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Abstract. Time-deconvolution of the instrument response from fluorescence lifetime imaging microscopy (FLIM)
data is usually necessary for accurate fluorescence lifetime estimation. In many applications, however, the
instrument response is not available. In such cases, a blind deconvolution approach is required. An iterative
methodology is proposed to address the blind deconvolution problem departing from a dataset of FLIM mea-
surements. A linear combination of a base conformed by Laguerre functions models the fluorescence impulse
response of the sample at each spatial point in our formulation. Our blind deconvolution estimation (BDE) algo-
rithm is formulated as a quadratic approximation problem, where the decision variables are the samples of the
instrument response and the scaling coefficients of the basis functions. In the approximation cost function, there
is a bilinear dependence on the decision variables. Hence, due to the nonlinear nature of the estimation process,
an alternating least-squares scheme iteratively solves the approximation problem. Our proposal searches for the
samples of the instrument response with a global perspective, and the scaling coefficients of the basis functions
locally at each spatial point. First, the iterative methodology relies on a least-squares solution for the instrument
response, and quadratic programming for the scaling coefficients applied just to a subset of the measured fluo-
rescence decays to initially estimate the instrument response to speed up the convergence. After convergence,
the final stage computes the fluorescence impulse response at all spatial points. A comprehensive validation
stage considers synthetic and experimental FLIM datasets of ex vivo atherosclerotic plaques and human breast
cancer cell samples that highlight the advantages of the proposed BDE algorithm under different noise and initial
conditions in the iterative scheme and parameters of the proposal. © 2015 Society of Photo-Optical Instrumentation Engineers
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1 Introduction
Fluorescence microscopy imaging is a powerful noninvasive
technique that allows a biochemical characterization of biologi-
cal tissue for medical and biophysical applications.1–4 Specifi-
cally, multispectral fluorescence lifetime imaging microscopy
(m-FLIM) captures the time-resolved response to a laser exci-
tation at different spectral channels in order to record the optical
emission of synthetic or endogenous fluorophores.5 Different
studies in the literature have shown the potential of FLIM infor-
mation for providing an early and noninvasive diagnosis tool for
different pathologies, as cardiovascular and dermatology dis-
eases,6–9 oral precancer conditions,10 colonic dysplasia,11 or
measuring therapeutic responses of anticancer drugs.12,13 In
order to provide quantitative evaluations of m-FLIM informa-
tion, the datasets are first processed to isolate the instrument
signature and extract the intrinsic fluorescence response of
the studied sample. Departing from a linear interaction in the
measured fluorescence decay due to the optic excitation, a con-
volution model is adopted where the fluorescence impulse
response denotes the distinctive signature of the sample that is
usually characterized by a multiexponential model14–16 or by

a Laguerre basis.17–19 This process is usually called deconvolu-
tion in the FLIM literature.1–4 Once the fluorescence impulse
response has been identified at each spatial point of the sample,
the lifetime per spectral channel and normalized intensities are
used to provide quantitative features for classification purposes
of the m-FLIM dataset.10 Meanwhile, a graphical perspective is
the phasor approach that provides a two-dimensional (2-D) vis-
ual representation of each spatial point in the dataset by mapping
the identified fluorescence impulse response per spectral band.
Classification or linear unmixing can be achieved from this 2-D
representation, as suggested in Ref. 20 and 21.

The main two trends in deconvolution algorithms depend on
the structure of the fluorescence impulse response. The first
approach assumes a linear combination of exponential functions
that characterize the response of each fluorophore in the sam-
ple.4,13 Thus, the free parameters in this model are the character-
istic times for the exponential functions and their scaling
coefficients. In this case, the scalings are linear variables in the
model, but the characteristic times exhibit a nonlinear depend-
ency. Hence, a nonlinear approximation problem is formulated
to compute the free variables and minimize the prediction error,
which can be iteratively solved by nonlinear least squares22,23 for
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each spatial point in the sample. Furthermore, if the character-
istic times are assumed invariant in all the samples, then there
are few parameters involved in the optimization scheme, and
this concept is called the global approach.14–16 Meanwhile, in
Refs. 24 and 25, by addressing the properties of the optical
instrumentation, the exponential profiles can be affected by
uncertainty in the photon counts, which can be modeled as
Poisson noise. Thus, the problem of Poisson–Gaussian param-
eter estimation has recently caught the attention of the scientific
community. On the other hand, the second approach for decon-
volution considers that a linear combination of discrete-time
Laguerre functions models the fluorescence impulse response;
this technique is referred to as the model-free scheme. In this
way, the scaling coefficients of the Laguerre functions are linear
variables in the residual, so a least-squares estimation can be
followed.17,18 One disadvantage of the Laguerre basis is that
for some cases, the resulting fluorescence impulse responses
might not have a monotonic decay. Therefore, a constrained
quadratic optimization has to be applied to compute the scaling
coefficients, where the restrictions are imposed to the second-
or third-order time derivatives of the resulting fluorescence
impulse responses.19

One disadvantage of the deconvolution algorithms from the
literature is the requirement of a previous recording of the FLIM
instrument response. In addition, while computing the deconvo-
lution methodology, the instrument response has to be carefully
aligned with the fluorescence decay measurements in order to
avoid dead-times, which could be a time-consuming task due
to noise, and could also bias the lifetime estimations. Hence,
the contribution of this work is to present a blind deconvolution
estimation (BDE) algorithm that does not require previous
knowledge of the instrument response in the m-FLIM setup.
For this purpose, we consider that the fluorescence impulse
response is characterized by a linear combination of Laguerre
functions. Our BDE algorithm searches for the instrument
response samples with a global perspective, meanwhile the scal-
ing coefficients of the basis functions are computed for each
point in the sample. Since the residual exhibits a bilinear
dependency on the decision variables, and alternating least-
squares (ALS) methodology iteratively estimates the instrument
response and scaling variables.26,27 The recurrent steps in the
BDE algorithm rely on constrained quadratic programming
and least-squares solutions. In this way, our BDE method jointly
provides an estimation of the instrument and fluorescence
impulse responses in the sample. Our synthetic and experimen-
tal results with ex vivo atherosclerotic plaques and human breast
cancer cell samples show that the proposal is robust to uncer-
tainty in the measured fluorescence decays and variations in
the initial conditions.

The notation used in this paper is described next. Scalars are
denoted by italic letters, and vectors and matrices by lower-case
and upper-case bold letters, respectively. R and Z represent the
real and integer numbers, RN N-dimensional real vectors, and
cardðΩÞ the cardinality of a set Ω. For a real vector x, the trans-
pose operation is denoted by x⊤, the Euclidean norm by
kxk2 ¼

ffiffiffiffiffiffiffiffi
x⊤x

p
, and x ⪰ 0 represents that each component in

the vector is positive or zero. For a square matrix X ∈ RN×N ,
Xi;j represents the element in the i’th row and j’th column
(i; j ∈ ½1; N�), TrðXÞ ¼ P

iXi;i denotes the trace operation,

kXkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðX⊤XÞ

p
denotes the Frobenius norm, and kXk∞ ¼

maxi
P

N
j¼1 jXi;jj denotes the maximum absolute row sum

norm. X ⪰ 0 represents that each component in the matrix is

non-negative. Ya∶b ∈ Rðb−aþ1Þ×M represents the block matrix
extracted from Y ∈ RN×M by its rows a to b (1 ≤ a <
b ≤ N). For all vectors x ∈ RN and y ∈ RM, Tx;y ∈ RN×M

denotes a toeplitz matrix with x and y⊤ as its first column
and row, respectively, where the first entry in x and y must
be equal. An N-dimensional vector filled with ones (zeros) is
represented by 1N (0N), and IN denotes the identity matrix of
order N. For a random variable x, x ∼ U½a; b� represents that
x is uniformly distributed in the interval ½a; b� (b > a), and x ∼
N ð0; σ2Þ that x is normally distributed with zero mean and vari-
ance σ2.

