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Abstract. We present a decoupled fluorescence Monte Carlo (dfMC) model for the direct computation of the
fluorescence in turbid media. By decoupling the excitation-to-emission conversion and transport process of the
fluorescence from the path probability density function and associating the corresponding parameters involving
the fluorescence process with the weight function, the dfMC model employs the path histories of the excitation
photons and the corresponding new weight function to directly calculate the fluorescence. We verify the model’s
accuracy using phantom experiments and compare it with that of the perturbation fluorescence Monte Carlo
model. The results indicate that the model is accurate for the direct fluorescence calculation and, thus, has
great potential for application in fluorescence-based in vivo tomography. © The Authors. Published by SPIE under a
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1 Introduction
Recently, with the development of fluorescent probes and
reporter technologies, rapid advancement has been achieved
in the fluorescent imaging of turbid media.1,2 Fluorescent imag-
ing methods based on fluorescent probes allow the noninvasive
visualization of biological processes at the cellular and molecu-
lar levels, providing a next-generation tool for molecular imag-
ing. Fluorescence tomographic methods employing a near-
infrared spectral window of 700 to 900 nm as a new and
promising imaging modality can three-dimensionally resolve
the fluorescence distribution in vivo, enabling applications in
small-animal research and preclinical diagnostics.3–10 However,
it is well known that most biological tissues comprise turbid
media with a high optical scattering in the infrared spectral win-
dow,1 in which the diffusion-like behavior of the excitation and
fluorescent photons in turbid media presents a considerable
challenge for the quantitative accuracy of fluorescence tomo-
graphic imaging. An accurate and effective photon propagation
model for the excitation-to-emission conversion and the trans-
port of the fluorescence is essential for a fluorescence tomo-
graphic method to meet this challenge. The development of
new excitation and fluorescent light propagation models that
are more accurate and computationally efficient will improve
the quantitative accuracy of fluorescence tomographic imaging.
Thus, the fluorescence model attracts unprecedented attention
for the excitation-to-emission conversion and the transport of
the fluorescence in turbid media.

The present models for the excitation-to-emission conversion
and the transport of the fluorescence in turbid media are derived
from the radiative transport equations (RTEs),11,12 including the
simple analytical model,13 diffusion approximation model,14–19

and Monte Carlo (MC) model.20–27 The analytical model can be
applied only in relatively simple configurations, such as the slab
model with homogeneous media. The diffusion approximation
model is widely used because it can be performed quickly com-
pared with the other methods, such as the RTEs and MC.
However, the diffusion approximation has several limitations:
it is inadequate in the case of nonscattering media, inaccurate
near the boundary within the mean free path, and inappropriate
in the case of highly absorbent tissues.17 The MC model can
solve the RTEs without the limitations of complex geometries
and optical properties. Theoretically, MC solutions can be
obtained for any desired accuracy, and thus, the MC model is
widely recognized as the gold standard for its superior accuracy
and versatility.16,23 However, the accuracy is proportional to
1∕

ffiffiffiffi
N

p
, where N is the number of photons propagating. Thus,

relative errors less than a few tenths of a percent require the
propagation of substantial numbers of photons (106 to 109)
and large amounts of computing time. This is especially true
for the MC models of the fluorescence, such as the standard
fluorescence MC model,28 because the probability of the exci-
tation-to-emission conversion of the fluorescence is far lower,
and a far longer computation time is required to obtain sta-
tistically reliable results for the fluorescence photons. Especially
for fluorescence-based in vivo tomography, changing any of the
input parameters requires a new simulation, resulting in a large
computational load. To overcome this problem, the adjoint fluo-
rescence MC (afMC)27,29 model and the perturbation fluores-
cence MC (pfMC) model25,29–33 are developed as fluorescence
MC techniques that are more feasible for application in fluores-
cence-based tomography. The afMC model is built on the basis
of the Born approximation and assumes that the source and
detector are interchangeable, i.e., equivalent, which is difficult
to satisfy for a free-space configuration because of the large dif-
ference between the light sources and photodetectors, i.e., pixels*Address all correspondence to: Yong Deng, E-mail: ydeng@mail.hust.edu.cn
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on a charge-coupled device (CCD). The pfMC model assumes
that the fluorescence photons are launched anisotropically,
rather than isotropically, and are calculated along the path his-
tories of the excitation light using the Beer-Lambert law. Owing
to these assumptions, the afMC and pfMC models are accuracy-
limited in quantitative fluorescence calculation, especially for
high fluorophore concentrations or complex fluorophore distri-
butions. The pfMCmodel is more accurate than the afMCmodel
in media with a high heterogeneity and scattering if there
are sufficient photons for the MC simulation, because the
assumption of the equivalence between the sources and detec-
tors decreases the accuracy of the afMC model, restricting the
model’s application in free-space fluorescence molecular
tomography.29 The efficiency of the afMC model is also very
low in fluorescence diffuse optical tomography (FDOT) if
there are a large number of detectors, equal to the number of
MC simulations required.29

On the basis of integral forms of the transport equations for a
fluorescence MC model, we present a decoupled fluorescence
MC (dfMC) model for the direct computation of the
fluorescence in turbid media. By decoupling the excitation-
to-emission conversion and transport process of the fluorescence
from the path probability density function and associating the
corresponding parameters involving the fluorescence process
with the weight function, the sampling path of the fluorescence
photons becomes identical to that of the excitation light, and the
fluorescence statistical quantities are unbiased. Using the path
histories of the exciting photons and the corresponding new
weight function, we can compute the fluorescence distribution
directly.

