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Abstract. The vast majority of bladder cancers originate within
600 �m of the tissue surface, making optical coherence tomography
�OCT� a potentially powerful tool for recognizing cancers that are not
easily visible with current techniques. OCT is a new technology, how-
ever, and surgeons are not familiar with the resulting images. Technol-
ogy able to analyze and provide diagnoses based on OCT images
would improve the clinical utility of OCT systems. We present an
automated algorithm that uses texture analysis to detect bladder can-
cer from OCT images. Our algorithm was applied to 182 OCT images
of bladder tissue, taken from 68 distinct areas and 21 patients, to
classify the images as noncancerous, dysplasia, carcinoma in situ
�CIS�, or papillary lesions, and to determine tumor invasion. The re-
sults, when compared with the corresponding pathology, indicate that
the algorithm is effective at differentiating cancerous from noncancer-
ous tissue with a sensitivity of 92% and a specificity of 62%. With
further research to improve discrimination between cancer types and
recognition of false positives, it may be possible to use OCT to guide
endoscopic biopsies toward tissue likely to contain cancer and to
avoid unnecessary biopsies of normal tissue. © 2008 Society of Photo-Optical
Instrumentation Engineers. �DOI: 10.1117/1.2904987�
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computer-aided diagnosis.
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Introduction

he American Cancer Society estimates that in 2007 there
ill be 67,160 new cases and an estimated 13,750 deaths from
ladder cancer in the United States. Bladder cancer is the
ourth-most-common cancer in American men.1 The treatment
utcomes and survivability of bladder cancer improve signifi-
antly with early detection. Currently, bladder cancer is diag-
osed and treated through the use of endoscopic visualization
echniques, frequently video based, that direct the urologist
nly to visible surface abnormalities. However, some cancer-
us and precancerous epithelial lesions are either not visible
ith conventional visual inspection or the diagnosis is

nconclusive.2 Biopsies of suspicious areas of tissue are nec-
ssary to diagnose these conditions accurately, but with cur-
ent methods the afflicted areas may be overlooked and biop-
ies performed in the wrong location. Furthermore, multiple
iopsies of normal appearing areas are frequently necessary to
ule out the presence of an occult high grade malignancy
nown as carcinoma in situ3 �CIS�. This adds to the expense
nd potential for complications from the evaluation.

ddress all correspondence to Colleen Lingley-Papadopoulos, Electrical and
omputer Engineering, George Washington University, Staughton 107–707,
2nd St. NW Washington, DC 20052; Tel: 703–944–7772; Fax: 202–994–0280;
-mail: alingley@gwu.edu
ournal of Biomedical Optics 024003-
The ability to visualize subsurface structures at high reso-
lution and to evaluate changes in optical properties of mu-
cosal tissues would assist in diagnosing conditions unidentifi-
able with conventional visualization techniques. Optical
coherence tomography �OCT� has the potential to provide this
crucial information. OCT is an optical imaging technique
analogous to ultrasound that uses partially coherent near-IR
light to interrogate a target and create images of subsurface
microscopic structures with a resolution of 15 �m or less.4

The origin of the received backscattered light is detected with
low-coherence interferometry, so a map of reflectivity versus
optical depth and lateral position can be created. OCT has
been shown to produce images with high spatial resolution
but, due to the high level of scattering of near-IR light in
biological tissues, penetration depths range from only 1 to
2 mm.5 Mucosal cancers, however, such as cancer of the
bladder, tend to arise in the urothelium within 600 �m of the
tissue surface, which is an ideal imaging depth for endoscopic
OCT imaging systems.

Because OCT has the potential to produce high-resolution
images of subsurface structures at near-video rates, one of its
most promising possibilities is to serve as a guide when de-
termining the correct location to perform a biopsy. For this
possibility to become a reality, it is essential to develop meth-
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ds of detecting cancerous and precancerous conditions with
CT images during the time of endoscopic inspection. This
ill enable the system to indicate in real time the presence of

uspect tissue at or beneath the surface. In this paper, we
ntroduce an algorithm to distinguish OCT images of cancer-
us tissue from noncancerous tissue. The algorithm, based on
exture analysis, in the future could be integrated with an
CT system to provide real-time guidance to surgeons.

