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Abstract. Functional near-infrared spectroscopy (fNIRS) is a promising technique for monitoring brain activity.
However, it is sensitive to motion artifacts. Many methods have been developed for motion correction, such as
spline interpolation, wavelet filtering, and kurtosis-based wavelet filtering. We propose a motion correction
method based on empirical mode decomposition (EMD), which is applied to segments of data identified as hav-
ing motion artifacts. The EMD method is adaptive, data-driven, and well suited for nonstationary data. To test the
performance of the proposed EMD method and to compare it with other motion correction methods, we used
simulated hemodynamic responses added to real resting-state fNIRS data. The EMD method reduced mean
squared error in 79% of channels and increased signal-to-noise ratio in 78% of channels. Moreover, it produced
the highest Pearson’s correlation coefficient between the recovered signal and the original signal, significantly
better than the comparison methods (p < 0.01, paired t-test). These results indicate that the proposed EMD
method is a first choice method for motion artifact correction in fNIRS. © 2016 Society of Photo-Optical Instrumentation
Engineers (SPIE) [DOI: 10.1117/1.JB0.21.1.015002]
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1 Introduction than fMRI,*" it is still difficult to completely avoid motion arti-

Functional near-infrared spectroscopy (fNIRS) is a noninvasive
optical imaging technique which measures the absorption of
near-infrared light between 650 and 950 nm through the intact
skull. Since the absorption spectra of oxygenated hemoglobin
(HbO) and deoxygenated hemoglobin (Hb) are different, the
concentration change of hemoglobin in vivo can be estimated
from spectral recordings.!? fNIRS technology has been devel-
oping rapidly and gaining popularity as a tool for functional
neuroimaging due to its ability to measure cerebral hemo-
dynamic changes associated with functional brain activity.**

Compared with functional magnetic resonance imaging
(fMRI), fNIRS has several advantages including relatively
low cost, portability, higher temporal resolution, and continuous
measurement over longer time periods. In addition, fNIRS does
not require participants to lie in a confined space with their
heads fixed. These advantages allow fNIRS to be widely applied
in different populations and experimental or clinical conditions
such as in the study of infants and children,>® cognition,” motor
tasks,® brain stimulation,”!? and brain disorder patients.l L2 Ag
we know, the signals recorded from participants mentioned
above, especially children and patients, usually contain many
motion artifacts. If these motion artifacts are not removed or
inhibited, analysis results are not convincing. Therefore, how to
avoid motion artifacts is a very important issue.

With the improvement in fNIRS technology, although fNIRS
is more tolerant of head motion and robust to motion artifacts
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facts. When participants move their heads, motion artifacts still
often influence the fNIRS signal. 1415 Thus, motion correction is
a key step before further analysis of {NIRS recordings.

To address this important issue, a number of methods have
been proposed. Motion correction methods can generally be di-
vided into two categories: (a) those that require external signals;
and (b) those that do not.

For the first category, the external signals should be highly
sensitive to motion artifacts but not to brain activity such as
those recorded from an fNIRS channel with a very short emitter—
receiver distance'®!” or an accelerometer.'® In this case, adaptive
filtering is used for motion correction. The drawback of this
approach is that the adaptive filter cannot completely remove
motion artifacts if the information about motion contained in
the external signals is not exact.

In the second category, spline interpolation (SD)," wavelet
filtering (WF),?° and kurtosis-based wavelet filtering (kbWF)'
are commonly used as motion correction methods. In previous
studies, these methods performed well.'*'>2! However, there
are also some limits in their practical application. For example,
SI needs the setting of many parameters; WF and kbWF are poor
for the correction of baseline shifts.'* In this study, we propose a
motion correction method that can be applied to standard datasets
without any external signal.