This paper is structured as follows. Section 2 describes the
theoretical derivation of the dfMC model from the RTEs; we
analyze the dfMC model by comparing it with the pfMC
model. Then, we introduce the implementation of the dfMC
model in the programming language C and the acceleration
of the MC simulation by graphic processing unit (GPU) clusters.
Section 3 describes two groups of phantom experiments to
verify the accuracy of the dfMC model. Section 4 describes
the results of the phantom experiments by comparing them
with those of the dfMC and pfMC simulations, and we discuss
the influence of the optical parameters on the accuracy. Last, we
look ahead to the future development of the dfMC model.

2 Methods

2.1 Theoretical Model

As illustrated in Fig. 1, we use the following definitions for bio-
logical tissues. The volume V denotes the nonfluorescence zone,
and Vf denotes the fluorescence zone. In the excitation light
state, the optical parameters are μexs , μexa , gex in V and Vf. In
the fluorescent light state, the optical parameters are μems ,
μema , gem in V and Vf. The specific absorption coefficient of
the fluorophore is μaf , and the quantum yield is η. Here, we
assume that the optical property in Vf is not affected by fluo-
rophore. The total attenuation is then μext ¼ μexs þ μexa ,
μemt ¼ μema þ μems .

We define p0p1p2 · · · pm−1 as an arbitrary state sequence of
the photon propagation in the media, including the state of the
excitation and emission photons generated in the fluorescence
zone, where the state p is a six-dimensional vector comprising
the spatial coordinate vector ~r as the position and the unit direc-
tion vector ŝ as the direction of motion. We assume that p 0 and p

are two arbitrary adjacent states from p0p1p2 · · · pm−1 and that
p 0 is before p within the sequence. The RTE can be written in
the appropriate integral forms for the excitation and fluores-
cence light.34 The RTE for the excitation light is given by

xðpÞ ¼
Z

xðp 0ÞKðp 0 → p; μexs ; μexa þ μaf; gexÞdp 0 þ SðpÞ:
(1)

Here, xðpÞ is the probability density of excitation light at
state p, which consists of two parts. SðpÞ is the source of exci-
tation light at state p. ∫ xðp 0ÞKðp 0 → p; μexs ; μexa þ μaf; gexÞdp 0

is the excitation photons scattering to state p from other states.
Once fluorescence light is generated, its propagation can be

modeled using another RTE:

yðpÞ ¼
Z

yðp 0ÞKðp 0 → p; μems ; μema ; gemÞdp 0

þ
Z

xðp 0ÞKxmðp 0 → p; μafÞdp 0: (2)

Here, yðpÞ is the probability densities for the photon emission
at a position ~r along the direction ŝ, which consists of two parts.
∫ xðp 0ÞKxmðp 0 → p; μafÞdp 0 is the fluorescence photons gener-
ated at state p. ∫ yðp 0ÞKðp 0 → p; μems ; μema þ μaf; gemÞdp 0 is the
fluorescence photons scattering to state p from other states. The
kernel K, which describes the state transitions from
p 0 to p, can be factored into the product of the transport kernel
T and the collision kernel C, having the form Kðp 0 →
p; μs; μa; gÞ ¼ Tð~r 0 → ~r ∣ ŝ 0; μs; μaÞCðŝ 0 → ŝj~r; μs; μa; gÞ. The
transport kernel is given by Tð~r 0 → ~r ∣ ŝ 0;μs;μaÞ ¼ μtð~rÞ
exp½−∫ μtð~r 0 þ lŝÞdl�δðŝ− ð~r− ~r 0Þ∕ ∣ ~r− ~r 0 ∣Þ∕∣ ~r− ~r 0 ∣2, which
describes the probability density of the photon flights between
neighboring collisions. Here, l is the length variable along ~r 0

toward ~r. The collision kernel Cðŝ 0 → ŝj~r; μs; μa; gÞ ¼
μsð~rÞPAðŝ 0 · ŝ; gÞ∕μtð~rÞ describes the photon collision inter-
actions, comprising the probability of scattering at ~r as well as
the angular deflection of the photon if a scattering collision
occurs. Here, PA is the anisotropic scattering phase function
that prescribes the probability density for the scattering from

Fig. 1 Mechanism of excitation-to-emission conversion and transport
in media. Excitation and emission are indicated by green and red seg-
ments, respectively. The sequence p0 p1 p2: : : pm−1 is an arbitrary
state sequence that represents a type of photon path from the source
to the detector through m − 1 collisions.
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the direction ŝ 0 to ŝ, which is typically the Henyey-Greenstein
phase function. The special kernel Kxmðp 0 → p; μafÞ ¼
Tð~r 0 → ~r ∣ ŝ 0; μexs ; μexa þ μafÞCxmðŝ 0 → ŝj~r; μafÞ describes the
generation of a fluorescence photon, including the probability
of a direct scattering flight from p 0 to p and the transformation
from an excitation photon to a fluorescence photon at p.
Here, Cxmðŝ 0 → ŝj~r; μafÞ ¼ ημafð~rÞPIðŝ 0 · ŝÞ∕½μext ð~rÞþμafð~rÞ�
describes the transformation from an excitation photon to an emit-
ting fluorescence photon. The function PI is the isotropic scatter-
ing phase function, equals to 1∕4π. Also, SðpÞ ¼ Sðp0Þ.

