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Abstract. This paper explores the probability summation model in an attempt to provide insight to the model’s
utility and ultimately its validity. The model is a statistical description of multiple-pulse (MP) damage trends. It
computes the probability of n pulses causing damage from knowledge of the single-pulse dose–response curve.
Recently, the model has been used to make a connection between the observed n−1∕4 trends in MP damage
thresholds for short pulses (<10 μs) and experimental uncertainties, suggesting that the observed trend is an
artifact of experimental methods. We will consider the correct application of the model in this case. We also apply
this model to the spot-size dependence of short pulse damage thresholds, which has not been done previously.
Our results predict that the damage threshold trends with respect to the irradiated area should be similar to the
MP damage threshold trends, and that observed spot-size dependence for short pulses seems to display this
trend, which cannot be accounted for by the thermal models. © The Authors. Published by SPIE under a Creative Commons
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1 Introduction
The probability summation model (PSM) provides a statistical
description of multiple-pulse (MP) damage.1 In recent years, it
has been increasingly used to analyze the observed reduction in
damage threshold with multiple short (<10 μs) pulses, which
cause damage by producing a microcavitation bubble, and the
apparent independence of this reduction on the duty cycle. It has
been shown that, for short pulses, this model can provide an
explanation for the observed n−1∕4 MP ED50 trends.

In this paper, we develop the application of the PSM to laser-
damage thresholds in greater detail than in previous works and
consider the consequences of assuming its validity. We do not
attempt to prove or disprove the model, rather we develop a set
of predictions that must all be considered when using or assess-
ing the model against experimental data. The model has been
used to make a connection between the n−1∕4 trend and exper-
imental uncertainties,2,3 which we wish to address. We will also
show that the model can account for the dependence of the MP
ED50 trends on spot size and that it may also provide an explan-
ation for the single, short-pulse ED50 dependence on spot size.

Important note: The PSM relates the dose–response curve for
a single pulse (SP) to the dose–response curve for MPs, and this
paper contains a great deal of discussion about dose–response
curves and their shape. One very important property of a dose–
response curve is its “sharpness,” i.e., the difference between a
dose for which damage is virtually impossible and a dose for
which damage is virtually guaranteed. Unfortunately, there
are two quantities that are in common use to characterize this
property, and both are often called “slope.” The first definition,
which is used in this paper and denoted as SL, refers to the slope
of the best fit line obtained with probit analysis. The second

definition is the ratio of the ED84 over the ED50 (s ¼
ED84∕ED50). For our definition, a “large slope” corresponds to
a steep dose–response curve. For example, in Fig. 1, the slope of
the dose–response curves is increasing from right to left. For
log-normal dose–response curves, the two are directly related
and one can be obtained from the other SL ¼ 1

logðED84∕ED50Þ.
4

2 Model
The PSM refers to a statistical-based description of MP laser
exposures first proposed by Menendez et al.1 The model is
based on the assumption that MPs in a laser exposure are sta-
tistically independent events, so that the probability of the expo-
sure causing damage is given by the cumulative probability of
any SP causing damage. Let pi be the probability that the i’th
pulse in the exposure causes damage. The total probability that
damage is caused during the exposure is given by

EQ-TARGET;temp:intralink-;e001;326;269P ¼ 1 − ½ð1 − p1Þð1 − p2Þ · · · ð1 − pnÞ�: (1)

In general, each pi may be different. In the case of identical
pulses, each pulse has the same probability of causing damage
(pi ¼ p), and the total damage probability simplifies to

EQ-TARGET;temp:intralink-;e002;326;205P ¼ 1 − ð1 − pÞn: (2)

The probability of an SP resulting in damage depends on the
dose administered, so the probability, p, will depend on the
dose, p → pðdÞ. The total probability, P, of damage occurring
will also depend on dose, P → PðdÞ. Note that this is the dose
delivered in an SP, so the MP exposure is expressed as a dose per
pulse (i.e., energy/pulse or peak power). Equation (2) is just the
relation between the dose–response curve of an SP to the dose–
response curve of n pulses. Figure 1 illustrates this for the log-
normal distribution that is used in laser retinal damage threshold
experiments.

