)
and 5(d) correspond to the dynamic and static regions in
CD-Angio-OCT, respectively. The histograms and solid curves
show the experimentally measured and theoretically predicted
distributions of the Angio-OCT signals, respectively. The theo-
retical predictions are generated by substituting the variances
σ2d and σ2s into Eqs. (16), (20), (24), and (25). The R-square

statistics (R2) are higher than 0.95, indicating good agreement
between the experimental outcome and the theoretical
prediction.

4.2 In Vivo Brain Imaging

Figure 6(a) is a representative structural cross section of the
mouse brain in vivo, in which it is challenging to discriminate
the dynamic blood flow from the static tissue bed. Figures 6(b)
and 6(c) show the corresponding cross-sectional angiograms of
AD-Angio-OCT and CD-Angio-OCT, respectively. Similar to

Table 1 Statistics in optical coherence tomography and Angio-OCT.

OCT Amplitude ad∕s AD-Angio-OCT jaADd∕s j CD-Angio-OCT aCDd∕s

Dynamic region Rayleigh: ad
σ2d

exp
�
− ad

2σ2d

�
Truncated Gauss: 2ffiffiffiffi

2π
p

σd
exp

�
− jaADd j2

2σ2d

�
Rayleigh: aCDd

2σ2d
exp

�
− a2CDd

4σ2d

�
Static region Gauss: 1ffiffiffiffi

2π
p

σs
exp

h
− ðas−CÞ2

2σ2s

i
Gauss: 2ffiffiffiffi

2π
p ð ffiffi

2
p

σsÞ
exp

h
− jaADs j2

2ð ffiffi
2

p
σsÞ2

i
Rayleigh: aCDs

2σ2s
exp

�
− a2CDs

4σ2s

�

Fig. 3 (a) Representative structural cross section of flow phantom displayed in log scale. The corre-
sponding cross-sectional angiograms (b) AD-Angio-OCT and (c) CD-Angio-OCT. The asterisk and
cross indicate the selected two points from the static and dynamic regions, respectively. (b, c) The yellow
arrows indicate the different performance between AD and CD algorithms. Four adjacent frames are
averaged for presentation.

Fig. 4 Temporal statistics of the OCT amplitude signals at the (a) dynamic and (b) static positions, which
are indicated by the cross and asterisk in Fig. 3(a), respectively. The histograms are the statistical dis-
tributions of the measured data. The dashed curves correspond to the theoretical predictions. The high
R-square statistics (R2 > 0.95) indicate that the experimental outcome matches well with the theoretical
model. The variances σ2d and σ2s are computed from the measured OCT data.
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the phantom experiment, in the recorded cross section, two spa-
tial positions were randomly selected from the regions of static
tissue bed ðzs; xsÞ and dynamic blood flow ðzd; xdÞ, respectively,
for the following statistical analysis. The variances σ2d and σ

2
s are

computed from the measured data, and then substituted into
Eqs. (6), (11), (16), (20), (24), and (25) for predicting the OCT
and Angio-OCT statistics.

The temporal statistics of the OCT amplitude signals at the
selected static ðzs; xsÞ and dynamic ðzd; xdÞ positions are
reported in Fig. 7. The histograms show the experimentally mea-
sured distributions. The dashed curves in Fig. 7 correspond to
the theoretical predictions. The R-square statistics (R2) are
higher than 0.95.

Figure 8 reports the temporal statistics of the Angio-OCT
signals of the in vivo experiment. Figures 8(a) and 8(b) corre-
spond to the blood flow and static tissue bed in AD-Angio-OCT,
respectively. Figures 8(c) and 8(d) correspond to the blood flow
and static tissue bed in CD-Angio-OCT, respectively. The histo-
grams and the solid curves show the experimentally measured
and theoretically predicted distributions of the Angio-OCT sig-
nals, respectively. The R-square statistics (R2) are higher than
0.95. The experimental data match well with the theoretical pre-
dictions of the proposed statistical models.