Let Ljðp0 → pj; μs; μa; gÞ denote the probability density of a
photon scattering from p0 to pj through j collisions with optical
parameters μs, μa, g, as described below:

L0ðp0 → pj; μs; μa; gÞ ¼ 1; and p0 ¼ pj;

· · ·

Ljðp0 → pj; μs; μa; gÞ ¼
Yj−1
k¼0

Kðpk → pkþ1; μs; μa; gÞ; j

¼ 1 · · · ∞. (3)

According to Eqs. (1)–(3), yðpÞ has the following series
solution:

yðpÞ ¼
X∞
m¼0

Xm
i¼0

Z
· · ·

Z Ym
k¼0

dpk

× Sðp0ÞLiðp0 → pi; μexs ; μexa þ μaf; gexÞ
× Kxmðpi → piþ1; μafÞLm−i−1ðpiþ1 → p; μems ; μema ; gexÞ:

(4)

To employ the path of the excitation light to calculate the
fluorescence yðpÞ, the fluorescence emission from state p 0 to
p must be transformed into the scattering of excitation photons.
We use the following transformation to decouple the excitation-
to-emission process of the fluorescence p 0 → p from the special
kernel describing the generation of fluorescence photons:

Kxmðp 0 → p; μafÞ
¼ ηTð~r 0 → ~r ∣ ŝ 0; μexs ; μexa þ μafÞCxmðŝ 0 → ŝj~r; μafÞ
¼ ηTð~r 0 → ~r ∣ ŝ 0; μexs ; μexa ÞΓðp 0 → p; μafÞ

×
μext ð~rÞ þ μafð~rÞ

μext ð~rÞ
Cxmðŝ 0 → ŝj~r; μafÞ

¼ Kðp 0 → p; μexs ; μexa ; gexÞ

× Γðp 0 → p; μafÞ
ημafð~rÞ
μexs ð~rÞ

PIðŝ 0 · ŝÞ
PA

�
ŝ 0 · ŝ; gexð~r 0Þ

� ; (5)

where Γðp 0 → p; μÞ ¼ exp½−∫ j~r−~r 0 j
0 μð~r 0 þ lŝÞdl�. From Eq. (5),

we can see that the fluorescence photons of the state p excited
by the excitation photons of state p 0 are proportional to the exci-
tation photons of state p scattered from the state p 0. The trans-
formation can maintain energy conservation. This means the
excited fluorescence photons can be equivalent to the scattered
excitation photons by the equivalent transformation. In addition,
the transport of the fluorescence photons from p 0 to p can be
changed into that of excitation light, yielding the following
transformation:

Kðp 0 → p;μems ;μema ; gemÞ
¼ Tð~r 0 → ~r ∣ ŝ 0;μems ;μema ÞCðŝ 0 → ŝj~r;μems ;μema ; gemÞ
¼ Tð~r 0 → ~r ∣ ŝ 0;μexs ;μexa ÞΓðp 0 → p;μemt − μext Þ

×Cðŝ 0 → ŝj~r;μexs ;μexa ; gexÞ
μems ð~rÞ
μexs ð~rÞ

¼ Kðp 0 → p;μexs ;μexa ; gexÞ

×
μems ð~rÞ
μexs ð~rÞ

PA

�
ŝ 0 · ŝ; gemð~r 0Þ

�

PA

�
ŝ 0 · ŝ; gexð~r 0Þ

� Γðp 0 → p;μemt − μext Þ: (6)

From Eq. (6), we can see that the fluorescence photons of the
state p scattered from the state p 0 are proportional to the exci-
tation photons of the state p scattered from state p 0. The trans-
formation maintains energy conservation. This denotes that the
fluorescence photons can propagate from p 0 to state p in media
with the kernel of excitation photonsKðp 0 → p; μexs ; μexa ; gexÞ by
multiplying a corresponding proportion. This also means that
the propagation p 0 → p of fluorescence photons can be equiv-
alent to that of the excitation photons by the equivalent trans-
formation. Using the conversions of Eqs. (5) and (6), we
transform Eq. (4) as follows:

yðpÞ¼
X∞
m¼0

Z
···

Z
Sðp0ÞLmðp0→p;μexs ;μexa ;gexÞ

Ym
k¼0

dpk

×
Xm
i¼0

Γðp0→piþ1;μafÞ
ημafð~riþ1Þ
μexs ð~riþ1Þ

PIðŝi · ŝiþ1Þ
PA

�
ŝi · ŝiþ1;gexð~riÞ

�

×
Xm
j¼iþ1

μems ð~rjÞ
μexs ð~rjÞ

PA

�
ŝj · ŝjþ1;gemð~rjÞ

�

PA

�
ŝj · ŝjþ1;gexð~rjÞ

�Γðpiþ1→p;μemt −μext Þ:

(7)

With a known detector function dðpÞ, in the MC simulation,
virtual detectors are placed on the surface of the object. Thus,
dðpÞ is the three-dimensional impulse function δðpÞ. The fluo-
rescence statistical quantity collected on the detector is deter-
mined as

DðpÞ ¼
Z

yðp 0Þdðp 0 − pÞdp 0: (8)

Derived from the RTE method, we obtain the form of the
fluorescence statistical quantity D. DðpÞ is a multiple integral
form. MC is preferred as the most accurate method of solving
the integral problem. MC methods have been widely applied in
varying types of physical problems. Historically, the MC
methods have first been successfully used to solve particle trans-
port problems.34,35 This is still one of the areas of most extensive
use at present. On the basis of the principle of the MC method,
in the fluorescence MC simulation, the probability density
function τmðpÞ and the weight function wem

m ðpÞ are constructed
to solve the fluorescence statistical quantity DðpÞ ¼
∫ VτmðpÞwem

m ðpÞdp. With τmðpÞ and wem
m ðpÞ have the following

forms:
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τmðpÞ¼
Sðp0ÞLmðp0→p;μexs ;μexa ;gexÞR

v · · ·
R
Sðp0ÞLmðp0→p;μexs ;μexa ;gexÞdp0 · · · dpm

;

(9)

wem
m ðpÞ¼wex

m ðpÞ
Xm
i¼1

Γðp0→pi;μafÞ
ημafð~riÞ
μexs ð~riÞ

×
PIðŝi−1 · ŝiÞ

PA

�
ŝi−1 · ŝi;gexð~ri−1Þ

�Ym
j¼i

�
μems ð~rjÞ
μexs ð~rjÞ

�

×
PA

�
ŝj · ŝjþ1;gemð~rjÞ

�

PA

�
ŝj · ŝjþ1;gexð~rjÞ

� Γðpi→p;μemt −μext Þ: (10)

Here, wex
m ðpÞ is the weight function of an excitation photon,

and equals dðpÞ∫ v · · · ∫ Sðp0ÞLmðp0 → p; μexs ; μexa ; gexðrÞÞ
dp0 · · · dpm. The product of τmðpÞ and wem

m ðpÞ, which repre-
sents the probability that an excitation photon is transported
from the laser source to pi through i collisions in turbid
media, is then converted to a fluorescence photon and trans-
ported to the detector through m − i − 1 collisions in the
media. Apparently, if we set the path sampling function to
that of the excitation light, the path of the fluorescence photon
is identical to that of the excitation photon. Therefore, along the
paths sampled by Eq. (9), the fluorescence statistical quantities
can be calculated using the new weight function determined by
Eq. (10). The new weight function of the fluorescence photon
wem
m ðpÞ is associated with the specific absorption coefficients of

the fluorophores at all scattering positions of the photon path in
the fluorescence zone. We store the path information of the exci-
tation photons, including the scattering length and factors ŝ 0 · ŝ,
at every scattering position and calculate the fluorescence
weight according to Eq. (10).

For most biological tissues, the excitation and emission
wavelengths differ by only a few tens of nanometers. Therefore,
we can simplify the weight function by assuming that μems ð~rÞ ¼
μexs ð~rÞ and gexðrÞ ¼ gemðrÞ.25 Thus, the simplified form of
Eq. (10) is

wem
m ðpÞ¼wex

m ðpÞ
Xm
i¼1

Γðp0→pi;μafÞ
ημafð~riÞ
μexs ð~riÞ

×
PIðŝi−1 · ŝiÞ

PA

�
ŝi−1 · ŝi;gexð~ri−1Þ

�Γðpi→p;μema −μexa Þ: (11)

Equation (11) indicates that the accuracy of the dfMC model
is primarily influenced by the scattering coefficient μexs and the
specific absorption coefficient of the fluorophore μaf . This is
because the sampling of the path histories is primarily affected
by the scattering coefficient μexs and the probability of the fluo-
rescence excitation is primarily affected by the specific absorp-
tion coefficient of the fluorophore μaf .

The derived formulation of Eq. (11) clearly differs from that
of the pfMC model. The pfMC model is derived on the basis of
the Born approximation.36 In the pfMC model, all fluorescence
photon bundles are generated anisotropically and propagate to
the detectors along the path of the excitation photons.25 The
weight of the fluorescence bundle is calculated on the basis
of the Beer-Lambert law:25,36

wem
m ðpÞ¼wex

m ðpÞ
Xm
i¼1

ηΓðp0→pi−1;μafÞ

× ½1−Γðpi−1→pi;μafÞ�Γðpi→p;μema −μexa Þ: (12)

On the basis of Eqs. (8)–(10), the statistical quantity of fluo-
rescence D ¼ ∫ VτmðpÞwem

m ðpÞdp obtained by the dfMC model
is unbiased. However, compared with the dfMC model, the
weight expression Eq. (12) of the pfMC model makes the quan-
tity of fluorescence biased. Therefore, the dfMC model is theo-
retically more accurate than the pfMC model.