*Address all correspondence to: Clifton D. Clark III, E-mail: cdclark@mail.fhsu
.edu

Journal of Biomedical Optics 015006-1 January 2016 • Vol. 21(1)

Journal of Biomedical Optics 21(1), 015006 (January 2016)

http://dx.doi.org/10.1117/1.JBO.21.1.015006
http://dx.doi.org/10.1117/1.JBO.21.1.015006
http://dx.doi.org/10.1117/1.JBO.21.1.015006
http://dx.doi.org/10.1117/1.JBO.21.1.015006
http://dx.doi.org/10.1117/1.JBO.21.1.015006
http://dx.doi.org/10.1117/1.JBO.21.1.015006
mailto:cdclark@mail.fhsu.edu
mailto:cdclark@mail.fhsu.edu
mailto:cdclark@mail.fhsu.edu


In their original paper, Menendez et al.1 considered the PSM
as a test for statistical independence of multiple exposures sep-
arated by space or time. The idea is that one can compare actual
damage threshold trends for MP exposures to the predictions of
the PSM to identify interaction effects between pulses and even
determine if a positive (sensitizing) or negative (desensitizing)
effect exists. Lund5 has suggested that the discovery of the
microcavitation damage mechanism has provided a physical jus-
tification for the statistical independence assumption made by
the PSM. The probability of damage occurring is just the prob-
ability of a microcavitation event occurring and therefore does
not depend on the thermal addition between pulses.

2.1 Link to Single-Pulse Dose–Response Curve

Solving Eq. (2) for p,

EQ-TARGET;temp:intralink-;e003;63;298p ¼ 1 − ð1 − PÞ1∕n; (3)

gives the SP damage probability required to cause a given MP
damage probability for n pulses. By definition, the ED50 dose
will elicit a response in 50% of the population. In order for an
MP exposure to have a 50% probability of producing damage, it
is necessary for the probability of any SP in the exposure to have
less than a 50% chance of causing damage. Setting P ¼ 0.5
gives

EQ-TARGET;temp:intralink-;e004;63;189p ¼ 1 − ð0.5Þ1∕n; (4)

which relates the SP dose–response curve to the MP ED50

trends.
Equations (2–4) hold, in general, for exposures consisting of

identical pulses, regardless of the specific dose–response curves
used for p and P. A particularly interesting feature of Eq. (4) is
that it suggests that the SP dose–response curve could be deter-
mined by measurement of the MP ED50. For example, n ¼ 4
gives p ¼ 0.16, so the ED50 for a four-pulse exposure

corresponds to the ED16 for an SP exposure. Assuming a
log-normal response, the SP probit slope can be calculated from
these values since,4

EQ-TARGET;temp:intralink-;e005;326;719SL ¼ 1∕ logðED84∕ED50Þ ¼ 1∕ logðED50∕ED16Þ: (5)

2.2 Application to Spot Size Dependence

Menendez et al.1 mentioned that the PSM would also apply to
exposures separated in space as well as time. The authors were
referring to separate laser exposures to different areas of the
retina, but the model can also be applied to the spatial distribu-
tion of a single exposure. An irradiated area can be considered as
a collection of smaller subareas. If each subarea within the irra-
diated area is statistically independent from the others, then the
probability of damage occurring at each subarea will sum to give
the net probability of damage occurring. This requirement of
statistical independence certainly does not exist for long expo-
sures in which heat can conduct through the irradiated volume.
But, if the exposure time is short enough, such that heat does not
have time to conduct through the volume during the exposure,
then these points can be considered statistically independent
from each other during the time of the exposure. It is generally
accepted that microcavitation causes damage for exposure dura-
tions <10 μs and that heat does not significantly conduct
through the irradiated volume during this time.