While this paper introduces an algorithm for the detection
f cancers in the mucosa of the urinary bladder, the tech-
iques might also be applicable to other epithelial tissues,
ncluding the lining of the gastrointestinal tract, the oral cav-
ty, the tracheobronchial system, and the genitourinary tract.

Background
.1 Bladder Anatomy
he urinary bladder consists of three layers: the epithelium

commonly called the urothelium� made up of transitional
ells, a connective tissue layer known as the lamina propria,
nd the muscularis comprised of three concentric layers of
uscle. In healthy tissue, these layers are well organized and
ell defined. The urothelium is the very thin innermost layer
f the bladder wall, bound by the lamina propria with muscle
he outermost tissue.

The primary growth patterns for urothelial neoplasms,
hich account for 98% of primary tumors of the bladder,6 are
apillary lesions, CIS, and flat lesions. Papillary lesions are
xophytic growths resembling a sea anemone, projecting into
he bladder with multiple fronds. CIS is a diffuse, high-grade,
ntraepithelial malignancy. The much more uncommon flat le-
ions are heaped up epithelial tumors without the characteris-
ic stalk of papillary lesions. Any of these tumors can become
nvasive by infiltrating the lamina propria and more deeply
nto the muscle.7 Of these lesions, only papillary lesions are
eadily visible endoscopically. In addition, with visual inspec-
ion it is not possible to determine if any of these lesions have
ecome invasive.

Thickening of the urothelial layer by additional normal
ells is known as hyperplasia and is usually associated with
revious trauma or infection. Inflammation is classified as
xudative or infiltrative, depending on the anatomic depth and
ype of cells involved in the inflammatory process. Cellular
haracteristics distinguish normal from malignant tissue with
spectrum of abnormal to precancerous conditions known as

ysplasia between the two extremes. Dysplasia ranges from
ild to severe with severe dysplasia often indistinguishable

rom CIS. While a thickened bladder epithelium may signify
ancer, the cellular characteristics define its biological
ctivity.8

.2 OCT Imaging of the Bladder
eldchtein et al.9 demonstrated endoscopic use of OCT to
xamine the mucosal membranes of several internal organs
ncluding the bladder. They were able to image the discrete
ayers of the bladder, along with blood vessels and cysts lo-
ated within these layers. In healthy tissue, the urothelium �U�
ppears in OCT images as an area of low intensity, while the
amina propria �LP� appears as an area of high intensity and
he muscle �MS� appears as an area of low intensity thereby
ournal of Biomedical Optics 024003-
providing contrast between layers. Figure 1�a� shows an OCT
image of the lining of a healthy bladder with well defined
layers.

Jesser et al.10 used in vitro specimens to demonstrate the
possibility of using OCT to distinguish between normal hu-
man bladders and those with invasive transitional cell carci-
noma �TCC�. Jesser noted that, unlike OCT images of the
normal bladder, images of invasive TCC did not contain dis-
tinct layers or boundaries, and concluded that malignant inva-
sion disturbed the normal well-defined strata seen in OCT
images. Figure 1�b� shows an endoscopic OCT image of the
bladder with an invasive tumor in which the layers cannot be
distinguished.

In a study by Zagayanova et al.,12 OCT scans from 63
patients were evaluated using OCT and compared with the
pathological diagnosis obtained from biopsy. The OCT im-
ages were evaluated as being either malignant or benign, with
the absence of a layered structure being the primary indicator
of malignancy. The overall results had a sensitivity of 98%
and a specificity of 72%. During a similar study conducted at
our institution which also evaluated invasion,11 24 patients
underwent cystoscopic examination of the bladder followed
by OCT scan, photography, and biopsy from at least six mu-
cosal areas. The OCT scans were reviewed and declared to be
healthy, abnormal but not invasive, or invasive, and compared
later with the pathological biopsy results. The results indi-
cated 100% sensitivity and an overall specificity of 89%, with
a negative predictive value of 100%. The algorithm intro-
duced in this paper was tested on a subset of the images
obtained during that study.