2.2 Code Implementation and Simulations

The generation and propagation of fluorescence photons in tur-
bid media are illustrated in Fig. 1. A point laser source is located
at the surface of the turbid media, and the photons are collected
at the CCD detectors, which are placed opposite the source. The
media is dissected into a spatial voxel grid. Each of the voxel has
defined optical parameters. The dfMC modeling consists of two
parts: the white MC (wMC), in which a large number of path
histories are generated when excitation photons are simulated in
background media without fluorophores, and the calculation of
the fluorescence weight based on the path histories. Herein, the
wMC code is developed, essentially following the concepts of
Monte Carlo modeling of light transport in multi-layered tissues,
Monte Carlo modeling of photon migration in voxelized media,
and Monte Carlo eXtreme.37–39 In the wMC model, the photon
packets are launched into the media from the position of the
laser source. The scattering length is given by − lnðRandÞ∕μs,
and the absorption of the photons in the media occurs along
the path histories, with a weight attenuated by expð−μalÞ.
According to Eqs. (9) and (10), the scattering length jpj − pj−1j,
scattering factor ŝj−1 · ŝj, and index of the voxel in the spatial
grid are stored along the path histories of the excitation photon
packets in the media. Using the three quantities recorded on the
path history and the spatial distribution of the fluorophores, the
fluorescence detected by the CCD can be calculated using
Eq. (10). The path histories can be repeatedly used for fluores-
cence calculations with different distributions of fluorophores.

The wMC is also time-consuming, as these histories contain
a great amount of information, and a large amount of hard-disk
storage space is needed. Thus, a fast implementation of the
wMC is essential for practical applications. This problem is
solved using GPU clusters:39 we build a wMC simulation
based on GPU clusters with a compute unified device architec-
ture and MPICH2 (a high-performance and widely portable
implementation of the MPI standard). The parallel acceleration
is primarily achieved using multinodes, multi-GPUs, and multi-
processing units in the GPU.39–41 The frame is implemented in
the programming language C.We simultaneously launch a given
number of threads, each simulating a sequence of the photon
migration process. The allocation of the threads is determined
according to the hardware and length of the path histories. In
each thread, a series of photon packets propagates within the
media to produce a sequence of scattering histories and weights
in media until it exits the media. The tasks of the MC simulation
are allocated to every GPU in each node, depending on the num-
ber of GPUs in each node, as determined by the Open MP and
MPICH2. The path histories are separately obtained in each
GPU and each node. The process of the MC simulation is briefly
summarized as follows.
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1. In each thread of the GPU, a photon packet is initially
launched at the position of the source along the inci-
dent direction vector, with an initial packet weight
of 1.

2. The scattering length, i.e., the distance between two
neighboring scattering event sites, is computed using
the scattering coefficient of the current position, accord-
ing to the exponential distribution − lnðRandÞ∕μs.

3. A new scattering direction vector and the factor ŝ 0 · ŝ
are calculated according to the Henyey-Greenstein
phase function.37 The photon packet moves to the
new position along the new direction. The packet
weight is reduced by the absorption coefficient
along the scattering length.

4. The scattering length, factor of ŝ 0 · ŝ, and index to the
voxel, in which the scattering event happened, are
stored on disks.

5. Repeat steps 2 to 4 until the photon packet exits
the media.

6. Repeat steps 2 to 5 until the total number of photon
packets reaches the allocation of the GPU.

The path histories are generated and stored separately in each
node. The distribution of the fluorescence at the CCD can also
be calculated in each node, and then the distributions from each
node are summed using the GPU clusters. Parallel computing
accelerates the wMC simulation and the reading and writing
of the path historical data, which expedites the calculation of
the fluorescence using the path histories.

In order to further accelerate the wMC, a two-step method40

is used to increase the efficient photons, i.e., those reaching the
detectors. This method comprises two steps. In the first step, the
seeds of a random number, which make the photons reach the
detectors, can be obtained using a fast wMC modeling without
storing the path histories. These seeds are stored in memory. In
the second step, using the stored seeds, a new wMC simulation
is conducted to determine and store the path histories of the effi-
cient photons. In wMC, the main time consumption is the stor-
age of path histories. On the basis of the two-step method, only
the path histories of efficient photons are stored, which greatly
accelerates the speed of MC simulation.

3 Experimental Validations and Comparisons

3.1 Experimental Setup and Phantom

We test the accuracy through phantom experiments with differ-
ent fluorescent concentrations and turbid media. Figure 2
presents a sketch of the experimental system developed in
our lab.42 A 748-nm continuous-wave diode laser (BWF1,
B&W Tek, USA) is employed as an excitation source. The exci-
tation source is adjusted by fast raster scanning with a dual-axis
galvanometric scanner (Nutfield XLR8) to obtain the correct
incident position and angle, and the two-dimensional projec-
tions are collected by an electron-multiplying CCD (DU-897,
Andor, UK). The filters, having a center wavelength of
775 nm and a full width at half maximum of 46 nm (FF01-
775/46-25, Semrock, USA), are placed inside a filter wheel
and used to select the emission wavelengths. A rotation stage
(ADRS -100, Aerotech, USA) fixed at the center of the system

holds the imaging object. Here, the rotation stage is used to
adjust the imaging object for obtaining projections of any
view. The experiment data are collected in a single computer,
which is shown in Fig. 2. All the data are processed in special
GPU clusters (configuration in every node: Intel Core(TM) i7-
2600 CPU; 8 cores, 16 G memory, NVIDIAGeForce GTX 670).