Therefore, if a laser exposure covers an area A that contains
m possible microcavitation sites, the probability of the exposure
causing damage should just be the probability that one of the
sites produces microcavitation. Assuming that the density, σ,
of microcavitation “seeds” (sites which are capable of producing
microcavitation) is uniform, the number of seeds exposed by a
uniform laser beam with area Awill bem ¼ σA. The probability
of damage occurring within the irradiated area will be

EQ-TARGET;temp:intralink-;e006;326;372P ¼ 1 − ð1 − pÞσA; (6)

where now p represents the probability of a single microcavi-
tation seed responding to the dose. Note that here the exposure is
expressed as a dose per area (i.e., retinal radiant exposure or
retinal irradiance). This is identical to the MP case except
that n has been replaced with σA. We would expect the depend-
ence of the ED50 on the irradiated area to be similar to the
dependence on MPs. In fact, for every spot size, there should
be an “effective pulse number” that produces the same ED50,
when expressed as an irradiance. The exact relationship between
A and n will depend on the microcavitation seed density σ.

2.2.1 Nonuniform beams

For nonuniform beam profiles, Eq. (6) must be modified since
microcavitation seeds at different positions in the beam will
receive different doses. We start by breaking the irradiated
area into N elements. Let the area of the j’th element be denoted
as aj. The partitioning of the elements is arbitrary, we only
require that the dose delivered to the j’th element, dj, be uni-
form over the element. Circular beams, for example, could be
broken up into thin rings.

The probability of damage occurring within the j’th element
is then given by Eq. (6),

EQ-TARGET;temp:intralink-;sec2.2.1;326;91Pj ¼ 1 − ð1 − pðdjÞÞσaj ;
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Fig. 1 Two multiple-pulse (MPE) dose–response curves (for 10 and
100 pulses) generated by probability summation applied to the same
SP dose–response curve. Note that the ED50 for 10 pulses is equal to
the ED6 for an SP and that the ED50 for 100 pulses is equal to the ED6
for 10 pulses. This shows that the 100-pulse dose–response curve
can also be produced by applying probability summation to the 10-
pulse dose–response curve since a 100-pulse exposure can be
treated as 10 10-pulse exposures.
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and the total probability of damage occurring within the irradi-
ated area is given by Eq. (1):
EQ-TARGET;temp:intralink-;e007;63;730

P ¼ 1 −
YN
j

ð1 − PjÞ ¼ 1 − exp

�XN
j

lnð1 − PjÞ
�

¼ 1 − exp

�XN
j

σaj lnð1 − pðdjÞÞ
�
: (7)

This gives the probability of an exposure causing damage
based on the dose–response curve of a single microcavitation
seed and is the most general case. If all elements are exposed
to the same dose, dj ¼ d, then Eq. (7) reduces to Eq. (6).

Consider the important case of a circular Gaussian beam pro-
file:

EQ-TARGET;temp:intralink-;e008;63;578d ¼ HðrÞ ¼ H0e−r
2∕ω2

; (8)

where H0 is the peak radiant exposure and ω is the 1∕e beam
radius. We break the irradiated area up into thin circular rings of
thickness Δr, each with a radius rj and area aj ¼ 2πrjΔr. The
probability of damage occurring then is

EQ-TARGET;temp:intralink-;e009;63;502P ¼ 1 − exp

�
σ2πΔr

XN
j

rj lnð1 − pðH0e
−r2j∕ω

2ÞÞ
�
: (9)

To obtain a threshold from this probability, we would need to
numerically evaluate this summation for multiple values of H0

until the value producing P ¼ 0.5 is found. This will depend on
the value of ω; therefore, the threshold will depend on the beam
diameter. However, we do not consider this case any further in
this work.

2.3 Effect on Probit Slope

A closer look at Eq. (3) indicates that the dose–response curve
will become sharper with more pulses. For log-normal distribu-
tions, the probit slope is given by Eq. (5). If we consider the case
of n ¼ 4, then the SP ED16 gives the MP ED50, and the SP ED37

gives the MP ED84. Therefore,

EQ-TARGET;temp:intralink-;e010;63;300

MP∶ED84

MP∶ED50

¼ SP∶ED37

SP∶ED16

<
SP∶ED50

SP∶ED16

¼ SP∶ED84

SP∶ED50

; (10)

and the MP slope must be larger than the SP slope:

EQ-TARGET;temp:intralink-;e011;63;245MP∶SL ¼ 1

log
�
MP∶ED84

MP∶ED50

� >
1

log
�
SP∶ED84

SP∶ED50

� ¼ SP∶SL: (11)

This is also seen in Fig. 1, where the dose–response curves for
10 and 100 pulses become “sharper,” indicating a larger slope.
The slopes for the three curves shown are 5.0, 9.4, and 13.6 for
the n ¼ 1, 10, and 100 cases. Equation (3) also applies to the
spot-size dependence, so the probit slope for larger beams
should be greater than the slope for smaller beam, based on the
PSM.