2 Problem Formulation
First, the deconvolution of FLIM data is expressed in discrete
time by assuming that the measured fluorescence decays and
instrument response are sampled with a period T over a spatial
domain ofK points in the dataset.1–3 Therefore, by considering a
time window of L samples and a causal response,28 the obser-
vation model for the l’th time sample and k’th spatial point is
given by

yk½l� ¼ u½l�⋆hk½l� þ vk½l� (1)

¼
XL−1
j¼0

u½l − j�hk½j� þ vk½l� ∀ l ∈ ½0; L − 1�;

k ∈ ½0; K − 1�;
(2)

where yk½l�, u½l�, and hk½l� denote the measured fluorescence
decay, instrument response, and fluorescence impulse response
samples, respectively, ⋆; stands for the convolution operation,
and vk½l� represents the random noise related to the instrumen-
tation or measurement uncertainty. A block diagram of the
observation model in our formulation is presented in Fig. 1. In
our framework, the effect of scattering can be modeled as a
scaled factor Ak > 0 of the instrument response in the observa-
tion model,4,13 i.e., yk½l� ¼ ðhk½l� þ Akδ½l�Þ⋆u½l� þ vk½l�, where
δ½l� denotes the discrete-time delta function. Therefore, the esti-
mation of the instrument response u½l�will not be affected by the
scattering component, since the structure of the observation
model is not modified with respect to u½l�. Although this com-
ponent could potentially introduce a distortion of the estimated
impulse response function, that is, ðhk½l� þ Akδ½l�Þ instead of

Instrument response

Tissue sample Measured fluorescence
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y
1
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1
[l] u[l]+v

1
[l]

y
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[l] u[l]+v
K-1
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Fig. 1 Fluorescence lifetime imaging microscopy (FLIM) observation
model.
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hk½l�, this a common problem to all deconvolution methods.
However, it has been shown that the scattering effect is not
significant for endogenous tissue FLIM.29 In general, the decon-
volution formulation is an ill-posed inverse problem that can
have multiple solutions.1–3 Therefore, to restrict the search space
and to have a tractable problem, in our formulation, there are
two key assumptions:

1. The instrument response u½l� is common to all K spa-
tial points in the dataset, and its samples are non-neg-
ative and normalized to sum one in time domain, i.e.,

XL−1
l¼0

u½l� ¼ 1 and u½l� ≥ 0 ∀ l ∈ ½0; L − 1�;

(3)

2. The fluorescence impulse response hk½l� at each spatial
sample k and time instant l can be represented by a
linear combination of N discrete-time basis functions
fbn½l�gN−1

n¼0 also common to all the spatial points.

Assumption 1 allows to restrict the search among all possible
instrument responses, and to avoid numerical scaling problems
in the estimation of u½l�. Nonetheless, the shape of the resulting
instrument response is not limited as our validation section will
show. Meanwhile, assumption 2 allows to formulate the estima-
tion problem as constrained quadratic programming or least-
squares approximations, which can be efficiently solve by
numerical optimization algorithms.23 These two conditions will
be exploited to achieve the blind deconvolution of the dataset as
explained next. First, the observation model in Eq. (1) can be
written in a vector notation as

2
6664

yk½0�
yk½1�
..
.

yk½L − 1�

3
7775

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
yk∈RL

¼

2
6664

u½0� 0 : : : 0

u½1� u½0� : : : 0

..

. ..
. . .

. ..
.

u½L − 1� u½L − 2� : : : u½0�

3
7775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
U∈RL×L

2
6664

hk½0�
hk½1�
..
.

hk½L − 1�

3
7775

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
hk∈RL

þ

2
6664

vk½0�
vk½1�
..
.

vk½L − 1�

3
7775

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
vk∈RL

; (4)

⇒ yk ¼ Uhk þ vk ∀ k ∈ ½0; K − 1�; (5)

and as a result, the input matrix U has a toeplitz structure30

that does not depend on the spatial location of the sample.
In this matrix formulation, the restrictions in Eq. (3) for
the instrument response can be written as

kUk∞ ¼ 1 and U ⪰ 0 (6)

Next, by assumption 2, the fluorescence impulse response
at k’th spatial location is characterized by the scaling coef-
ficients fck;ngN−1

n¼0 of the basis functions:

hk½l� ¼
XN−1

n¼0

ck;nbn½l� ∀ l ∈ ½0; L − 1�; (7)

where the coefficients ck;n ∈ R are selected such that the
estimated fluorescence decay matches the measurement,
and the resulting time-response has some smoothness
property to represent the response of biological sam-
ples.17–19 The fluorescence impulse responses estimated
from FLIM data involve some smoothness properties that
in turn constrain the linear model in Eq. (7).1–3 Hence, the
estimated response must be monotonically decreasing to
have a biological meaning at any spatial point. As a result,
the time derivative of the fluorescence impulse response
has to be negative definite (h 0

k < 0 ∀ k), but without inflec-
tion points or curvature changes. Thus, an alternative
restriction is to consider a positive definite condition on
the second-order time derivative (h 0 0

k > 0), or a negative

semidefinite on the third-order derivative (h 0 0 0
k ≤ 0).19 The

instantaneous expression in Eq. (7) can be also written in
vector notation to gather all the time samples as

hk ¼ Bck ∀ k ∈ ½0; K − 1�; (8)

where

B ¼

2
6664

b0½0� b1½0� : : : bN−1½0�
b0½1� b1½1� : : : bN−1½1�
..
. ..

. . .
. ..

.

b0½L − 1� b1½L − 1� : : : bN−1½L − 1�

3
7775 ∈ RL×N;

(9)

ck ¼ ½ck;0: : : ck;N−1�⊤ ∈ RN: (10)

In the analysis of FLIMmeasurements, a well-known basis is
the Laguerre functions:17–19

bn½l� ¼ α
1
2
ðl−nÞ ffiffiffiffiffiffiffiffiffiffiffi

1 − α
p Xn

i¼0

ð−1ÞiðliÞðniÞαn−ið1 − αÞi

∀ n ∈ ½0; N − 1�; l ∈ ½0; L − 1�; (11)

where α ∈ ð0; 1Þ is a free parameter. Consequently, by consid-
ering measurement noise, the observation model in Eq. (1) can
be compactly expressed as

yk ¼ UBck þ vk ∀ k ∈ ½0; K − 1�: (12)

By collecting all the spatial measurements in a matrix nota-
tion, the following model is obtained
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Y ¼ UBC þ V; (13)

where

Y ¼ ½y0: : : yK−1� ∈ RL×K; (14)

C ¼ ½c0: : : cN−1� ∈ RN×K; (15)

V ¼ ½v0: : : vK−1� ∈ RL×K: (16)

In this way, according to the observation model in Eq. (13),
the blind deconvolution problem is jointly defined as obtaining
the input and coefficients matrices ðU;CÞ to approximate the
measurements information Y. Hence, our methodology can be
formulated as an optimal quadratic approximation problem:23

min
U;C

1

2
kY − UBCk2F|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

J

; such that kUk∞ ¼ 1 and U ⪰ 0:

(17)

Therefore, there is a nonlinear interaction in the cost function
J between the optimization variables U and C. One important
advantage of the previous formulation is that the input matrix U
has a toeplitz structure.30 Therefore, to construct this matrix,
only L values are needed. Moreover, in FLIM applications, the
instrument response is a narrow pulse, so there is no need to
estimate all the L terms, since many will be zero. Hence, we
consider only the first L̂ terms ðL̂ < LÞ to represent the instru-
ment response. In this way, the input matrix U in Eq. (4) can be
parametrized as a linear combination of L̂ toeplitz matrices
Uo

l ∈ RL×L

U ¼
XL̂−1
l¼0

θlUo
l ; (18)

where the parameter θl ¼ u½l� represents l’th sample in the
instrument response, and

Uo
l ¼ Txl;yl ∈ RL×L; (19)

xl ¼ ½0Tl 1 0TL−l−1�⊤ ∈ RL; (20)

yl ¼ ½1 0TL−1�⊤ ∈ RL: (21)

To illustrate the toeplitz structure of matrices Uo
l , the corre-

sponding ones for indices l ¼ 0; 1 and 2 are shown next

Uo
0 ¼ IL;

Uo
1 ¼

2
66666664

0 0 : : : 0 0

1 0 : : : 0 0

0 1 : : : 0 0

..

. ..
. . .

. ..
. ..

.

0 0 : : : 1 0

3
77777775
;

Uo
2 ¼

2
66666666664

0 0 : : : 0 0 0

0 0 : : : 0 0 0

1 0 : : : 0 0 0

0 1 : : : 0 0 0

..

. ..
. . .

. ..
. ..

. ..
.

0 0 : : : 1 0 0

3
77777777775
: (22)

One advantage of the parametric representation in Eq. (18) is
that the normalization condition in Eq. (3) for the instrument
response can be easily incorporated into the optimization formu-
lation. In this way, the blind deconvolution scheme in Eq. (17)
can be rewritten as

min
fθlgL̂−1l¼0

;C

1

2

����Y −
XL̂−1
l¼0

θlUo
l BC

����
2

F

such that
X
l

θl ¼ 1 and θl ≥ 0 ∀ l ∈ ½0; L̂ − 1�: (23)

3 Time Restrictions on the Fluorescence
Impulse Response

In Ref. 19, to facilitate the computation of the scaling coeffi-
cients through numerical optimization, a negative semidefinite
condition (h 0 0 0

k ≤ 0) is imposed on the third-order time deriva-
tive (NSC-TOTD). This restriction can be written as a linear
vector inequality for the scaling coefficients ck in Eq. (8) at
k’th spatial location. For this purpose, we employ a numerical
approximation for the TOTD based on the central difference
approach for l’th time instant and k’th spatial point:22

h 0 0 0
k ½l� ¼ −hk½lþ 3� þ 8hk½lþ 2� − 13hk½lþ 1� þ 13hk½l − 1� − 8hk½l − 2� þ hk½l − 3�

8T3
; (24)

where to evaluate h 0 0 0
k ½l� besides the l’th sample, six more

time samples are needed. Therefore, by using a vector nota-
tion, the discrete-time approximation of the TOTD of the
fluorescence impulse response at k’th spatial location is

h 0 0 0
k ¼ Ack ∈ RL−6; (25)

where

A ≜
1

8T3
ð−B7∶L þ 8B6∶L−1 − 13B5∶L−2 þ 13B3∶L−4

− 8B2∶L−5 þ B1∶L−6Þ ∈ RðL−6Þ×N: (26)

Following this vector notation, the following linear vector
inequality can represent the time-domain restrictions on the
fluorescence impulse response for the scaling coefficients ck
at the k’th spatial point:
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Ack ≤ 0 ∀ k ∈ ½0; K − 1�: (27)

4 Quadratic Optimal Approximation
From the previous results in Eqs. (23) and (27), the blind
deconvolution problem with time-domain restrictions in the
fluorescence impulse response can be formulated as a quadratic
constrained optimization scheme with linear equality and
inequality conditions

min
fθlgL̂−1l¼0

;C

1

2

����Y −
XL̂−1
l¼0

θlUo
l BC

����
2

F

such that
X
l

θl ¼ 1; θl ≥ 0 ∀ l ∈ ½0; L̂ − 1�;

Ack ≤ b ∀ k ∈ ½0; K − 1�: (28)

The proposed optimization scheme in Eq. (28) has a particu-
lar structure that has not been investigated in the literature so
far. For example, in linear unmixing problems or non-negative
matrix factorization,27,31–33 the measured fluorescence decays
matrix Y is decomposed as the product of two matrices that
have certain properties: positivity and/or normalization condi-
tions. However, in Eq. (28), the parametric structure of the
decision variables θl and the presence of the product matrix
Uo

l B oversee a new formulation. In fact, since the cost function
in Eq. (28) involves the product of the decision variables��

θl
�
L̂−1
l¼0

;C
�
, and the constraints can be divided into time-

domain and spatial restrictions, similar to Refs. 26, 27, and 31,
a solution based on ALS is pursued. Hence, first given an initial
condition for the unknown parameters

θ0 ¼
h
θ00; θ

0
1; : : : ; θ

0

L̂−1

i
⊤
;

the optimal scaling coefficients ck are calculated for each spatial
location k by an optimal approximation method. The initial
instrument response vector θ0 can be chosen from some a priori
information, or as a general square pulse. In this work, we also
consider a signal that employs the mean spatial measurements of
the FLIM dataset to shape the initial input vector. Next, fixing
the coefficients ck and considering the whole dataset, our pro-
posal calculates the optimal instrument response sequence θ ¼
½θ0; : : : ; θL̂−1�⊤ that minimizes the quadratic cost function. This
iterative procedure is repeated until a convergence condition is
satisfied with respect to the estimation error or when a maximum
number of iterations is reached. Next, both optimization steps
are expanded to formulate them as quadratic or least-squares
approximation problems.23

4.1 Estimation of Scaling Coefficients

Assuming that the parameters fθlgL̂−1l¼0 are given, then the input
matrix U can be computed from Eq. (4). Since the scaling coef-
ficients are estimated for each spatial point k ∈ ½0; K − 1�, a
local constrained least-squares estimation (CLSE) is formulated
from Eq. (28) as

min
ck

1

2
kyk − UBckk22 ¼ min

ck

1

2
c⊤kHck − f⊤k ck

such that Ack ≤ 0;
(29)

where H ¼ B⊤U⊤UB, fk ¼ B⊤U⊤yk, and A is given by
Eq. (26). Alternatively, the previous optimization problem can
be efficiently solved by its dual formulation23 as a non-negative
least-squares approximation (NNLSA):19

ξ� ¼ argmin
ξ≥0

kRðA⊤ξ − fkÞk22; (30)

where R⊤R ¼ H−1 is obtained by a Cholesky factorization, and
the optimal scaling coefficients are

ck ¼ H−1ð−A⊤ξ� þ fkÞ: (31)

Since matrices H and A in Eq. (29) are constant for any spatial
point in the dataset, matrix R can be computed just once for the
whole dataset and some terms in Eqs. (30) and (31) can be also
precalculated to speed up the numerical implementation. None-
theless, the computational time of the estimation process in
Eq. (30) can be raised if the number of spatial locations is large
in the FLIM dataset. Nonetheless, this step in the BDE algorithm
can be further paralleled. In addition, to speed up the convergence
of the ALS structure, we propose to use a small subset of the
whole FLIM dataset in the iterative scheme until convergence is
reached. At this step, the purpose will be to have a good estimate
of the instrument response. Next, in a final step, provided this
estimated response, the CLSE in Eq. (29) or NNLSA in Eq. (30)
will be applied to all the spatial points in the FLIM dataset to
compute the scaling coefficients, and as a result, the fluorescence
impulse responses. We propose an equidistant spatial downsam-
pling of sizeD ∈ Z (D > 1) for the FLIM measurements’matrix
Y to obtain its reduced version (column-wise) Ŷ ∈ RL×K̂ , with
K̂ ¼ bK∕Dc, where b c denotes the floor function. As another
alternative, the reduced measurement matrix Ŷ could be computed
by randomly selecting K̂ < K columns of the original matrix Y.