The experiments are conducted with a phantom comprising a
transparent glass box (5.5 cm in length, 3.0 cm in width, and
4.2 cm in height) filled with Intralipid (Sichuan Kelun
Pharmaceutical Co. Ltd 25%), which can be diluted to adjust
the scattering coefficient. Two smaller transparent glass tubes
filled with DiR-BOA (1,1′-dioctadecyl-3,3,3′,3′-tetramethylin-
dotricarbocyanine iodide bisoleate, a lipid-anchored near-infra-
red fluorophore; ex. 748 nm, em. 780 nm) are employed as
fluorescent targets, designed to simulate multifluorophores in
biological tissue. The configuration of the phantom together
with the two targets is shown in Fig. 3(a).

In order to quantitatively verify the accuracy of the proposed
dfMC model, two groups of experiments are designed. In group
1, phantoms with different scattering coefficients are prepared.
Intralipid is diluted to 10, 6, and 2%, respectively, by adding
95% ethanol. These are then poured into three glass boxes,
respectively. The small tubes in the three boxes are injected
with the raw solution of DiR-BOA.43 In group 2, phantoms
with different specific absorption coefficients of the fluoro-
phores are prepared. Three glass boxes are filled with a 10%
Intralipid solution. The small tubes in the three glass boxes
are then injected with Dir-BOA, diluted to 20, 60, and 100%,
respectively. The optical properties of Intralipid and Dir-BOA
are determined by their concentrations, which are measured
by a spectrophotometer (Lamda 950, PerkinElmer, USA). In
detail, we use the spectrophotometer to measure the reflectivity
and transmissivity, and use the adding-doubling method to

Fig. 2 Sketch of experimental system.

Fig. 3 (a) Configuration of phantom together with two fluorescent tar-
gets and direction of source. (b) Voxel subdivision of fluorescence
phantom.
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calculate the optical coefficient from the measured data. Tables 1
and 2 summarize the optical properties of the phantoms in the
two groups. Because the absorption coefficient of the raw sol-
ution of Intralipid is very small, we set the fluorescence quantum
yield as 1 and the absorption coefficient and anisotropy factor of
the turbid media as 0.01 cm−1 and 0.9, respectively.44

3.2 Results

The phantom is dissected into voxels according to the computed
tomography data.42 The size of each voxel is 0.0348 cm. As
shown in Fig. 3(b), there are 160 × 160 × 121 voxels in the

model. The position and direction of the laser source are
shown in Fig. 3(a). In order to retain the precision of the
MC simulation, a large number of photon packets must be simu-
lated to obtain simulation results with an adequate signal-
to-noise ratio. Here, 108 photons are simulated in the wMC
simulation.

The accuracy of the dfMC model is affected by the optical
parameters of the turbid media. According to Eq. (11), the path
histories in the turbid media are mainly affected by the scattering
coefficient; the probability of the fluorescence excitation is
affected by the specific absorption coefficient of the fluoro-
phores. In contrast, the influence of the difference in the absorp-
tion coefficient between the excitation light and fluorescence
light on the accuracy of the dfMC model can be neglected if
there are enough photons. This is because the fluorescence stat-
istical quantity of the dfMC model is unbiased.

First, we verify the accuracy of the path histories of the exci-
tation photons by comparing the spatial distribution of the exci-
tation light intensity on the CCD detectors between the wMC
simulations and phantom experiments for three different scatter-
ing coefficients. Figures 4(a1)–4(a3), 4(b1)–4(b3), and 4(c1)–4
(c3) compare the normalized intensity of the excitation light
between the wMC and phantom experiments at scattering coef-
ficients of 44.1, 129.8, and 215.6 cm−1, respectively. Figures 4
(a3), 4(b3), and 4(c3) indicate the contour lines of the excita-
tion light.

Next, we evaluate the effects of the scattering coefficients of
the media and the specific absorption coefficients of the fluoro-
phores on the dfMC model’s accuracy. We compare the spatial
distributions of the fluorescence intensity on the CCD detectors
calculated by the dfMC model, the pfMC model,32 and exper-
imental measurements. Figures 5(a1)–5(a3), 5(b1)–5(b3), and 5
(c1)–5(c3) indicate the intensity of fluorescence light on the
CCD detectors with scattering coefficients of 44.1, 129.8,
and 215.6 cm−1, respectively, and fluorescent-specific absorp-
tion coefficients of 1 cm−1. Figures 5(a4) and 5(a5), 5(b4)

Table 1 List of optical parameters of phantom in group 1.