3 Discussion
We will now apply the PSM to a few problems in laser retinal
damage. This model can only be applied to short-pulse cases,
when microcavitation is responsible for the damage threshold,

where the assumption of statistical independence is valid. For
longer pulses, significant interaction occurs between exposures
separated by space and time due to heat conduction. Thermal
models, based on the Arrhenius damage model, are well estab-
lished and can correctly predict the damage thresholds for these
longer exposures. We will note that the PSM and Arrhenius
model make different predictions for the damage threshold
trends, which could be used to identify when microcavitation is
in play, as is done when identifying photochemical damage.6 A
subtle but important point is that the PSM cannot predict the
damage threshold for a single data point as the Arrhenius dam-
age model can. Rather, it can only predict the damage threshold
trends.

3.1 Probit Slope for Small-Spot In-Vivo Data

Note: In this section, we will use “actual” and “measured” to
refer to the true physical value of a statistical quantity and the
value obtained for the quantity by measurements, respectively.
The measured value is an approximation of the actual value.

We have shown in Sec. 2.1, that the slope of the SP dose–
response curve is directly related to the MP ED50 trends. For
example, based on Eqs. (5) and (10), the ED50 for a four-
pulse exposure could be written in terms of the SP slope directly:

EQ-TARGET;temp:intralink-;e012;326;491MP∶ED50ðn ¼ 4Þ ¼ SP∶ED5010
−1∕SL: (12)

If the dose–response curve is very sharp, then the MP reduction
will be very small. This is shown in Fig. 2, where the MP reduc-
tion based on a slope of one is much greater than the reduction
based on a slope of 20. Lund5,7 has shown that the PSM can be
used to derive the n−1∕4 trend that has been repeatedly observed.
The PSM predicts (after a few approximations) that the MP
ED50 trend should be n−1∕β, where β is the SP dose–response
slope minus 1 (β ¼ SL − 1). Based on the measured slopes from
several (small-spot) data sets, Lund concluded that the most
probable value for SL is five, which gives the n−1∕4 trend that
is observed.

Sliney and Lund3,7 have argued that the observed n−1∕4 trend
may simply be an artifact of experimental method. They have
stated that the PSM supports this based on the relationship
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Fig. 2 The MP damage threshold reduction predicted by the PSM
applied to log-normal dose–response curves with various slopes.
The reduction is greatest when the slope is small and diminishes
for larger slopes. Dashed line indicates the n−1∕4 trend.
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between the SP probit slope and the MP reduction. However,
this specific claim (involving the PSM) is invalid, and we wish
to correct it here.

They argue that it is very difficult to detect small retinal
lesions in the eye and that because of this, the SP dose–response
curve for small-spot exposures is affected by experimental
uncertainties more so than large-spot exposures. Experimental
uncertainties will cause a measured dose–response curve to
have a lower probit slope (and higher ED50) than the actual
dose–response curve.8 They point to the large-spot in-vivo and
small-spot explant data in which both have larger probit slopes
and smaller MP effects, as evidence that the small-spot in-vivo
MP reduction would be much smaller if the actual probit slope
could be measured.3,7 However, if a measured probit slope is
smaller than the actual probit slope, it does not follow that
the observed MP reduction would be larger.

The PSM determines the actual MP dose–response curve
from the actual SP dose–response curve because it is the actual
probabilities that are being summed. Equation (2) is a relation-
ship between the underlying probability distributions. Experi-
mental uncertainties limit the ability to observe these underlying
distributions, but they do not change this relationship. There-
fore, one cannot suggest that if the actual SP probit slope
was determined, β would be larger and the observed MP reduc-
tion would be smaller. If anything, the PSM would suggest that
the actual probit slope is small based on the observed MP
reduction.