The preceding studies used human observers to analyze
OCT images and assign diagnoses, which make the results
highly dependent on the training and ability of the observers.
A computer algorithm capable of analyzing and diagnosing
the images would be operator–independent and make OCT
diagnostics interpretable without significant training.

2.3 Texture Analysis of OCT Images
Texture analysis is an image-processing technique that de-
scribes an image or portion of an image by characterizing its
structure and pattern. Texture is made up of texture primitives.
To describe texture it is necessary to describe the tone, or
pixel intensity properties within the primitives, as well as the
structure, which describes the spatial relationship between

Fig. 1 OCT images of normal and cancerous bladder tissue, dimen-
sions 1.8 by 1.5 mm, showing characteristics recognized by �a� Feld-
chtein et al.9 and �b� Jesser et al.10 Organized layers can be seen in the
image of normal bladder tissue, while clearly defined layers cannot be
seen in the image of the invasive tumor. The images were taken during
a study at the George Washington University Medical Center11

�GWUMC�.
March/April 2008 � Vol. 13�2�2
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rimitives. There are three principal approaches to texture
nalysis: statistical, structural, and spectral. Statistical analy-
is describes information about the content of the primitives,
hile structural describes the arrangement of the primitives,

nd spectral analysis describes the periodicity of the
rimitives.13

Gossage and Tkaczyk14 demonstrated that texture analysis
an be used to analyze OCT images in an attempt to classify
ifferent tissue types. The study, which was able to distin-
uish between in vitro images of mouse skin �correct classi-
cation rate of 98.5%� and testicular fat �97.3%�, as well as
ormal lung �88.6%� and abnormal lung �64.0%�, analyzed
he texture due to speckle in OCT images.

Although texture analysis has not been previously applied
o the bladder, there have been studies that have used texture
nalysis to recognize dysplasia or cancer in other tissues. In
wo separate studies Qi et al.15,16 applied texture analysis
long with other image analysis techniques to OCT images of
he esophagus to diagnose dysplasia. The resulting sensitivi-
ies were 87 and 82%, and the specificities were 69 and 74%.
ikewise, image analysis was applied to the recognition of
reast cancer by Zysk and Boppart.17 The results of the study
ndicated that their algorithm had a tumor tissue sensitivity of
7% and a specificity of 68%.

These studies indicate that texture analysis of OCT images
s useful in distinguishing between types of tissue, but none of
he studies involved images of the bladder. As far as we know,
ur study is the first in which texture analysis has been ap-
lied to OCT images of the lining of the urinary bladder.

Method
eidentified data from 21 patients at high risk of having TCC
f the urinary bladder, who underwent cystoscopic examina-
ion with the OCT protocol in our previous study, were used
n this work.11 During the previous study, scanning was per-
ormed with a 980-nm, 10-mW superluminescent diode using
2.7-mm �OD� optical fiber positioned through a cystoscope

heath. Patients underwent a standard cystoscopic examina-
ion. Visually suspect lesions, as well as normal-appearing
rothelial tissue, were photographed, scanned with OCT, and
iopsied. Multiple scans were taken in each area, but at dif-
erent sites within the area. The scans of 1.5-s duration, which
enerated 200�200-pixel images, were performed at 1-mm
ntervals on the lesions and at their junctions with the bladder
pithelium. All scans were obtained by placing the end-firing
CT probe on the desired site perpendicular to the wall of the
ladder. Each patient had at least one apparently normal area
hat was photographed, scanned with OCT, and biopsied. Bi-
psy specimens were preserved in formalin for standard his-
opathologic analysis. The endoscopic scanning probe had a
epth range of 2.2 mm in air, a lateral scanning range of 1.6
o 2.4 mm, and a working distance from the probe surface of
.5 mm. The system, coupled with the 2.7-mm-diameter
robe, had a lateral resolution of �50 �m �focused beam
aist diameter 25 �m� and axial �depth� resolution of 10 to
0 �m in air.