Phantom
μexs

(cm−1)
μexa

(cm−1) gex
μems

(cm−1)
μema

(cm−1)
μaf

(cm−1) gem

1 44.1 0.01 0.9 44.1 0.01 1.0 0.9

2 129.8 0.01 0.9 129.8 0.01 1.0 0.9

3 215.6 0.01 0.9 215.6 0.01 1.0 0.9

Table 2 List of optical parameters of phantom in group 2.

Phantom
μexs

(cm−1)
μexa

(cm−1) gex
μems

(cm−1)
μema

(cm−1)
μaf

(cm−1) gem

1 215.6 0.01 0.9 215.6 0.01 0.2 0.9

2 215.6 0.01 0.9 215.6 0.01 0.6 0.9

3 215.6 0.01 0.9 215.6 0.01 1.0 0.9

Fig. 4 Comparisons of excitation light intensity on CCD detectors between white Monte Carlo (wMC)
simulations and phantom experiments with (a1) to (a3) μs ¼ 44.1 cm−1, (b1) to (b3)
μs ¼ 129.8 cm−1, and (c1) to (c3) μs ¼ 215.6 cm−1; (a3), (b3), and (c3) indicate contour lines of excitation
light intensity.
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and 5(b5), and 5(c4) and 5(c5) compare the calculated and
experimental contour lines of the fluorescence intensity.
Figures 6(a1)–6(a3), 6(b1)–6(b3), and 6(c1)–6(c3) indicate
the intensity of the fluorescence light on the CCD detectors cal-
culated by the dfMC model, pfMC model, and phantom experi-
ments with specific fluorophore absorption coefficients of 0.2,
0.6, and 1.0 cm−1, respectively. Figures 6(a4) and 6(a5), 6(b4)
and 6(b5), and 6(c4) and 6(c5) compare the calculated and
experimental contour lines of the fluorescence intensity.

We report the statistical results comprising the standard
deviation of the relative errors of the fluorescence intensity
jðIMC − IExp:Þ∕IExp:j on the CCD detectors. Figures 7(a) and

7(b) indicate the standard deviation of the relative errors of
the fluorescence intensity between the dfMC model and
pfMC model toward phantom experiments for different scatter-
ing coefficients of the media and different specific absorption
coefficients of fluorophores, respectively.

4 Discussion and Conclusions
Theoretically, the accuracy of the dfMC model is mainly
affected by the scattering coefficient and the specific absorption
coefficients in the media. The scattering coefficient has a great
influence on the sampling of the path histories. Also, the specific
absorption coefficient determines the probability of the

Fig. 5 Comparisons of fluorescence intensity on CCD detectors among perturbation fluorescence Monte
Carlo (pfMC) model, decoupled fluorescence Monte Carlo (dfMC) model, and phantom experiments with
(a1) to (a3) μs ¼ 44.1 cm−1, (b1) to (b3) μs ¼ 129.8 cm−1, and (c1) to (c3) μs ¼ 215.6 cm−1; (a4) to (a5),
(b4) to (b5), and (c4) to (c5) indicate contour lines of fluorescence intensity calculated by pfMC model,
dfMC model, and phantom experiments.

Fig. 6 Comparisons of fluorescence intensity on CCD detectors among dfMC model, pfMC model, and
phantom experiments with (a1) to (a3) μaf ¼ 0.2 cm−1, (b1) to (b3) μaf ¼ 0.6 cm−1, and (c1) to (c3)
μaf ¼ 1.0 cm−1; (a4) to (a5), (b4) to (b5), and (c4) to (c5) indicate contour lines of fluorescence intensity
calculated by dfMC model, pfMC model, and phantom experiments.
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fluorescence excitation. Both of these affect the calculation of
the fluorescence signal and introduce some statistical noise.

Before the verification of the dfMC model, we must confirm
the accuracy of the path histories of the excitation photons gen-
erated in the media in the wMC simulation. In Fig. 4, we deter-
mine the accuracy through the comparison of the intensity of the
excitation light on the CCD between the wMC simulation and
experimental measurements. It can be seen that the wMC sim-
ulations agree well with the experiments with respect to the
shape of the intensity distribution as well as their relative
amplitudes for different scattering coefficients. The excellent
agreement of the intensity distribution between the wMC sim-
ulations and phantom experiments verifies the accuracy of the
wMC simulations, which also indicates the validity of the path
histories in the white MC simulations. This is because the MC
method is a statistical method that is suitable for solving prob-
lems of particle transport, such as nuclear physics. In the diffuse
optical field, the MC method has been widely developed, e.g.,
MCMV and MCX.38,39 The MC method is called the gold
standard.23