5 Discussion
Based on the model of random phasor sums, the temporal sta-
tistics of the complex-valued OCT signals were mathematically
described, as expressed in Eqs. (5), (6), (9), and (11). The
dynamic and static signals exhibit intrinsic differences in the sta-
tistics of OCT amplitude. Despite the differences, the distribu-
tions of the dynamic and static signals still have a large overlap

Fig. 5 Statistics of the Angio-OCT signals in flow phantom imaging. (a, b)The statistics of the dynamic
and static signals in AD-Angio-OCT, respectively. (c, d) The statistics of the dynamic and static signals in
CD-Angio-OCT, respectively. The R-square statistics (R2) are higher than 0.95.

Fig. 6 (a) Representative structural cross section of mouse brain in
vivo displayed in log scale. (a, b) The corresponding cross-sectional
angiograms are produced by AD-Angio-OCT and CD-Angio-OCT
algorithms, respectively. The asterisk and cross indicate the selected
two points from the static tissue bed and the dynamic blood flow,
respectively. (b, c) The yellow arrows indicate the different perfor-
mance between AD and CD algorithms. Four adjacent frames are
averaged for presentation.
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Fig. 7 Temporal statistics of the OCT amplitude signals from (a) dynamic blood flow and (b) the static
tissue bed in mouse brain in vivo, which are marked by the cross and asterisk in Fig. 6(a), respectively.
The histograms are the distributions of the experimental data. The dashed curves in (a) and (b) corre-
spond to the theoretical fitting using Eqs. (6) and (11). The R-square statistics (R2) are higher than
0.95. The variances σ2d and σ2s are computed from the measured OCT data.

Fig. 8 Statistics of the Angio-OCT signals in mouse brain in vivo imaging. (a, b) The statistics of the
dynamic and static signals in AD-Angio-OCT, respectively. (c, d) The statistics of the dynamic and static
signals in CD-Angio-OCT, respectively. The R-square statistic (R2) is higher than 0.95.

Fig. 9 Normalized statistical distributions in OCT: (a) AD-Angio-OCT, (b) CD-Angio-OCT, and (c)
σd∕σs ¼ 4.
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(referring to the error areas in Fig. 9), making it challenging to
directly separate the dynamic blood flow from the static tissue
bed in the OCT structural image [Figs. 3(a) and 6(a)]. In Angio-
OCT, extra processing algorithms, such as the widely used AD
and CD algorithms, are applied to the original OCT signals.
Using mathematical transformations and reasonable approxima-
tions, the statistics of the AD-Angio-OCT and CD-Angio-OCT
signals were further derived. In Angio-OCT, the overlap
between the distributions of dynamic and static signals is greatly
reduced [referring to the error areas in Figs. 9(b) and 9(c)]. The
origin of motion–contrast in Angio-OCT has been mathemati-
cally explained in this work.

The proposed statistical model can be used for guiding the
threshold determination in Angio-OCT. Currently, the threshold
is set empirically, and the signals above the threshold are clas-
sified as the dynamic regions. The ratio of the misclassified sig-
nals can be defined as the classification error rate (CER), i.e.,
dynamic signals below the threshold plus the static signals
above it. In Angio-OCT, the minimal CER is determined by
the residual overlap between the distributions of dynamic and
static signals. Accordingly, the cross point of the two distribu-
tion curves can be considered as the optimal threshold. Any
offset from the optimal value would lead to an increased CER.
The optimal thresholds in the AD-Angio-OCT (TAD) and the
CD-Angio-OCT (TCD) should meet the following conditions:

EQ-TARGET;temp:intralink-;e026;63;477

�
fjAADs jðTADÞ ¼ fjAADdjðTADÞ in AD

fACDs
ðTCDÞ ¼ fACDd

ðTCDÞ in CD: (26)

Substituting Eqs. (16), (20), (24), and (25) into the expressions
above, we obtain:

EQ-TARGET;temp:intralink-;e027;63;411TAD ¼ 2σdσs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

σ2d − 2σ2s
ln

�
σdffiffiffi
2

p
σs

�s
; (27)