A total of 182 OCT images from the study, along with their
orresponding pathology results, were used as the training set
or algorithm development. The 182 images include scans di-
gnosed as healthy, exudative inflammation, infiltrative in-
ournal of Biomedical Optics 024003-
flammation, dysplasia, CIS, papillary lesion, or invasive tu-
mor. Lesions of any type that had become invasive were
diagnosed as invasive tumors regardless of the type of lesion.
Only diagnoses for which at least six images were available
were included in this study.

The algorithm developed here has three stages: �1� prepro-
cessing, in which the portion of the image containing the
bladder lining is identified and in which the dc bias is re-
moved; �2� processing, in which texture analysis is used to
determine a set of texture features for the portion of the image
containing information; and �3� classification, in which the
texture features are used to traverse a decision tree and pro-
duce a diagnosis.

The 182 scans were used to identify the features used in
the decision tree, and then as the training set for the algo-
rithm. Due to the limited data currently available, the algo-
rithm was tested using leave-one-out cross validation, rather
than on an independent set.

3.1 Image Preprocessing
Our algorithm was designed to characterize images based on a
training set to identify features that will be useful in making a
diagnosis. To remove as much variation as possible between
the images, the dc bias and any existing background area were
removed from the images before analysis.

Histogram analysis was used to identify the background in
each image. Due to the low intensities associated with the
lumen and bottom portion of the OCT image, the histograms
produced a bimodal distribution, as seen in Fig. 2�b�. The first
trough after the large low-intensity area was used to identify a
threshold intensity to separate the background from the por-
tion of the image containing information about the bladder
lining. Once the threshold was determined, the portions of the
image at the top and bottom of the image containing only
intensities that were entirely below the threshold were re-
moved from the image.

Once the background was removed from the image, the
mean intensity of the removed background was calculated.
Since the background would theoretically be of regions in
which there should be no signal �such as the lumen�, or at the
bottom of the image where little or no signal was measured,

Fig. 2 To recognize the portion of the image �a� containing the most
information, a smoothed histogram of the intensities in the image was
created �b�, and the image was thresholded �c�.
March/April 2008 � Vol. 13�2�3
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he mean intensity of the background would be a reliable es-
imate of the dc bias of the system. Consequently, the mean
ntensity of the removed background was used as an estimate
f the dc bias and subtracted from the portion of the image
ontaining information. Since the portion of the image con-
aining information had higher intensities than the back-
round, subtracting the mean intensity of the background did
ot and will not cause intensity levels to drop below zero.

.2 Texture Analysis
o develop our classification algorithm, we used five methods
epresenting the three approaches to texture analysis �statisti-
al, structural, and spectral� to obtain 74 texture features for
ach image in our training set.

The first method used cooccurrence matrices to analyze
exture, which is a statistical method based on the repetitive
ature of various intensity levels. The method requires that a
eighbor be defined and a cooccurrence matrix created using
hat definition. The resulting cooccurrence matrix can be used
o calculate six texture characteristics, where P�,d�a ,b� is the
robability that a pixel with intensity a will have a neighbor
f intensity b; where neighbor is defined as the pixel at dis-
ance d in the direction �; and �x, �y, �x, and �y are the
eans and standard deviations of the cooccurrence matrix13:

energy = �
a,b

P�,d
2 �a,b� , �1�

entropy = �
a,b

P�,d�a,b� log2 P�,d�a,b� , �2�

maximum probability = maxa,bP�,d�a,b� , �3�

contrast = �
a,b

�a − b�kP�,d
� �a,b� with k = 2, � = 1, �4�

inverse difference moment

= �
a,b:a�b

�P�,d
� �a,b�/�a − b�k� with k = 2, � = 1, �5�

correlation = ��
a,b

��ab�P�,d�a,b�� − �x�y�	�x�y . �6�

he amount of energy along the diagonal of the cooccurrence
atrix can also be used as an additional texture measure. We

sed five definitions of neighbor: 1, 2, and 4 pixels to the
ight; 1 pixel down; and 1 pixel to the southeast.