For example, imagine that two different methods are used
to observe the same experiment in which the SP damage thresh-
old and the 1000-pulse damage threshold are measured. One
includes significant experimental uncertainties, the other does
not. The two methods will not agree on the ED50 values for each
exposure, the inaccurate method will measure a higher ED50 for
both the SP and 1000-pulse exposures. However, the actual
ED50 does not depend on the measurement method and is the
same for both methods. Now assume that the accurate method
measures no difference between the SP and 1000-pulse ED50.
We would not expect the inaccurate method to measure a sig-
nificant decrease in the 1000-pulse ED50 simply because the
probit slope obtained by it for the SP exposure is small.

At this point, we would like to explicitly state that we are not
disputing the conclusions of Lund and Sliney,3,7 specifically that
the observed MP reduction in small-spot in-vivo data is an effect
caused by the difficulty in observing small-spot lesions. We only
wish to clarify that the PSM does not play a role in this. The
problem is that this would not be a probit-slope effect but an
ED50 effect. In the example given above, Lund and Sliney2

would argue that the inaccurate method will not measure a
significant decrease in the 1000-pulse ED50, but instead will
measure a significant increase in the SP ED50. Therefore, it
will appear as if a significant reduction in threshold has occurred
from an SP exposure to a 1000-pulse exposure, even if none
exists.

If this is in fact the case, then the MP effect is caused by the
inability to detect small lesions causing measured ED50 values
to be larger than the actual values. The continued reduction in
ED50 with more pulses must be due to an increased ability to
detect lesions (so that the measured ED50 is closer to the actual,
lower ED50) and the apparent connection between the small-spot
in-vivo probit slope and n−1∕4 is purely coincidental.

Finally, we note that the PSM predicts that the actual probit
slope for MP dose–response curves should increase with the

number of pulses, but it does not require that the measured
slope do so. Again, experimental uncertainties may severely
limit the ability to measure an accurate slope, but the PSM will
still predict a decrease in ED50 based on the actual SP probit
slope. If, on the other hand, the experimental uncertainties are
directly responsible for the MP reduction, then the measured
probit slope would necessarily depend on the number of pulses.
Any observed decrease in ED50 due to an increased lesion vis-
ibility should be accompanied by an increase in probit slope. It
would be interesting to examine the MP dependence of the
measured probit slope to see if a strong correlation has been
observed.

3.2 Single-Pulse Threshold Dependence on Spot
Size

The dependence of the SP ED50 on spot size should be similar to
that of MPs, but direct application of the PSM is more difficult.
Equation (6) requires both the dose–response curve for a single
microcavitation seed (σA ¼ 1) and the microcavitation seed
density (σ) to be known.

However, just as a 100-pulse exposure can be treated as ten
10-pulse exposures, an irradiated area can be treated as multiple
smaller irradiated areas. And just as the PSM can be applied to
the 10-pulse dose–response curve to produce the 100-pulse
dose–response curve, we can apply the PSM to the dose–
response for any irradiated area to produce the dose–response
curve for larger irradiated areas.

Let A0 be some irradiated area for which the dose–response
curve, P0ðdÞ, has been measured. From Eq. (6), we get:

EQ-TARGET;temp:intralink-;e013;326;425P0ðdÞ ¼ 1 − ð1 − pðdÞÞσA0 : (13)

The dose–response curve for larger areas, A ¼ αA0, based on
the PSM will be

EQ-TARGET;temp:intralink-;e014;326;372PðdÞ ¼ 1 − ð1 − P0ðdÞÞα; (14)

which can be checked by plugging Eq. (13) into Eq. (14) to
obtain Eq. (6). The area A0 cannot be smaller than the area con-
taining a single microcavitation seed, but this should not present
a problem in practice. The microcavitation seeds are most likely
melanin granules in the retinal pigment epithelium cells and
Thompson et al.9 noted that the melanin granule density is prob-
ably >100 granule∕cell for a 20 × 20 × 15 μm cell based on
their melanin granule thermal model. So, even a 25 μm diameter
beam should irradiate hundreds of granules.