It is well known that the brain is a complex, dynamic system.
fNIRS signals exhibit strong nonstationarity.'” Thus, we pro-
pose a motion correction method based on empirical mode
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decomposition (EMD), which was first proposed by Huang
et al.? The EMD can be used to break down signals into various
components, called as intrinsic mode functions (IFMs), and
these components form a complete and nearly orthogonal basis
for the original signal. Since the EMD is based on the local char-
acteristic time scale of the data, it can be applied to nonlinear
and nonstationary processes. Currently, the EMD has been
widely used for analyzing physiological signals such as electro-
encephalogram, magnetoencephalogram, and blood—oxygen-
level-dependent signal,”>*" including the noise reduction in
these signals.?® In this study, we propose to reduce the motion
artifacts in the fNIRS recordings using the EMD.

To estimate the performance of the proposed EMD-based
method and to compare it with other methods (SI, WF, and
kbWF), we used simulated data in a procedure based on pre-
vious work.!#13212% Real motion artifacts are complex and var-
iable, and difficult to simulate,?' so real resting-state fNIRS data
contaminated by motion artifacts were used as the noise. A syn-
thesized hemodynamic response function (HRF) was used as the
true hemodynamic response (true signal). Knowing the true
hemodynamic response, we can calculate metrics which quan-
titatively compare the performance of different motion correc-
tion methods.

2 Materials and Methods

2.1 Resting-State Functional Near-Infrared
Spectroscopy Data

Thirteen children (6 females and 7 males, aged 6 to 9 years,
mean =+ standard deviation 7.3 £ 1.1) took part in this study
after their parents provided informed consent. This study was
approved by the ethics committee of the State Key Laboratory
of Cognitive Neuroscience and Learning at the Beijing Normal
University. Information of all participants is summarized in

Table 1 Information of the subjects.

Subject

no. Sex Age
1 Male 6
2 Female 9
3 Male 8
4 Male 6
5 Male 6
6 Female 7
7 Male 8
8 Female 7
9 Male 7
10 Female 6
11 Male 8
12 Female 9
13 Female 8
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Sources

Detectors

Fig. 1 (a) A photo of the experimental setup; and (b) fNIRS probe
locations mapped to a brain model.

Table 1. The data were collected using a resting-state paradigm,
in which the participants were instructed to relax in a seated
position in front of a 19-in. monitor and to try not to think
of anything. Five minutes of resting-state fNIRS data were col-
lected from each participant.

In this study, we used an ETG-4000 (Hitachi Medical
Company, Japan) NIRS system to measure the relative concen-
tration changes in HbO and Hb. We used a single 3 x 11 meas-
urement patch, which was placed symmetrically over each
participant’s frontal cortex, wrapping around and covering the
temporal cortex (Fig. 1). In this patch, 17 emitters and 16 detec-
tors were positioned in an alternating fashion, forming 52 meas-
urement channels. The absorption of near-infrared light at
wavelengths 695 and 830 nm was measured at a sampling
rate of 10 Hz.

Since the participants were children, motion artifacts were
common, despite them being instructed not to move their
heads during recording. We obtained 676 channels of data
(13 subjects x 52 channels) in total. Following warnings from
the built-in diagnostics of the ETG-4000 system and by visual
inspection, the data from 164 channels were thrown out, and the
remaining 512 channels were used for further analysis. In this
study, we only used the HbO data.

2.2 Testing Procedure

To compare the EMD-based motion correction method with
other currently used motion correction methods, we used
what is considered as the most suitable approach in previous
studies.'*!>21' The approach combines real resting-state
fNIRS data which are contaminated with real motion artifacts
and synthesized HRFs, which represent the “true signals.”
HRFs were synthesized by convolving the stimulus model with
the canonical HRF. The canonical HRF is characterized by two
gamma functions, one modeling the peak and one modeling the
undershoot, and parameterized by a peak delay of 6 s and an
undershoot delay of 16 s, with a peak-undershoot amplitude
ratio of 6. The simulated stimulus for each dataset consisted
of four trials with a stimulus duration of 30 s and an interstimu-
lus interval of 30 s. The total time of each dataset was 300 s.