EQ-TARGET;temp:intralink-;e028;63;360TCD ¼ 2σdσs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

σ2d − σ2s
ln

�
σd
σs

�s
: (28)

Accordingly, the thresholds of the AD- and CD-Angio-OCT are
determined as indicated by the dashed lines in Fig. 9. Then the
minimal CER of the AD-Angio-OCT (CERAD) and the CD-
Angio-OCT (CERCD) can be calculated:

EQ-TARGET;temp:intralink-;e029;63;270

2 ·CERAD¼
Z

∞

TAD

fjAADs jðaADsÞdaADs

þ
Z

TAD

0

fjAADdjðaADdÞdaADd

¼1þerf

2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

k2−2
ln

�
kffiffiffi
2

p
�s 3
5−erf

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 lnðkÞ
k2−1

s 3
75;

(29)

EQ-TARGET;temp:intralink-;e030;63;134

2 ·CERCD¼
Z

∞

TCD

fACDs
ðaCDsÞdaCDsþ

Z
TCD

0

fACDd
ðaCDdÞdaCDd

¼1−exp
�
−
2lnðkÞ
k2−1

�
þexp

�
−
2k2 lnðkÞ
k2−1

�
; (30)

where we define k ¼ σd∕σs. In practice, a set of training data
can be collected using MB-mode scanning protocol in the region
of interest. The empirical threshold is first used to separate the
dynamic and static regions. Based on the dynamic and static
data, the parameters of σ2d and σ

2
s are learned, and the theoretical

thresholds are determined. Initial proof of concept of the thresh-
old determination was validated in this study. As shown in
Figs. 3 and 6, the theoretical thresholds work well in the homo-
geneous tissues. Tissues of different scattering properties corre-
spond to different parameters σ2d and σ

2
s . In Fig. 6, the cortex was

used for parameter learning and threshold determination, and
consequently there exist apparent classification errors in the
cranium using the threshold of cortex.

Although it has been recognized that the method using the
complex-valued signals offers higher motion-contrast by
combining both the amplitude and phase information, the per-
formance of the CD- and AD-Angio-OCT can be further under-
stood from the theoretical model. As reported in Fig. 10, the
CD-Angio-OCT shows a lower CER in most situations, i.e.,
a superior motion-contrast, which can be confirmed in Figs. 3(b),
3(c), 6(b), and 6(c) as indicated by the yellow arrows. In Fig. 6,
the averaged CERs of the AD and CD methods are 0.26 and
0.12 in the region of cortex, respectively. However, it should
be noted that the CD algorithm is extremely sensitive to the
phase fluctuation, and consequently poses a high requirement
for the system phase stability and a large computational load
for the phase compensation. The phase compensation works
well on the situations, such as flow phantoms and stable animal
models, but it is challenging in the clinical circumstances.
Fortunately, several motion–tracking techniques have been
developed in ophthalmic OCT systems for motion correction.

Averaging is widely used in Angio-OCT for high contrast.
The developed model is helpful for guiding the design of the
averaging approaches. According to the model, averaging of
independent angiograms offers reduced CER and improved
motion-contrast. Assuming two independent angiograms with
the PDF fAngioOCT expressed by Eqs. (16), (20), (24), and (25),
the PDF of the averaged Angio-OCT signals f ¯AngioOCT has
a simple relation with the PDF of the original signals:

EQ-TARGET;temp:intralink-;e031;326;323f
AngioOCT

¼ fAngioOCT � fAngioOCT; (31)

where * represents the convolution computation. Figure 11
reports the normalized statistical distributions of the averaged