4.2 Instrument Response Estimation

In this step, the scaling coefficients’matrix C is assumed known
in the cost function in Eq. (28), and the optimization is com-
puted with respect to the parameters fθlgL̂−1l¼0 of the instrument
response. In this case, a closed-form solution can be calculated
as will be shown next by using the whole FLIM dataset. First,
the approximation cost function in Eq. (28) is augmented to
include the normalization condition

P
lθl ¼ 1 by a Lagrange

multiplier:23

Ĵ ¼ 1

2
Tr

	

Y −

XL̂−1
l¼0

θlUo
l BC

�⊤

Y −

XL̂−1
i¼0

θiUo
i BC

�
�

þ μ


XL̂−1
l¼0

θl − 1

�
(32)

¼ 1

2
TrfY⊤Yg −

XL̂−1
l¼0

θlTrfY⊤Uo
l BCg

þ 1

2
Tr

�	XL̂−1
l¼0

θlC⊤B⊤ðUo
l Þ⊤


XL̂−1
i¼0

θiUo
i BC

��

þ μ


XL̂−1
l¼0

θl − 1

�
(33)
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where μ ≥ 0 is the Lagrange multiplier related to the equality
condition. Therefore, the stationary optimality conditions are

∂Ĵ
∂θm

¼ 0 ∀ m ∈ ½0; L̂ − 1� and
∂Ĵ
∂μ

¼ 0; (34)

which result in the following set of equations

XL̂−1
l¼0

θlTrfC⊤B⊤ðUo
mÞ⊤Uo

l BCg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
δm;l

þ μ ¼ TrfY⊤Uo
mBCg|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

bm

∀ m ∈ ½0; L̂ − 1�

(35)

XL̂−1
l¼0

θl ¼ 1: (36)

Consequently, a system with L̂þ 1 linear equations and
L̂þ 1 unknown variables is obtained

2
6664

δ0;0 : : : δ1;L̂−1 1

..

. . .
. ..

. ..
.

δL̂−1;0 : : : δL̂−1;L̂−1 1

1 : : : 1 0

3
7775

2
6664

θ0
..
.

θL̂−1
μ

3
7775 ¼

2
6664

b0
..
.

bL̂−1
1

3
7775; (37)

whose solution provides the optimal parameters
�
θl
�
L̂−1
l¼0

. If a
resulting parameter θl̂ violates the non-negativity condition,
a practical solution inside the iterative process of BDE is to
set it to zero (θl̂ ¼ 0) and rescales the parameters to keep the
normalization condition (

P
lθl ¼ 1).

4.3 Blind Deconvolution Estimation

Finally, by considering the NNLSA in Eq. (30) for the scaling
coefficients due to its faster implementation compared to CLSE
in Eq. (29), and the closed-form solution for the instrument
response in Eq. (37), the overall BDE algorithm is outlined
next (see Fig. 2).

I. Initialization and Selection of Reduced Dataset:
Provide the FLIM measurements matrix Y and based
on the selected spatial downsampling D, the reduced

dataset Ŷ is constructed. Define the number of samples
to be estimated from the instrument response L̂ and its
initial condition θ0, a maximum number of iterations
tmax, a convergence threshold for the estimation error
κ, and the basis functions

�
bn½l�

�
N−1
n¼0

to construct
B. Set t ¼ 0 and J0 ¼ 106. From θ0, compute the
input matrix U0 from Eq. (4).

II. Estimation of Scaling Coefficients of Laguerre
Functions: Set t ¼ tþ 1, and for the reduced set of
spatial locations k ∈ ½0; K̂ − 1�with Ut−1, compute the
NNLSA for ctk in Eqs. (30) and (31). Construct the
resulting scaling coefficients matrix Ct in Eq. (15).

III. Estimation of Instrument Response: Fixing Ct, evalu-
ate the optimal input parameters θt from Eq. (37). The
resulting input matrix Ut is obtained from Eq. (18).

IV. Convergence Test: Calculate the estimation error at
t stage as Jt ¼ kY − UtBCtkF, and evaluate the error
improvement ΔJt ¼ jJt − Jt−1j with respect to the
previous iteration t − 1. If ΔJt > κ and t ≤ tmax go to
II, otherwise continue.

V. Estimation of Scaling Coefficients of Laguerre
Functions on the Whole Dataset: For the complete set
of locations k ∈ ½0; K − 1� with Ut, compute the
NNLSA for ctk in Eqs. (30) and (31).

VI. Compute Final Estimations of Fluorescence Impulse
Responses and Measured Fluorescence Decays: If we
assume that the algorithm stops at t̂’th iteration with
outputs ðθt̂;Ct̂Þ, the final estimations are given by

û½l� ¼
�
θt̂l; 0 ≤ l ≤ L̂ − 1

0; L̂ ≤ l ≤ L − 1
;

ĥk ¼ BCt̂ ⇒ ĥk½l� ¼
XN−1

n¼0

ct̂k;nbn½l�

∀ l ∈ ½0; L − 1�; k ∈ ½0; K − 1�;

ŷk ¼ Ut̂BCt̂ ⇒ ŷk½l� ¼
XN−1

n¼0

ct̂k;nû½l�⋆bn½l�; (38)

where the input matrix Ut̂ is constructed from θt̂

according to Eq. (4).

5 Synthetic and Experimental Validation
This section presents the validation of the BDE algorithm
by considering two cases: synthetic and experimental FLIM

Fig. 2 Block diagram of blind deconvolution estimation.
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datasets. For both cases, the estimation errors on the instrument
response and measured fluorescence decays will be evaluated,
and in the synthetic experiments, we also quantify the error on
the resulting fluorescence impulse responses. In addition, the
error on four different initial conditions in the instrument
response will be analyzed, as well as different scenarios for shot
noise in the synthetic fluorescence decays.34 Meanwhile, in the
experimental evaluation, we consider a comparison for different
values of the spatial downsampling factor in step II of BDE, and
a quantification of the lifetime in the fluorescence impulse
responses. We point out that in the FLIM literature there is no
other algorithm able to perform blind deconvolution that could
provide a comparison benchmark.