To conduct the comparison, we performed the following
steps. First, the raw optical density (OD) signals of the resting-
state recordings were calculated using the intensity signals.
Then the motion artifacts were detected automatically using
a reliable algorithm similar to the approach described by
Scholkmann et al.'” The detailed description of this algorithm
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is provided in Sec. 2.3.1. The OD signals were converted into
concentration changes of hemoglobin. We then added the rest-
ing-state HbO signals of each channel to the synthesized HRFs.
Following the addition of the HbO signals, the four motion arti-
fact correction methods tested in this study were applied sepa-
rately. The corrected data were then bandpass-filtered with a
third-order infinite impulse response Butterworth filter between
0.01 and 0.5 Hz to remove low-frequency drift and cardiac oscil-
lations. Finally, the signals were compared with the original syn-
thetic HRFs directly or by applying a general linear model
(GLM), separately for each motion correction method and each
channel. Several metrics were calculated to estimate the perfor-
mance of the motion correction methods, described in Sec. 2.4.

2.3 Motion Correction Methods

2.3.1 Empirical mode decomposition-based motion
correction method

EMD is a method that breaks down signals into a collection of
intrinsic mode functions (IMFs). An IMF is a function that sat-
isfies two conditions: (a) in the whole dataset, the number of
extrema and the number of zero crossings must be the same
or differ at most by one; and (b) at any point in the dataset,
the mean value of the envelope defined by the maxima and
the envelope defined by the minima must be zero.*?

EMD is implemented using a sifting process that uses only
local extrema. There are some steps taken to calculate the IMF
of a given data. The first step is to find all the local maxima and
minima over the whole data. Next, all the local maxima are con-
nected by a cubic spline as the upper envelope. The same proc-
ess is repeated for the local minima to produce the lower
envelope. The second step is to calculate the average of the
two envelopes m and to subtract m from the original data, result-
ing in new data h = ry — m, where ry is equal to x which is the
original data. This data / repeat above steps until £ satisfies the
conditions of an IMF. The current data & becomes the first IMF
designated as c;. Then the above steps are repeated on the
residual r; = rg — c¢;. The sifting process stops until no more
IMF can be extracted from the residual r,. The original data
x can be reconstructed as

n

x:ch-i-rn, 1)

j=1

where r, is the residual after n IMFs are extracted.

We propose a motion correction method based on EMD. Our
procedure is similar to the spline interpolation method.'” The
main idea is that the IFM from the EMD that is most similar
to the motion artifact contaminated signal approximates the
motion artifact. Thus, we subtract the most similar IMF from the
signal to remove the motion artifact. The five data processing
steps of our method are as follows. (a) Apply a motion artifact
detection method to segment the data into time periods which
have motion artifact and which do not. The method provides
reliable detection of motion artifacts based on changes in signal
amplitude or standard deviation. If the standard deviation or
the peak-to-peak amplitude exceeds the preset thresholds
(SDThresh and AMPThresh) within a time window of length
t, the data from the beginning of that window to T seconds later
are defined as motion artifact.? (b) Perform an EMD on the time
periods detected as having motion artifact, each segment sepa-
rately. (c) Calculate the correlation coefficients between each
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Fig. 2 Flowchart of the EMD motion correction method. X: original
data, X,: segments of X without motion artifacts, X,: segments of
X with motion artifacts, X.: IMF or residue with largest correlation
to Xp, Xqg = Xp — X, and Y: corrected data.

IMF (including residue here) and the original data. (d) Subtract
the IMF (or residue) with the largest correlation coefficient from
the original data. (e) Reassemble the whole time series by con-
catenating the segments. To ensure continuity of the HbO signal
across segment boundaries, we use the method proposed in
Ref. 19: shift the HbO values in each segment by a constant
HbO value that is determined by the mean of the segment and
the mean of the previous segment. The detailed description of
this step can be found in Ref. 19.

The flowchart of this procedure is shown in Fig. 2. In order to
detect the motion artifact periods, we set the parameters follow-
ing previous work:'*!>?° SDThresh = 20, AMPThresh = 0.5,
t=05and T = 2.