Figure 3 shows the threshold dependence on irradiated diam-
eter, based on the PSM, for uniform beam profiles (flat top).
However, an interesting comparison to experiment can be
made if we follow the work of Menendez1 and Lund5,7 to derive
a “correction factor” for the irradiated diameter analogous to the
MP n−1∕4 correction factor. Starting with Eq. (6) and applying
the approximations used by Menendez and Lund leads to the
following relationship:

EQ-TARGET;temp:intralink-;e015;326;154ED50ðAÞ ≈ ED50ðA0Þ
�

2

A0

�
−1∕β

A−1∕β; (15)

where β is related to the slope of the probit curve for the irra-
diated area A0, β ¼ SL − 1. The value of β implicitly depends
on σ, because the value of the probit slope will depend on σ. If σ
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is very large, then Eq. (6) indicates that the slope will be
very large.

Lund et al.10 re-examined the relationship between the dam-
age threshold retinal radiant exposure (J cm−2) and retinal irra-
diated area, analyzing all available data in the literature, and
noted that thermal models could not account for the threshold
dependence on irradiated area for short pulses (<20 μs). For
thermal damage, the threshold retinal radiant exposure is
expected to increase for smaller beams because heat can conduct
out of the irradiated volume. However, if the energy is delivered
in a shorter time than it takes heat to conduct out (the thermal
confinement time), there should be no increase in threshold for
small beams. The experimental data examined by Lund indicate
that the retinal radiant exposure threshold does increase for
smaller irradiated areas, even for very short exposure times.

This is puzzling, even though we now expect the damage to
be caused by microcavitation, because for short-pulse expo-
sures, there should not be enough time for the exposure at the
edge of an irradiated area to influence the threshold at the center
of the irradiated area. The threshold for causing microcavitation
at the center of the area should not depend on the size of the area.
The PSM may provide an explanation for this, which is that the
probability of damage occurring at the center of the area does
not increase, but that the overall probability of damage occurring
somewhere in the beam does.

In their re-examination, Lund et al.10 showed that if the dam-
age thresholds, expressed as a radiant exposure, were plotted
versus irradiated diameter on a log-log plot, then a linear line
could be fit to most datasets. In other words, each dataset could
be approximated by the equation Hr ¼ kDS, where Hr is the
threshold radiant exposure at the retina and D is the retinal irra-
diance diameter. S is the slope of the best fit line, on log-log
scale, and the value of S that best fit each set depended on the
exposure time. Longer exposure times tended to have a large
negative value (indicating a large decrease in threshold with
increasing diameter) while shorter exposure times tended to
have a smaller negative value (indicating a small decrease in
threshold with increasing diameter).

For pulses longer than 20 μs, the value of S for any given
exposure time was approximated well by the function
SðtÞ ¼ ð−0.233 logðtÞ þ 1Þ. However, for pulses shorter than
20 μs, no such trend appeared. In addition, the dependence
on retinal irradiated diameter for exposures longer than 20 μs
was consistent with thermal model predictions, while the
dependence for shorter exposures was not. The thermal
model predicted no dependence on the irradiated diameter
(S ¼ 0), but the data showed a decrease in threshold with diam-
eter (S < 0).

The observed threshold trends for exposure durations below
20 μs do not match the predictions made by thermal models
because microcavitation is responsible for damage for these
short times, and the PSM would apply. Rewriting the approxi-
mate function for Hr in terms of the retinal irradiance area A
gives Hr ∝ AS∕2. Comparing this to Eq. (15) implies that
−1∕β ¼ S∕2. The values for S observed by Lund et al.10 for
exposures below 20 μs ranged between 0 and −1. This
would require the probit slope for P0 in Eq. (14) to be 3 or
greater. This is not a very narrow range but is certainly in the
range of observed values. For example, a slope of 11 would give
a value of S ¼ −0.2. More important than the specific value of S
is the fact that the damage threshold radiant exposure still
depends on the irradiated diameter, even for short pulses where
the thermal model predicts no dependence. Now, it should be
noted that there are other possible explanations for this (for
example, the minimum beam diameter may actually be much
larger than is assumed), but this is consistent with the PSM.