The second statistical method calculates a number of fea-
ures based on the gray level histogram of the image.18 The
rst few features include the mean and second through fourth
oments of the histogram. If the histogram is defined as p�zi�,
here z is the gray level, L is the number of gray levels, and
goes from 0 to L−1, the remaining histogram features18 are*

*The variance used in the relative smoothness equation should be normalized
o the interval �0,1� by dividing it by �L−1�2 before using the equation.
ournal of Biomedical Optics 024003-
relative smoothness = 1 − 
1/�1 + �2�z��� , �7�

uniformity = �
i

p2�zi� , �8�

entropy = �
i

p�zi� log2 p�zi� . �9�

The third method used basic statistics to define four addi-
tional features for the image: the mean, standard deviation,
range, and median.

The fourth method used a structural approach to texture
analysis, Laws’ texture measures,19 to calculate 14 texture fea-
tures. Laws’s method begins with three 1-D convolution ker-
nels, representing averaging �L3= 
1 2 1��, edges
�E3= 
−1 0 1��, and spots �S3= 
−1 2 −1���, and eventually
creates 14 texture features.

The final method used the spectral approach to texture
analysis by taking the 2-D Fourier transform of the image and
calculating the average energy values in several regions of the
Fourier spectrum. We calculated the energy within six rings
around the origin, within two horizontal bands close to the
origin, and within two vertical bands close to the origin. We
also calculated the normalized autocorrelation function,
defined13 as Cff=F−1
�F�2�, where F represents the 2-D Fou-
rier transform of the image. The resulting autocorrelation de-
creases slowly with increasing distance if the primitives in the
texture are large, and decreases more quickly as the primitives
decrease in size. We used the maximum autocorrelation value
and the relative number of correlation values above three dif-
ferent thresholds as four additional texture features.

3.3 Feature Selection
Once feature vectors were created for the training set, redun-
dant features were removed, and the remaining features were
compared for their ability to distinguish between images of
non-cancerous and cancerous tissue.

To remove redundant features, we calculated the correla-
tion matrix for the feature set, normalized it over the interval
�0,1�, and removed all but one feature from each set of highly
correlated features �correlation �0.85�. After the correlated
features were removed, there were 18 remaining features in
the feature vectors, which were then evaluated together and in
groups for their ability to discriminate between tissue types.
The 18 uncorrelated features are listed in Table 1.

3.3.1 Scatter plots of features
After the feature set reduction, the resulting feature vectors
were normalized over the interval �0, 255� and grouped ac-
cording to their associated pathology results. Since research
suggests that cancerous tissue disrupts the normally well
structured, layered appearance of bladder tissue and appears
more homogeneous than normal tissue, we hypothesized that
the second moment of the histogram would be one of the
strongest remaining features in distinguishing cancerous from
noncancerous tissue, and used this as the second feature to
produce 2-D plots for each pair of features.

The purpose of the plots was to identify whether the can-
cerous and noncancerous cases were indeed separable from
March/April 2008 � Vol. 13�2�4
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ne another, and whether they clustered tightly. Normal and
xudative inflammation did tend to cluster together somewhat
eparately from dysplasia and CIS, which also tended to clus-
er together. Infiltrative inflammation, invasive tumors, and
apillary lesions did not cluster well with themselves or each
ther. Figure 3 shows an example plot in which these gener-

Table 1 Features remaining afte

Cooccurrence matrix: energy,
neighbor defined as 1 east

Cooccurrence matrix: contrast,
neighbor defined as 1 east

Cooccurrence matrix: inverse difference
moment, neighbor defined as 1 east

Cooccurrence matrix: correlation,
neighbor defined as 1 east

Cooccurrence matrix: energy along the
diagonal, neighbor defined as 1 east

Cooccurrence matrix: contrast,
neighbor defined as 1 south

Cooccurrence matrix: inverse difference
moment, neighbor defined as 1 south

Cooccurrence matrix: energy along the
diagonal, neighbor defined as 1 south

Cooccurrence matrix: inverse difference
moment, neighbor defined as 1 southeast

ig. 3 Example scatter plot showing data set using two features: the
econd moment of the histogram and the maximum autocorrelation.
or emphasis, a line was manually added to the plot to show the
eparability of dysplasia and CIS from normal tissue and exudative
nflammation. This line was, however, not used to classify the data
oints. The line only serves to emphasize the separation evident in the