In order to determine whether the accuracy of the dfMC
model and pfMC model are affected by the optical parameters
of the media, such as the scattering coefficients and specific
absorption coefficients, we compare the intensity of the fluores-
cence light on the CCD among the dfMC model, the pfMC
model, and experimental measurements under different scatter-
ing coefficients and different specific absorption coefficients. As
indicated by Fig. 5, when the scattering coefficient changes from
44.1 to 215.6 cm−1, the intensity of the fluorescence light cal-
culated by the dfMC model exhibits a better agreement with the
experimental measurements than that calculated by the pfMC
model. Similarly, Fig. 6 shows that when the specific absorption
coefficients of the fluorophores change from 0.2 to 1.0 cm−1,
the intensity of the fluorescence light calculated by the dfMC
model exhibits a better agreement with the experimental meas-
urement than that calculated by the pfMC model. These results
suggest that the dfMC model can be quite accurate over a wide
range of scattering coefficients and specific absorption coeffi-
cients of fluorophores. This is because the dfMC model is
directly derived from the RTEs.11–12 Also, the dfMC ensures
that the fluorescence statistical quantities are unbiased, which
means that the dfMC model can be as accurate as the RTEs
if there are sufficient simulated photons. The discrepancies
between the dfMC simulations and measurements mainly
arise from statistical and measurement noise. In contrast, the
results suggest that the accuracy of the pfMC model is easily

affected by the scattering coefficients and specific absorption
coefficients. This is because the fluorescence statistical quan-
tities of the pfMC model are biased and, therefore, easily influ-
enced by the optical parameters. The discrepancies between the
pfMC model and measurements always exist, even in the
absence of statistical and measurement noise. Thus, the errors
of the pfMC model cannot be eliminated completely by increas-
ing the number of simulated photons. The dfMC model is more
accurate than the afMC model. The fluorescence statistical
quantities of the afMC model are also biased, because the
afMC model relies on the Born approximation and the equiva-
lence between the sources and detectors. These assumptions can
cause serious errors in some situations, especially in biological
tissues.

The differences among the dfMC model, pfMC model, and
experimental measurements are further studied by examining
the trends of the errors with changes in the optical parameters.
As shown in Fig. 7, the standard deviations of the relative errors
of the fluorescence intensity calculated by the dfMC model
toward the phantom experiments are less than 0.2. However,
the standard deviations of the relative errors of the fluorescence
intensity calculated by the pfMC model toward the phantom
experiments are more than 0.4. These results clearly indicate
that the accuracy of the dfMC model fluctuates slightly with
the scattering and specific absorption coefficients of fluoro-
phores, and it is more accurate than the pfMC model for the
same number of simulated photons. The errors of the dfMC
model comprise the statistical and measurement noise and
have no relation to the optical parameters, because the fluores-
cence statistical quantities of the dfMC model are unbiased.
Thus, the standard deviations of the relative errors are very
small if there are sufficient photons for the MC simulation.
However, the errors of the pfMC model are influenced by the
optical parameters in tissues apart from the statistical and meas-
urement noise, as the fluorescence statistical quantities of the
pfMC model are biased. The deviation of the pfMC model
increases as the heterogeneity and scattering coefficients
increase in tissues. Also, the accuracy increases as the specific
absorption coefficients increase because the probability of the
fluorescence excitation is influenced by the specific absorption
coefficients.

In the present dfMC model, we neglect the second excitation
of the fluorophores because the probability of the second exci-
tation is very small in most situations. This is widely accepted
by researchers for solving the forward and inverse problems of
FDOT.25,29 However, the resorption of the fluorescence photons
by the fluorophores is considered in the dfMC model. Thus, the
accuracy of the dfMC model is not affected by the number or
volume of fluorophores.

Our efforts to develop an efficient and accurate fluorescence
MC model were motivated by FDOT. Because the dfMC model
is derived from the RTEs and the fluorescence statistical quan-
tities are unbiased, the accuracy of the dfMC model is restricted
only by the statistical noise. Thus, the accuracy of the dfMC
model can be improved by increasing the photons for the
wMC simulation. However, this will increase the simulation
time. In order to solve this problem, two schemes are used to
improve the efficiency of the dfMC model. The first is to accel-
erate the wMC simulation, which can be achieved using GPU
clusters. With sufficient GPUs in the cluster, considerable time
can be saved for the fluorescence modeling. The second is to
increase the proportion of the effective photons to the total

Fig. 7 (a) Statistical errors of fluorescence intensity on CCD detectors
calculated by dfMC model and pfMC model toward phantom experi-
ments for μs ¼ 44.1, 129.8, and 215.6 cm−1. (b) Statistical errors of
fluorescence intensity on CCD detectors calculated by dfMC model
and pfMC model toward phantom experiments for μaf ¼ 0.2, 0.6,
and 1.0 cm−1.
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number of simulated photons using a two-step method,40

wherein the effective photons are defined as those reaching
the detectors. We employed these strategies to greatly improve
the efficiency of the dfMC model for the fluorescence calcula-
tion without reducing its accuracy.

In the present paper, we described a decoupled fluorescence
MC model for the direct computation of the fluorescence in tur-
bid media, along with its implementation and validation for
phantom experiments. The dfMC model is derived from the
RTEs and has an unbiased fluorescence statistical quantity. It
can be very accurate in calculating the fluorescence signal on
detectors and is also very efficient. Therefore, the dfMC
model is suitable for solving the forward and inverse problems
of FDOT. In the future, the dfMC model can be expanded into a
time-domain fluorescence model,45 and its efficiency can be fur-
ther improved by combining with other methods, such as the
controlled MC, whereby the direction of the scattering is set
toward the detectors.46 In addition, the dfMC model can expand
its utility by incorporating the second excitation of fluorophores.
The dfMC model has great potential for application in fluores-
cence-based in vivo tomography.
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