2.3.2 Spline interpolation

The SI method compared here was proposed by Scholkmann
et al.'” The main idea is that the spline fit to the raw signal dur-
ing time periods when artifact is detected approximates the
motion artifact, since artifacts are large compared with the
physiological signals. Thus, subtracting the spline from the raw
signal removes the artifact. The time periods with motion arti-
fact are automatically detected using the same method described
in EMD step (a). Then each of the periods is modeled separately
by a cubic spline. Next, the spline is subtracted from the original
data. The time series is then reconstructed by reassembling the
artifact time periods, together with the time periods without arti-
fact. To ensure continuity of signal, the procedure detailed in
Ref. 19 [the same as EMD step (e)] is used.

The parameters of the motion artifact detection method were
set to the same values as those in the EMD method. In addition,
a parameter p that determines the degree of the SI needs to be
set. When p =0, the smoothing spline is the least-squares
straight line fit to the data, while when p = 1, it is the natural
cubic SI. In this study, we set p = 0.9 to 0.99 and chose the best
results for comparison with the other methods.

2.3.3 Wavelet filtering

The WF method was proposed by Molavi and Dumont.”” This
approach assumes that the physiological hemodynamic signal
and the artifact are linearly additive, that the detail wavelet coef-
ficients exhibit a Gaussian probability distribution, and that the
wavelet coefficients corresponding to motion artifacts are larger
than those corresponding to the physiological hemodynamic
signal, which are centered around zero and low in variance. The
discrete wavelet transform (DWT) is applied to all recorded
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Fig. 3 An example of the EMD-based motion correction method applied to real fNIRS data: (a) original
signal (red) and denoised signal (blue). Shaded segments are the time periods detected as having
motion artifacts. (b) and (c) Segments of motion artifacts and the IMFs and residue found by EMD.
The numbers beside the IMFs and residues are the correlation coefficients to the original signal.

signals. Outlying wavelet coefficients are identified by a prob-
ability threshold a. If the probability of a given wavelet coef-
ficient is less than a, this coefficient is deemed not to be part
of the physiological signal, and thus it is set to zero. Finally,
the signal is reconstructed with the inverse DWT.

In this study, we chose the Daubechies 5 (dbS) wavelet and
set a = 0.01 to 0.15. The best results were used for comparison
with the other methods.

2.3.4 Kurtosis-based wavelet filtering

The kbWF method was recently proposed by Chiarelli et al.'

and is similar to the WF method. It assumes that the physiologi-
cal hemodynamic signal and the artifact are linearly additive,
that the wavelet coefficients of the physiological hemodynamic
signal exhibit a Gaussian or sub-Gaussian probability distribu-
tion, and that the motion artifacts are so large that the kurtosis of
the wavelet coefficient distribution is affected. The kurtosis is
estimated using the following equation:

nn+ D(n =D ¥, (X = %)
(n=2)(n=3)L, (X; - 2]

where n is the sample size, X; is the i’th sample, and X is the
sample average.

The kurtosis of the wavelet coefficient distribution (except
for zero values) is estimated for the chosen decomposition level.

4
Kurtosis = 5> 2)
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We then need to set a threshold k. If the kurtosis exceeds this
threshold, the coefficient which has the highest absolute value is
set to zero and the kurtosis is estimated again. The procedure
iterates until the kurtosis is below the threshold. Then the inverse
DWT is performed to reconstruct the artifact-free signal.

In this study, we chose the db5 wavelet and set the threshold
k = 3.0t0 4.9. We chose the best results for comparison with the
other methods. Note that the kbWF method is applied starting
from the third wavelet discretization level.'*

2.4 Metrics for Comparison

In order to compare the performance of each motion correction
method, three metrics were calculated: (a) the mean squared
error (MSE) between the recovered signal and the HREF,
(b) the Pearson’s correlation coefficient (R?) between the recov-
ered signal and the HRF, and (c) an estimated signal-to-noise
ratio (SNR) defined as

SNR = f/o,. 3

where 3, which is sensitive to the overall SNR of the data, is the
beta value (regression coefficients) from fitting a GLM with the
HRF as the regressor,'* and o, is the standard deviation of the
simulated data during the interstimulus periods.
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Fig. 4 (a) Synthesized HRF and (b) real resting-state data. Composite waveform obtained by adding the
resting-state data to the synthesized HRF, (c) before and (d) after application of the EMD-based motion

correction method.