Lund et al.10 also noted that the thermal model predictions
agreed with the shorter pulse data better when the irradiated
area was large but was increasingly less predictive for irradiance
diameters <100 μm. This too is consistent with our understand-
ing of microcavitation damage. It is still possible to cause ther-
mal damage during short-pulse durations. It is just that the
threshold for causing microcavitation is lower, and the observed
damage threshold will be the lesser of the two. Therefore, if the
thermal damage threshold (as a radiant exposure) is somehow
lowered, it can be observed. This can be achieved by increasing
the thermal relaxation time, the time it takes the irradiated tissue
to cool back down after an exposure. Increasing the irradiated
diameter will increase the thermal relaxation time, which can
bring the thermal damage threshold below the microcavitation
threshold. If the thermal relaxation time is increased, the thermal
damage threshold will be observed at lower exposure durations.

3.3 Multiple-Pulse Thresholds for Large Spot Sizes

In the PSM, the reduction in ED50 for an MP exposure is directly
related to the slope of the SP dose–response curve. If the (actual)
slope of the SP dose–response curve increases, the MP reduction
will be smaller.

The observed ED50 trends for large spot MP exposures
exhibit this behavior. The MP effect on damage thresholds
seems to be reduced for large spot size, and in some observa-
tions, there appears to be no reduction in the damage threshold.2

The PSM provides an explanation for this. As the irradiated area
increases, the SP dose–response curve will become more sharp
(see Sec. 2.3), and the MP effect will decrease. Note that this
prediction is counter to that of thermal damage models, which
predict that the MP effect should be stronger for larger spot
sizes.11 This may provide an additional test (along with the inde-
pendence of MP thresholds on duty cycle) to differentiate micro-
cavitation and thermal damage mechanisms. The observed n−1∕4
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Fig. 3 The threshold dependence on irradiated diameter, predicted
by the PSM applied to log-normal dose–response curves with various
slopes. Note that the x axis is the relative diameter, for a 25 μm base-
line, the right end of the x axis would correspond to 2500 μm. Dashed
lines indicate the correction factor approximation from Eq. (15) for
each slope.
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trend was based on small-spot exposures (collimated beam into
the eye), which are more likely to show an MP effect.

4 Conclusions
At this point, it is not certain that the PSM is valid. Our intention
here is not to prove or disprove the model. Our primary objective
is to communicate the correct application of the model to MP
exposures, specifically the relationship between experimentally
observed probit slopes and the MP reduction factors. In addi-
tion, we have developed a new application of the model to the
threshold dependence on retinal spot size that, if the assump-
tions of the model are to be accepted, must also be considered.
These predictions provide new ways in which the model can be
tested in order to prove or disprove its validity. Observations
suggesting that the model cannot describe the relationship
between threshold and spot size would also suggest that the
model cannot describe the relationship between threshold and
number of pulses.

In summary, if one assumes that the PSM is valid, then the
following predictions must be taken into consideration for short
pulse exposures:

• The actual slope of the probit curve should increase with
spot size.

• The actual slope of the probit curve should increase with
MPs.

• The MP effect, i.e., a reduction in the damage threshold
with MPs, should diminish for larger spot sizes.

• The retinal radiant exposure required to cause damage can
decrease when the irradiated area is increased, even for
cases that the thermal models do not predict a decrease.

The model’s application to retinal spot size requires a more
detailed investigation. A large amount of experimental data
already exists for this. We have found that the model predictions
are generally consistent with the data, but a more thorough com-
parison of model predictions to this data is needed. There are
many unknowns that must be considered in this analysis, such
as the microcavitation “seed” density and the effects of nonuni-
form beam profiles. One important factor that must be consid-
ered is the choice of dose–response curve. The use of the log-
normal distribution is standard for laser-damage experiments,
but it is possible to use other distributions (such as the logit dis-
tribution). Slight changes to the dose–response curve can cause
significant changes to the predicted threshold trends. All of this
work is important and will need to be addressed in the future.
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