5.1 Synthetic Evaluation

The synthetic dataset was generated by considering the mea-
sured instrument response in Ref. 7 with a sampling interval
T ¼ 250 ps and a length of 256 samples (L ¼ 256). This signal
u½l� has a sharp rising time and a subsequent exponential decay
(see top plots in Fig. 4), and its normalized to sum 1, i.e.,P

lu½l� ¼ 1 (assumption 1 in Sec. 2). The fluorescence impulse
response at each spatial point k is modeled as a sum of three
exponential functions:

hk½l� ¼
X3
i¼1

ak;ie
−l T

τk;i ∀ k ∈ ½0; K − 1�; l ∈ ½0; L − 1�;

(39)

where the magnitudes and characteristic times of these functions
are randomly chosen for any spatial point, i.e., ak;i ∼ U½0; 50�
and τk;i ∼ U½0.01; 6� ns ∀ k; i. Next, the synthetic uncorrupted
fluorescence decays yok ½l� are computed by applying the convo-
lution operator in Eq. (1), i.e., yok ½l� ¼ u½l�⋆hk½l�. In our evalu-
ation, we included shot noise in the measurements to take into
account uncertainty in the equipment according to the following
model:34

yk½l� ¼ yok ½l� þ
ffiffiffiffiffiffiffiffiffi
yok ½l�

q
· ωk½l� ∀ l ∈ ½0; L − 1�; (40)

where ωk½l� ∼N ð0; σ2kÞ represents a normal random variable,
and its variance σ2k is selected with respect to a desired peak
signal-to-noise ratio (PSNR),

PSNR ¼ 10 log10
maxl∈½0;L−1�yok ½l�

σ2k
∀ k ∈ ½0; K − 1�:

(41)

By assuming that û½l�, ĥk½l� and ŷk½l� denote the estimations
by the BDE algorithm in Eq. (38), we compute three perfor-
mance metrics to evaluate the accuracy of the methodology
over the whole dataset:

Eu ¼
P

L−1
l¼0 ðu½l� − û½l�Þ2P

L−1
l¼0 ðu½l�Þ2

Eh ¼
P

K−1
k¼0

P
L−1
l¼0 ðhk½l� − ĥk½l�Þ2P

K−1
k¼0

P
L−1
l¼0 ðhk½l�Þ2

Ey ¼
P

K−1
k¼0

P
L−1
l¼0 ðyk½l� − ŷk½l�Þ2P

K−1
k¼0

P
L−1
l¼0 ðyk½l�Þ2

: (42)

These three indices ðEu; Eh; EyÞwill give an indication of the
weight of the error energy with respect to the estimated instru-
ment response, fluorescence impulse responses, and measured
fluorescence decays in a percentage fashion. Since the construc-
tion of the synthetic datasets involved random samples, we carry
out a Monte Carlo evaluation by implementing the BDE algo-
rithm according to the parameters listed in Table 1, whose selec-
tion is explained next. For the Laguerre functions,17,18 the order
of the approximation was set to 8th for the fluorescence impulse
responses (N ¼ 8), and their shape parameter was selected as
α ¼ 0.85 by a trial and error method. Nonetheless, the two
parameters N ¼ 8 and α ¼ 0.85 were pretty robust throughout
our whole validation stage, since we did not have to modify
them for the synthetic and experimental scenarios, although they
represent different types of FLIM datasets. In the synthetic
evaluation, 3600 spatial samples were generated by Eqs. (39)
and (40) at different PSNRs (15, 20, 25, and 30 dB), and the
resulting datasets were analyzed by the BDE algorithm,
i.e., K ¼ 3600. The spatial downsampling inside the iterative
process at step II of the BDE was set to D ¼ 8, i.e., only K̂ ¼
K∕D ¼ 450 spatial samples were employed to estimate the
instrument response. In our evaluation, this reduced number
of measurements K̂ was low enough to minimize the complexity
in the estimation of the instrument response, but still provided
enough information to precisely reconstruct it. Meanwhile, the
whole time evolution of the instrument response is captured in
less than 13.75 ns, so we selected its estimated number of sam-
ples as L̂ ¼ 55, which corresponds to this time by the assigned
sampling interval T. Finally, to evaluate convergence in the
iterative process of the BDE (see Fig. 2), we set the maximum

Table 1 Parameters of synthetic dataset and blind deconvolution
estimation (BDE) implementation during the synthetic evaluation.

Parameter Value

Ts 0.250 ns

K 3600

L 256

L̂ 55

D 8

N 8

α 0.85

tmax 20

κ 0.01
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number of iterations as tmax ¼ 20 and the convergence preci-
sion as κ ¼ 0.01, as a good balance between precision and
complexity in our evaluations. All the data processing was
carried out in MATLAB®. In order to study the performance
under different initialization signals, four prototypes were
chosen according to the mean spatial measurement in the
dataset:

ym½l� ¼


1

K

�XK−1
k¼0

yk½l� ∀ l ∈ ½0; L − 1�; (43)

and its energy Γ ¼ P
L−1
l¼0 ðym½l�Þ2. The initial instrument

responses ðu0;1; u0;2; u0;3; u0;4Þ are analytically described by

u0;1½l� ¼
�
1; l ∈ I 1

0; elsewhere
; (44)

u0;2½l� ¼
8<
:

1; l ∈ I1

0.1; l ∈ I2

0; elsewhere

; (45)

u0;3½l� ¼
8<
:

ym;1½l�; l ∈ ½0; Imax�
ym;2½ðl − Imax − 1Þ · η�; l ∈ ½Imax þ 1; Imax þ 1þ ðL − 1 − Imax − 1Þ∕η�
0; elsewhere

; (46)

u0;4½l� ¼
8<
:

ym;1½l�; l ∈ ½0; Imax�
ym;1½2Imax − l�; l ∈ ½Imax þ 1; 2Imax�
0; elsewhere

; (47)

where

I 1 ¼ fl ∈ ½0; L − 1�j0 < ðym½l�Þ2∕Γ ≤ Ω1g; (48)

I 2 ¼ fl ∈ ½0; L − 1�jΩ1 < ðym½l�Þ2∕Γ ≤ Ω2g; (49)

Imax ¼ arg max
l∈½0;L−1�

ym½l�; (50)

ym;1½l� ¼ ym½l� ∀ l ∈ ½0; Imax�; (51)

ym;2½l� ¼ ym½lþ Imax þ 1� ∀ l ∈ ½0; L − 1 − Imax − 1�;
(52)

Ω1;Ω2 ∈ ð0; 1Þ, (Ω1 < Ω2), and η ∈ Z (η > 1). In this
way, I1 and I2 are the sets of time indices such that
the energy of the mean spatial fluorescence decay meas-
urement ym½l� is below Ω1%, and between Ω1% and Ω2%
of its maximum value, respectively; Imax is the time index
for the peak value in the mean measurement; and ym;1½l�
and ym;2½l� are the extracted signals below and above the
peak mean measurement, respectively. In this way, the ini-
tial instrument responses take the following shapes:

• u0;1 represents a square pulse with time duration of Ω1%
the energy of the mean fluorescence decay;

• u0;2 describes a two-step staircase signal with first-step
duration of Ω1% the energy of the mean fluorescence
decay, and second-step time length between Ω1%
and Ω2%;

• u0;3 stands for an asymmetric pulse generated by the mean
fluorescence decay until its peak value, and its down-
sampled version28 by η factor above the peak; and

• u0;4 depicts a symmetric pulse generated by the mean
fluorescence decay until its peak value, and its reflection
from this position.