3 Results

Figure 3 shows an example of the EMD-based motion correction
method applied to real fNIRS data. The motion artifacts of the
original signal in Fig. 3(a) (red trace) were detected automati-
cally. As shown in Figs. 3(b) and 3(c), we performed an EMD on
the periods with motion artifacts separately. For each period, the
IMF or residue with the largest correlation coefficient was sub-
tracted from the original data to correct the motion artifact. The
motion-corrected data are shown in Fig. 3(a) (blue trace).
Figure 4 shows an example of the composite waveform obtained
by adding real resting-state data to synthesized HRF (true signal)
before and after the application of the EMD-based motion cor-
rection method. The SNR is clearly improved after correction.
We assessed the performance of SI, kbWF, and WF
for different values of their most important parameters.
Figures 5(a)-5(c) show the plots of the mean MSE versus
parameter value for SI, kbWF, and WF; Figs. 5(d)-5(f) show the
plots of the mean SNR versus parameter value. When p = 0.99,
k = 3.4, and a = 0.04, SI, kbWF, and WE, respectively, produced
the best results. The results obtained using these parameter values
were compared with the result of our proposed EMD method.
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To evaluate the reliability of the methods, we analyzed the
proportion of channels which were improved after applying
them. The MSEs for the four methods are shown in Fig. 6, in
the form of scatter plots. Each data point in the scatter plot cor-
responds to one fNIRS channel from one participant. The MSE
before correction is the abscissa value and the MSE after cor-
rection is the ordinate value. Channels which improved in terms
of MSE are below the main diagonal, whereas channels which
had worse MSE after motion correction are above the main
diagonal. As shown in Fig. 6(a), the EMD method reduced
MSE in 79% of channels. It was more reliable than SI and WF
[reduction of MSE in 75% and 73% of channels, as shown in
Figs. 6(b) and 6(d), respectively] and was similar to kbWF in
reliability [reduction of MSE in 80% of channels, as shown
in Fig. 6(c)]. In addition, the EMD method performed consis-
tently well at all levels of uncorrected MSE, similar to SI and
kbWF, whereas WF performed badly at low levels of uncor-
rected MSE.

The SNRs for the four methods are shown in Fig. 7. The
meanings of the abscissa and the ordinate are similar to those in
Fig. 6. In this figure, channels that improved are above the main
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diagonal. As shown in Fig. 7(a), the EMD method performed EMD and ST achieved an average reduction in MSE of 53% and

well with an increase of SNR in 78% of channels. Only 51%, respectively, whereas kbWF and WF achieved an average
kbWF performed marginally better than the EMD method reduction of only 23% and 35%, respectively. Figure 8(b) shows
[increase of SNR in 79% of channels, as shown in Fig. 7(c)]. the percentage change in SNR achieved by each motion correc-
The other two methods were less reliable than the EMD method tion method. The EMD method achieved an average increase in
[increase of SNR in 73% and 72% of channels, as shown in SNR of 47%, slightly better than that achieved by SI and kbWF
Figs. 7(b) and 7(d), respectively]. (42% and 43%, respectively). The WF method achieved the best

Box plots summarizing the amount of improvement across average increase in SNR, 59%. Figure 8(c) shows the R?
channels are shown in Fig. 8. Figure 8(a) shows the percentage between the output of the four methods and the true signal,
change in MSE achieved by each motion correction method. as well as the R? between the raw signal (no correction) and
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the true signal. All four methods produced an increase in R?
compared with no correction (p < 0.01, paired #-test). The EMD
method achieved the highest average R* of 0.79, significantly
higher than that of the other methods (p < 0.01, paired t-test).