Fig. 10 Numerical comparison of classification error rate (CER)
between AD-Angio-OCT and CD-Angio-OCT. Complex differential
(CD) method has a lower CER than AD.
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Angio-OCT signals. Compared with the original distribution in
Figs. 9(b) and 9(c), the averaged signals show a lower CER. If
the angiograms are totally dependent, no contrast improvement
can be obtained. Because the Angio-OCT signals of either the
dynamic or static regions are random in the time dimension,
repeated angiograms with a large time interval (T) can be con-
sidered as totally independent and can be used for averaging.
However, the repeated imagings are performed in B-scans in
typical Angio-OCT,10,13,16 and consequently, the large time
interval leads to an increased imaging time which is not desired
due to the influence of bulk motion. In contrast, similar to the
averaging approaches used for speckle reduction,31 independent
angiograms can also be achieved by methods such as wave-
length diversity, angular diversity, and polarization diversity,
and it can be explained in theory that the split-spectrum algo-
rithm offers improved contrast.10

In Eqs. (13), (22), and (23), it is assumed that the dynamic
signals in the n’th and (nþ 1)th B-frames are totally uncorre-
lated and independent under the condition of a sufficient time
interval (t). Typically, the time interval (t) is determined by the
B-frame rate in the interframe Angio-OCT,10,13,16 which is
5.3 ms in our system. Such a time interval is sufficient for
the fast blood flow, but not for the slow one. Taking the approxi-
mation where the lateral resolution of OCT is 15 μm, and the
velocity of RBC in the capillaries is 1 mm∕s,32 the required t
is around 15 ms. According to the proposed model, in spite
of being sensitive to the slow motion, the Angio-OCT with a
short time interval would result in an increased CER and limited
motion-contrast. Thus, there exists a tradeoff between the imag-
ing speed and motion-contrast in Angio-OCT.

Angio-OCT suffers from shadow artifacts extending below
the vessels, and the artifacts frustrate the automated 3-D analysis
of vascular networks.1 Due to the forward scattering of RBC, the
static signals below the vessels are influenced by the dynamic
multiple-scattered signals from the blood flow, and present a
Rician distribution.30 The statistical differences between the
shadow and flow areas can be analyzed, which may be helpful
for suppressing the shadow artifacts.

Although the mathematical derivation is focused on the AD
and CD Angio-OCT in this study, it can be transferred to the
phase-based methods. According to Eqs. (5) and (9), the tem-
poral PDFs of phase θd and θs follows uniform and Gaussian
distributions, respectively.24 Then the statistics of the phase-
based Angio-OCT can be deduced.

There are several limitations in the current model. First, in
the dynamic regions, it is assumed that a large number of scat-
tering RBCs are randomly distributed within the OCT voxel of
interest, and the interframe OCT signals contributed by RBC are

totally independent. The assumption can be well satisfied in the
large blood vessels, but not in the capillaries. In the capillaries,
RBC flow one by one at a slow speed (<1 mm∕s).32 The tem-
poral statistics of the capillary signals in Angio-OCT will be
investigated in future study. Second, in the static regions, we
assume that the OCT scattering signal is a strong phasor and
remains constant in all the B-frame for a given spatial point,
referring to Eqs. (17), (22), and (23). When the bulk motion hap-
pens, there exists a relative change of the strong phasor. In par-
ticular, the boundaries of the layered tissues have great changes
in both amplitude and phase. As shown in Figs. 6(b) and 6(c),
obvious artifacts can be observed in the boundaries of the cra-
nium, and the CD method shows more artifacts in the bounda-
ries due to the considerable phase changes.

6 Conclusions
Based on the model of random phasor sums, the temporal sta-
tistics of the complex-valued OCT signals were mathematically
described. Using mathematical transformations and reasonable
approximations, the temporal statistics of AD- and CD-Angio-
OCT signals were derived and were found to obey different stat-
istical distributions. The theories were further validated through
both the flow phantom and live animal experiments. Using the
model developed in this work, the origin of the motion–contrast
in Angio-OCT is mathematically explained, and the possible
implications in the improvement of motion–contrast are further
discussed, including the threshold determination and its residual
classification error, averaging method, and scanning protocol.
The CD-Angio-OCT shows a lower CER than the AD method
when the phase compensation works well. The proposed math-
ematical model of Angio-OCT signals can aid in the optimal
design of the system and associated algorithms.
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