mage. All cases of dysplasia and CIS fall on one side of the line
hown, while most cases of normal tissue and exudative inflammation
all on the other. The cases of infiltrative inflammation, papillary le-
ions, and invasive tumors are not separated by the two features.
ournal of Biomedical Optics 024003-
alizations are evident.
Based on our observations from the feature plots, we ex-

cluded infiltrative inflammation from the training set for non-
cancerous tissue and began the decision process by assigning
the data to one of two classes: normal/exudative inflammation
and dysplasia/CIS. Each class then would be checked sepa-
rately for instances of papillary growth and for invasion, as
well as for infiltrative inflammation.

3.3.2 Criterion to select feature subsets
It is well known that two features acting together may per-
form well even though the features acting alone perform
poorly.20 Consequently, when determining which feature sub-
set produces the best separation between two classes of data,
all combinations of features must be considered. The problem
becomes one of determining which subset produces the best
results. When dealing with clusters of data, a criterion can be
used to quantify how well a certain set of features separate the
data. One such criterion is the trace of the ratio of between-
class scatter SB to within-class scatter20 SW.

The within-class scatter Si for cluster i represents the
spread of the data points within cluster i, and can be
calculated20 as Si=� j�xj −mi��xj −mi�t, where mi is the mean
vector for cluster i, and x is the set of j points in cluster i. The
total within-class scatter Sw for a group of clusters is the sum
of the within-class scatter across all clusters SW=�iSi.

The between-class scatter SB for a group of classes repre-
sents the distance separating the clusters, and may be calcu-
lated as SB=�ini�mi−m��mi−m�t, where m is the mean vec-
tor for the entire data set, mi is the mean vector for cluster i,
and ni is the number of points in class i. The larger the trace
is of the ratio of between-class scatter to within-class scatter,

val of uncorrelated features.

Histogram: mean

Histogram: second moment

Histogram: third moment

Basic statistics: range

Laws’: level-edge texture measure

Autocorrelation: maximum value

Fourier transform: energy in vertical
band around origin

Fourier transform: energy in horizontal
band around origin

Fourier transform: energy in ring around
origin
r remo
March/April 2008 � Vol. 13�2�5
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he more distinct are the clusters. When searching for the best
ossible subset, the subsets with the largest traces should be
onsidered first.

To maintain the generality of our algorithm, we limited our
earch to feature subsets consisting of four or fewer features,
ince theory states that for finite data sets there is an optimal
in the sense of probability of error� number of features; larger
r smaller values lead to decreased performance.20 The trace
f the ratio of between-class scatter SB to within-class scatter

W was calculated for all combinations of one, two, three, and
our features for the following class comparisons:

1. normal/exudative versus dysplasia/CIS
2. normal/exudative versus papillary lesion	 invasion
3. dysplasia/CIS versus papillary lesion	 invasion
4. dysplasia/CIS versus infiltrative inflammation
5. infiltrative inflammation versus papillary

esion	 invasion
In the preceding comparisons, normal and exudative in-

ammation are grouped into a single category, dysplasia and
IS are grouped into a single category, and all types of inva-

ive tumors are grouped together with papillary lesions. The
apillary lesions do not have to be invasive to be included in
he papillary	 invasion group, nor do the invasive tumors
ave to be papillary.

In the next step of our algorithm development, the subsets
roducing the largest trace values using one, two, three, and
our features for each comparison were tested on their ability
o accurately separate the training set for the classes in ques-
ion.