4 Discussion and Conclusion

Motion artifacts heavily influence the quality of fNIRS record-
ings, especially in special populations such as infants and chil-
dren. Thus, motion artifact correction is a key step in fNIRS data
analysis. In the last few years, several research groups have pro-
posed different motion correction methods to try to remove
motion artifacts reliably and effectively.!*16171%20 Although
these methods perform well, they still have some limitations.'>!
In this article, we propose a motion correction method based
on EMD.

In a previous study, ensemble EMD (EEMD), an extension of
EMD, was successfully used for motion artifact removal from
fNIRS signals.>® However, EEMD was combined with canoni-
cal correlation analysis (CCA), not used alone. Compared with a
similar method (EEMD-ICA), EEMD-CCA performed better. In
this study, we apply EMD alone to motion correction for fNIRS
signals.

Our results indicated that the proposed EMD method was
relatively reliable, produced the best or second best MSE and
SNR improvements, and produced the highest R? between
recovered signal and truth. The SI method also performed reli-
ably and produced the second best percentage change in MSE,
but was, overall, inferior to the EMD method. The kbWF
method was slightly better than the EMD method in terms of
the proportion of channels improved. However, it performed
poorly in terms of the percentage change in MSE and SNR.
The WF method achieved the highest percentage increase in
SNR but did relatively poorly in terms of the other metrics.
Overall, the proposed EMD method was the most reliable
and effective motion correction method among the four.

The kbWF method is similar to the WF method, since it is a
modification of the WF method. The WF method is specifically
designed for spike artifacts,” but does not perform as well as the
kbWF method when motion artifacts appear in many epochs and
vary in size from epoch to epoch. A possible reason is that a
single probability-based criterion is not sufficient to detect all
motion artifacts. An iterative approach may relieve this problem;
however, the iterations are difficult to be set. The kbWF method
avoids this problem naturally, because it is an iterative approach
which uses a kurtosis-based stopping criterion. However,
because this method does not calculate the kurtosis of the first
and second levels of the DWT, it is unable to detect and correct
baseline shifts.

The EMD method is based on channel-by-channel artifact
detection and does not assume any particular distribution of
motion artifacts, similar to the SI method. In addition, it does
not require any additional hardware or sensor to measure
motion. An advantage of the EMD method is that it is naturally
suited for use on nonstationary data, including fNIRS data. It
can extract the characteristics of fNIRS data and separate the
motion artifact and the hemodynamic signal more precisely than
other decompositions. Thus, the performance of the EMD
method is better than the other methods. Furthermore, it can cor-
rect baseline shifts. On a practical note, in order to obtain the
IMFs related to motion artifacts more efficiently, we suggest
retaining the high frequency information in the fNIRS signal
before performing EMD. A drawback of the EMD and SI
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methods is that they heavily depend on accurate detection of
motion artifacts. If the artifacts cannot be detected exactly,
these two methods will be less accurate.

Depending on the application, the computational cost of
motion correction methods may be an important consideration.
We calculated the average computational times of the methods
over 10 runs: EMD: 0.0539 + 0.0005s, SI: 0.0227 £ 0.0013s,
kbWF: 0.0672 £0.0013s, and WEF: 0.0134 £ 0.0004s
(mean = standard deviation). The EMD algorithm requires
repeated cubic SI to obtain upper and lower envelopes, which
is computationally costly. The kbWF method is also relatively
slow because it is an iterative method. However, the computa-
tional times of all four methods are acceptable when considering
the time of data collection (5 min).

In conclusion, we have proposed a motion correction method
based on EMD for fNIRS data. We compared our EMD method
with other common motion correction methods (SI, WE, and
kbWF) using real resting-state fNIRS data added to synthesized
HRFs. The results showed that our EMD method is overall the
most reliable and accurate method among the four. In future
work, we will test whether using improved versions of EMD,
such as EEMD, will result in improvements for motion artifact
removal.
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