Therefore, the construction of ðu0;1; u0;2Þ mainly depends on
the time energy distribution of the mean fluorescence decay, and
ðu0;3; u0;4Þ on its increasing and decreasing patterns with respect
to its peak value. In our evaluation, the free parameters were set
to the valuesΩ1 ¼ 0.35,Ω2 ¼ 0.7, and η ¼ 5 by a trial and error
procedure. These four initial instrument responses ðu0;1; u0;2;
u0;3; u0;4Þ were later normalized by the condition in Eq. (3).
In addition, our evaluation also considers the deconvolution
estimation with measured instrument response (DEMIR) u½l�
by applying the NNLSA in Eq. (30) (see Fig. 3). Hence,
two new performance indices E0

h and E0
y can examine the esti-

mation accuracy in the fluorescence impulse response and mea-
sured fluorescence decays by a direct deconvolution process.
Therefore, E0

h and E0
y are the two lower bounds in the perfor-

mance of the BDE algorithm for the four initial conditions
ðu0;1; u0;2; u0;3; u0;4Þ.

Table 2 presents the results of our synthetic evaluation and
shows that the choice of the initial condition has a small effect

Fig. 3 Block diagram of deconvolution with measured instrument
response and deconvolution with approximated instrument response.
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on the resulting estimation performance ðEu; Eh; EyÞ for BDE.
In the experiments, u0;1 and u0;2 consistently achieved the
best estimations for the instrument and fluorescence impulse
responses ðEu; EhÞ at all PSNR values. On the other hand, there
were no significant performance differences in the estimation in
the output intensity Ey for all initial responses. Overall, for all
initial conditions ðu0;1; u0;2; u0;3; u0;4Þ, the performance is com-
parable among the metrics in Eq. (42), since the best-case and
worst-case errors for the instrument and fluorescence impulse
response estimations ðEu; EhÞ were 11%–26%, and 8.5%–
26%, respectively. Meanwhile, the estimation error for the fluo-
rescence decay Ey varied in a smaller range of 1–5% for all ini-
tial conditions. Consequently, the approximations were more
precise with respect to the measured fluorescence decays, which
provided smaller estimation errors Ey compared to ðEu; EhÞ.
The lower bounds ðE0

h; E
0
yÞ based on DEMIR for the fluores-

cence impulse response and measured fluorescence decay had
also little variations as 4–7% and 1–5%, respectively. In fact,
the performance results ðEh; EyÞ for BDE with the initial instru-
ment responses u0;1 and u0;2 were comparable to DEMIR in
ðE0

h; E
0
yÞ, which is its lower bound. Another important property

is that the performance metrics were lightly influenced by the
PSNR, where the instrument response and fluorescence impulse
response estimations ðEu; EhÞ were the mostly sensible metrics.
Nonetheless, the general trend was that as the PSNR increased,
the resulting errors ðEu; Eh; EyÞ had a small decrease for all
initial conditions ðu0;1; u0;2; u0;3; u0;4Þ. Figure 4 illustrates the

resulting input estimations by the BDE algorithm for a PSNR
= 15 dB and sample 720, where as expected, all the initial points
qualitatively provided good results. Also, this figure presents
a sample of the estimated fluorescence decays and impulse
responses for the three initial instrument responses ðu0;1; u0;2;
u0;3; u0;4Þ. These plots illustrate a good fit to the synthetic data.

5.2 Experimental Evaluation

5.2.1 Ex vivo atherosclerotic plaques datasets

The first experimental evaluation considers the analysis of mul-
tispectral FLIM (m-FLIM) datasets of ex vivo atherosclerotic
plaques.7 The temporal resolution of the measurements is
250 ps. All the measurements include three wavelength bands:
390� 20, 452� 22.5, and 550� 20 nm. Each effective time
trace has a total of L ¼ 167 samples per wavelength. Sixty indi-
vidual datasets with 60 × 60 spatial samples were analyzed by
the BDE algorithm to estimate the instrument and fluorescence
impulse responses and measured fluorescence decays. The same
parameters employed in the synthetic evaluation of BDE were
considered for the experimental datasets (see Table 1). Since
each m-FLIM measurement considers three wavelengths, we
only analyze the third wavelength, which has distinct informa-
tion for classification purposes, i.e., a total of K ¼ 3600 spatial
points for deconvolution. For all datasets, the instrument
response has the same time-domain characteristics and it was
recorded for comparison purposes in order to apply DEMIR.

Table 2 Performance quantification of synthetic datasets for BDE and deconvolution estimation with measured instrument response (DEMIR) with
different initial instrument responses and peak signal-to-noise ratios (PSNRs).

PSNR (dB)

BDE DEMIR

Eu

—u0;1 u0;2 u0;3 u0;4

15 0.1684 0.1627 0.2559 0.2186

20 0.1470 0.1241 0.2149 0.1782

25 0.1416 0.1286 0.2033 0.1754

30 0.1165 0.1062 0.1636 0.1419

PSNR (dB) Eh E0
h

u0;1 u0;2 u0;3 u0;4

15 0.0849 0.0848 0.2605 0.2057 0.0663

20 0.0985 0.0856 0.2209 0.1730 0.0515

25 0.1029 0.0954 0.2050 0.1696 0.0482

30 0.0897 0.0836 0.1574 0.1315 0.0443

PSNR (dB) Ey E0
y

u0;1 u0;2 u0;3 u0;4

15 0.0470 0.0470 0.0470 0.0470 0.0466

20 0.0264 0.0263 0.0264 0.0263 0.0261

25 0.0151 0.0148 0.0202 0.0190 0.0146

30 0.0121 0.0120 0.0153 0.0146 0.0105
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Meanwhile, the instrument response is often approximated as a
pulse created from the rising part of the measured fluorescence
decay by mirroring it around the peak of the fluorescence decay
pulse, similar to the initial input response u0;4 in Eq. (47). This
approximated instrument response (AIR) pulse is also used for
deconvolution in the experimental evaluation. The deconvolu-
tion by using the AIR pulse is defined as deconvolution estima-
tion with approximated instrument response (DEAIR), and it
involves the solution of NNLSA in Eq. (30) for all 60 datasets
(see Fig. 3). These comparison strategies, DEMIR and DEAIR,
are both based on a Laguerre-base deconvolution, so they
employ the same expansion order N and shape parameter α
as in BDE (see Table 1).

In this experimental evaluation, we will study the effect of
modifying the spatial downsampling that is used to obtain
the reduced set of measurements Ŷ. We will consider two
cases, D ¼ 8 and D ¼ 36, i.e., K̂ ¼ 3600∕8 ¼ 450 and K̂ ¼
3600∕36 ¼ 100 spatial samples are used to reconstruct the
instrument response at step II of BDE. Figure 5 qualitatively
compares the estimated instrument responses for the 60 datasets
by considering u0;1 as the initial condition, and both spatial
downsampling factors (D ¼ 8 and D ¼ 36). As a result, a good
estimation is visualized for all datasets and values of D,
although some minor discrepancies were observed. These small
magnitude and pulse duration differences in the estimations of
Fig. 5 are mainly due to noise in the FLIM dataset, since by the
synthetic results in the previous section (see Table 2), a perfect

reconstruction of the instrument response will require a large
PSNR. Nonetheless, these magnitude errors did not affect the
fluorescence impulse response estimations, as the next statistical
analysis will show. Next, the shape of the instrument response
can be quantified by the full width at half maximum (FWHM)
parameter, and in our experimental setup, the measured value
was 1.53 ns. From the results in Fig. 5, the estimations by BDE
produced a mean FWHM of 1.35 ns for D ¼ 8 and D ¼ 36, but
the AIR pulse produced a large mean value of 2.08 ns. Thus, by
comparing to the FWHM of the measured instrument response,
the BDE estimation has a percentage error of 11.6%, and the
AIR pulse of 36.2%. In this way, an advantage is visualized
by BDE estimation compared to the AIR pulse.

Figure 6 (top panels) illustrates the boxplots for the metrics
Eu and Ey with the BDE algorithm, and considering DEAIR.
As expected, the instrument response estimation by DEAIR
presents a larger error compared to BDE. For the 60 datasets,
the mean value of Eu was 11–12% for BDE with both spatial
downsamplings, and 49% for DEAIR. Figure 6 (second row)
illustrates the estimation error for the measured fluorescence
decay Ey by using DEMIR. These results show no significant
differences in the DEMIR and BDE output estimation perfor-
mances with D ¼ 8 and D ¼ 36, although there is a strong
difference with DEAIR (see second panel in Fig. 6). The mean
value of Ey was 1% for DEMIR and 0.4% for BDE with
both spatial downsamplings, and 4.5% for DEAIR. Hence,
the BDE method achieved more accurate estimations of the

0 1 2

x 10
−8

0

0.05

0.1

Time (sec)

In
st

ru
m

en
t r

es
po

ns
e

Initial input signal u 0,1

0 1 2

x 10
−8

0

0.05

0.1

Time (sec)

In
st

ru
m

en
t r

es
po

ns
e

Initial input signal u 0,2

0 1 2

x 10
−8

0

0.05

0.1

Time (sec)

In
st

ru
m

en
t r

es
po

ns
e

Initial input signal u0,3

0 1 2

x 10
−8

0

0.05

0.1

Time (sec)

In
st

ru
m

en
t r

es
po

ns
e

Initial input signal u0,4

Blind estimation

Measured response

Initial response

0 5

x 10
−8

0

20

40

Time (sec)

F
lu

or
es

ce
nc

e 
de

ca
y

Sample No. 720

0 5

x 10
−8

0

20

40

Time (sec)

F
lu

or
es

ce
nc

e 
de

ca
y

Sample No. 720

0 5

x 10
−8

0

20

40

Time (sec)

F
lu

or
es

ce
nc

e 
de

ca
y

Sample No. 720

0 5

x 10
−8

0

20

40

Time (sec)

F
lu

or
es

ce
nc

e 
de

ca
y

Sample No. 720

Measurement

BDE

DEMIR

0 5

x 10
−8

0

20

40

60

Time (sec)

Im
pu

ls
e 

re
sp

on
se

Sample No. 720

0 5

x 10
−8

0

20

40

60

Time (sec)

Im
pu

ls
e 

re
sp

on
se

Sample No. 720

0 5

x 10
−8

0

20

40

60

Time (sec)

Im
pu

ls
e 

re
sp

on
se

Sample No. 720

0 5

x 10
−8

0

20

40

60

Time (sec)

Im
pu

ls
e 

re
sp

on
se

Sample No. 720

True response

BDE

DEMIR

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 4 Synthetic evaluation at peak signal-to-noise ratio ðPSNRÞ ¼ 15 dB, where each column corre-
sponds to the initial instrument response ðu0;1; u0;2; u0;3; u0;4Þ: (a)-(d) comparison for the instrument
response estimation, (e)-(h) comparison for the fluorescence decay estimation at sample 720, (i)-(l) com-
parison for the fluorescence impulse response estimation at sample 720.

Journal of Biomedical Optics 075010-10 July 2015 • Vol. 20(7)

Campos-Delgado et al.: Blind deconvolution estimation of fluorescence measurements through quadratic programming



0 0.5 1 1.5 2

x 10
−8

0

0.05

0.1

0.15

0.2

In
st

ru
m

en
t r

es
po

ns
e

Time (sec)

Datasets 1−20

0 0.5 1 1.5 2

x 10
−8

0

0.05

0.1

0.15

0.2

In
st

ru
m

en
t r

es
po

ns
e

Time (sec)

Datasets 1−20

Measured response
BDE

Measured response
BDE

0 0.5 1 1.5 2

x 10
−8

0

0.05

0.1

0.15

0.2

In
st

ru
m

en
t r

es
po

ns
e

Time (sec)

Datasets 21−40

0 0.5 1 1.5 2

x 10
−8

0

0.05

0.1

0.15

0.2

In
st

ru
m

en
t r

es
po

ns
e

Time (sec)

Datasets 21−40

Measured response
BDE

Measured response
BDE

0 0.5 1 1.5 2

x 10
−8

0

0.05

0.1

0.15

0.2

In
st

ru
m

en
t r

es
po

ns
e

Time (sec)

Datasets 41−60

0 0.5 1 1.5 2

x 10
−8

0

0.05

0.1

0.15

0.2

In
st

ru
m

en
t r

es
po

ns
e

Time (sec)

Datasets 41−60

Measured response
BDE

Measured response
BDE

(a) (b)

(c) (d)

(e) (f)

Fig. 5 Experimental evaluation for blind deconvolution estimation (BDE) with datasets of atherosclerotic
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FLIM measurements than with the measured instrument
response. These statistical results corroborate the qualitative per-
formance of Fig. 5, which illustrates a good estimation for the
instrument response, since as previously remarked, the pulse
shape of the input excitation is correctly estimated. In addition,
the third panel of Fig. 6 shows the estimation error in the fluo-
rescence impulse response Eh in Eq. (42) by taking as a ground
truth the DEMIR approximation. Hence, the BDE provides
closer estimations to DEMIR, since the mean error for all data-
sets was 1.3% (D ¼ 8 and D ¼ 36), but for DEAIR the mean
error rose to 5.4%. Finally, if ĥlk ∈ RL represents the approxi-
mated fluorescence impulse response vector at k’th spatial sam-
ple by l strategy ðl ∈ fDEMIR;DEAIR;BDEgÞ, and tk ∈ RL

the vector of time samples, the lifetime of the time response λk
can be computed as34

λlk ¼ t⊤k ĥ
l
k

1⊤Lĥ
l
k

∀ k ∈ ½0; K − 1�: (53)

Thus, by assuming that the lifetime by DEMIR is the ground
truth, the percentage error in the estimation by DEAIR and
BDE over the whole dataset is defined as

EDEAIR
l ¼ 1

K

XK−1
k¼0

jλDEMIR
k − λDEAIRk j

λDEMIR
k

; (54)

EBDE
l ¼ 1

K

XK−1

k¼0

jλDEMIR
k − λBDEk j

λDEMIR
k

: (55)

Thus, the last panel in Fig. 6 presents the results for EDEAIR
l and

EBDE
l , where once more BDE provided the best estimation. The

mean lifetime estimation error over the 60 datasets was 6.4% by
DEAIR, and this value was reduced to 3.4% and 4% for BDE
with D ¼ 8 and D ¼ 36, respectively. Figure 7 presents the
resulting lifetime images for datasets 10 and 16 with DEMIR,
DEAIR, and BDE (D ¼ 8 and D ¼ 36). The resulting lifetime
images highlight a good agreement between DEMIR and BDE,
independently of the spatial downsampling. Consequently, once
more, the large reduction in the FLIM measurements used to
estimate the instrument response did not produce a significant
loss of accuracy in the BDE algorithm. However, DEAIR shows
some important differences for both datasets, which confirms
the advantage of BDE in the deconvolution and lifetime estima-
tion processes.

On the other hand, Table 3 presents the average computa-
tional time per FLIM dataset in the MATLAB implementation
for the lifetime estimation by using a Pentium Intel Core i7-4770
3.5 GHz quad-core processor and 32 GB RAM computer. This
table also shows the average computational time of just the blind
approximation of the instrument response for each dataset, so
the effect of the spatial downsampling can be clearly observed
in BDE. Hence, the spatial downsampling provided some reduc-
tion in the computational time without compromising the accu-
racy of the estimations, as shown in Fig. 6. Thus, to obtain the
lifetime image of each dataset, the BDE required in average
11.22 s for a spatial downsample of 36 (D ¼ 36), and just 6.53 s
to estimate the instrument response. Meanwhile, as expected,
the fastest lifetime estimation is achieved by DEMIR since its
implementation requires just a direct computation of NNLSA in
Eq. (30). The next fastest estimation is DEAIR due to the initial
basic approximation of the instrument response based on the
mean FLIM measurements. Nevertheless, the extra computation
time by BDE compared to DEAIR is justified to achieve more
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accurate approximations of the instrument response, fluores-
cence impulse responses, and lifetimes in general.

5.2.2 Human breast cancer cell datasets

The last experimental evaluation consists of processing fluores-
cence lifetime images of 13 human breast cancer cell samples
used to measure metabolic inhibition by cyanide treatment.12

The fluorescence images were captured by a custom-built multi-
photon microscope (Prairie Technologies). Since the primary
target is to quantify the fluorescence response of coenzymes
nicotinamide adenine dinucleotide (NADH) and flavin adenine
dinucleotide (FAD), there are two optic excitations: one tuned to
750 nm for NADH excitation and another one to 890 nm for
FAD excitation. To isolate the response to NADH and FAD,
there are two bandpass filters: 440� 40 nm (NADH) and 550�
50 nm (FAD). Each pixel has a dwell time of 4.8 μs to acquire
images of dimension 256 × 256. The fluorescence lifetime

image for each optic excitation was collected using time-corre-
lated single-photon counting electronics, where the instrument
response FWHM was 260 ps for both laser excitations. In this
test bench, the temporal resolution of the measurements is 49 ps,
and the length of the time responses is 175 and 190 samples for
the first and second wavelengths, respectively.

The parameters of the BDE were the same as in the previous
experimental evaluation (see Table 1), where the spatial down-
sample was set to 36 ðD ¼ 36Þ. Compared to the initial exper-
imental validation, now there are two different optic excitations,
one per each studied wavelength and they were both estimated
in our analysis. Since not all the pixels in the sample image
contain relevant information, the pixels with low energy were
masked. For this purpose, a stacked vector with the fluorescence
decay responses at both wavelengths for each pixel was con-
structed, and its Euclidean norm was computed. The peak
value of the Euclidean norm in the image was identified, and
if the ratio between the norm of the stacked responses at a

Table 3 Computational time by DEMIR, deconvolution estimation with approximated instrument response (DEAIR) and BDE (D ¼ 8 and D ¼ 36)
for overall lifetime evaluation and blind instrument response estimation during experimental tests with 60 datasets of atherosclerotic plaques.

Computational time

Overall lifetime estimation
Instrument response

estimation

DEMIR DEAIR

BDE BDE

ðD ¼ 8Þ ðD ¼ 36Þ ðD ¼ 8Þ ðD ¼ 36Þ

Mean 1.47 s 2.59 s 13.42 s 11.58 s 6.94 s 6.71 s

Standard deviation 0.27 s 0.19 s 5.61 s 4.38 s 2.05 s 2.36 s
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Fig. 8 Experimental evaluation with datasets of human breast cancer cell samples: estimated instrument
responses per wavelength: (a) wavelength 1 (datasets 1–13) and (b) wavelength 2 (datasets 1–13).
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given pixel and the peak value is below 5%, the pixel is masked
to avoid further processing.

For the 13 datasets, the estimated instrument responses per
wavelength were computed by the BDE and quantified by the
FWHM parameter. The mean FWHM for wavelength 1 was
258 ps, and for wavelength 2 was 234 ps. As a result, by con-
sidering that the measured FWHM is 260 ps, a good estimation
is achieved by our blind algorithm. The estimated 13 instrument
responses for both wavelengths are plotted against the measured
response in Fig. 8. Thus, a small error is observed for both con-
ditions, where the shape of the instrument response is well cap-
tured by the BDE, although with some minor magnitude and
pulse duration adjustments. As in the case of the FLIM datasets
of atherosclerotic plaques, the magnitude and pulse duration
differences in the estimations of Fig. 8 could be reduced
at a cost of large PSNRs in the whole dataset. As previously
described, these datasets have regions with low energy near
the boundary of the processing mask, so the resulting PSNRs
are low at these areas and this condition slightly affects the
instrument response estimations.

The lifetimes were next computed by the BDE from the
estimated fluorescence impulse responses. For comparison, the
fluorescence impulse responses were also estimated by DEMIR
and DEAIR for the same parameters in the Laguerre expansion
(see Table 1). The estimated lifetime by DEMIR is labeled as
the ground truth. Figure 9 illustrates the lifetimes for dataset 1
under the three approaches (DEMIR, DEAIR, and BDE), where
a good agreement is observed by our blind technique in both
wavelengths. Meanwhile, DEAIR presents, in general, lower
lifetime estimations compared to BDE, which is consistent
with our previous evaluation in Fig. 7. For all 13 datasets,
the mean percentage error in the estimated lifetime by BDE

was 6.9% in the first wavelength and 8.8% in the second wave-
length. Figure 10 shows the mean percentage error for each
dataset for both wavelengths, where as pointed out earlier,
the estimated lifetime by DEMIR is considered the reference
point. This plot confirms the accuracy of the BDE, since the
worst-case mean percentage error is below 13% for any wave-
length, and the best response has an error of just 3.4%. Hence,
despite the fact that our algorithm does not rely on any prior
information of the instrument response in the system, the
BDE provided good estimations of the lifetimes for the
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Fig. 9 Experimental evaluation with dataset 1 of human breast cancer cell samples: estimated lifetime
by BDE (first column) and DEMIR (second column) for both wavelengths.
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FLIM datasets. Compared to the mean lifetime estimation errors
for the atherosclerotic plaques FLIM datasets by BDE (≈4%),
the percentage errors slightly increased in this case to ≈9%. We
believe that this effect is due to two main aspects: the FLIM
instrumentation is different, so the noise properties are not com-
parable, and the FLIM datasets of breast cancer cell samples
have regions of low PSNR near the processing mask. Hence,
we believe that FLIM datasets with heterogeneous and low
PSNRs might affect the lifetime estimations.

6 Conclusions
This paper proposes a method, denoted as BDE, to solve the
problem of blind deconvolution for FLIM data. A linear combi-
nation of basis functions models the fluorescence impulse
response at each spatial point. The BDE algorithm searches
for the samples of the instrument response with a global perspec-
tive, meanwhile the scaling coefficients of the basis functions
are computed for each point in the sample. The core of the
BDE algorithm is an ALSmethodology that iteratively estimates
the decision variables. The recurrent steps in the BDE algorithm
rely on constrained quadratic programming and least-squares
solutions. During this iterative process, just a reduced set of
measurements is employed to speed up the convergence.
After convergence, the BDE method provides an estimation
of the instrument response. In the final step of the proposed
methodology, the BDE algorithm computes the scaling coeffi-
cients of the fluorescence impulse response over the whole data-
set. Our synthetic and experimental results showed that the
proposal is robust to uncertainty in the measured fluorescence
decays and variations in the initial input condition. As a future
work, the blind estimation of the instrument response will be
used as the initial step for deconvolution techniques based on
multiexponential models. In addition, besides Laguerre func-
tions, different basis will be also explored for the fluorescence
impulse response, and a toolbox in MATLAB will be developed
to facilitate the final user interaction.
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