.3.3 Data classification using a discriminant
function

ne method of classifying data, when the probability distri-
ution for the classes is available, is to use discriminant func-
ions to assign the data to one of the classes. Each possible
lass �i=1, . . . ,c� has a discriminant function gi�x�, which
an be calculated and then compared to the discriminant func-
ions of the other classes for each piece of sample data x. The
ample x is assigned to the class for which the discriminant
unction is the greatest. If the classes have a normal density
ith mean �i and covariance matrix �i, the discriminant

unction gi�x� can be defined as gi�x�= �−0.5��x−�i�t�i
−1�x

�i�− �d /2� ln �2
�− �1 /2� ln ��i � +ln P��i� �Ref. 20�.
ere P��i� is the prior probability of x being in class i, and d

s the dimensionality of the feature vectors.
For each comparison listed previously, the feature subsets

elected by the trace comparisons were used to create feature
ubsets for the two classes being compared. The mean vectors
nd covariance matrices were calculated using the training
ata for each class. For this study, we assumed that the prior
robabilities were the same for all classes being considered
nd kept them at 0.5; they can be adjusted if known or esti-
ated values become available. For each image in both

lasses, the discriminant functions were calculated and com-
ared, and the image was assigned to one of the two classes.
he feature subset that produced the highest number of cor-

ect classifications was selected for use in the final decision
rocess.
ournal of Biomedical Optics 024003-
3.4 Decision Tree
Based on the results of the feature selection process, a deci-
sion tree was created to classify any image into one of three
classes: normal/exudative inflammation, dysplasia/CIS, or
papillary lesion	 invasion. The decision tree shown in Fig. 4
uses various feature subsets at each decision point in the tree.
The decisions are made using a discriminant function and the
training data for the specific diagnoses included in each class.
When distinguishing between cancerous and noncancerous
tissue, the dysplasia/CIS and papillary lesion	 invasion
classes are combined to form the more general cancerous
class.

Infiltrative inflammation was not included in the decision
tree since none of the feature subsets were able to reliably
distinguish infiltrative inflammation from either dysplasia/CIS
or papillary lesion	 invasion. Cases of infiltrative inflamma-
tion that were diagnosed in the normal/exudative class were
considered to be correct, so no attempt was made to distin-
guish between normal/exudative and infiltrative inflammation.

Once the decision tree was created, leave-one-out cross
validation was used to determine the accuracy of the algo-
rithm. Leave-one-out cross validation is a method of estimat-
ing classifier performance that does not require the data set to
be divided into two separate training and test sets, but main-
tains independence between the test and training sets.21 The
method requires that the following steps be repeated for each
individual data point in the data set: remove the data point
from the data set, use the remaining data set as the training
data, test the removed sample using the mean vector and co-
variance matrix calculated from the training data, and return
the removed data point to the data set. When this method is
followed, each data point is tested on a training data set of
which it was not a member, thereby maintaining the indepen-
dence of the test and training data sets.

4 Results
4.1 Selected Features
While the trace values were useful when differentiating be-
tween subsets containing the same number of features, trace
values tended to be higher when fewer features were in the
subset. In all cases, a single feature was selected as the subset
with the highest trace even though the selected feature never

Fig. 4 Decision tree used in classification of images. Images are first
subdivided into normal/exudative or dysplasia/CIS, after which each
class is checked for cases of papillary lesion±invasion, resulting in
three possible end diagnoses: normal/exudative, dysplasia/CIS, or
papillary lesion±invasion.
March/April 2008 � Vol. 13�2�6
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rovided the best separation between classes. In general, how-
ver, the higher the trace value, the better the separation of the
lasses.

The first step in the decision tree separates the data into
wo classes based on the training data representing normal/
xudative inflammation and dysplasia/CIS. The set of features
elected for this step was the set of four features with the
ighest trace �0.98�, and included the following features: �1�
he correlation of the cooccurrence matrix with “neighbor”
efined as the pixel immediately to the right, �2� the mean of
he histogram, �3� the second moment of the histogram, and
4� the range of intensities in the image. When the discrimi-
ant function was used to separate the data using the preced-
ng subset, 51 out of 54 normal/exudative images were clas-
ified correctly, and all images of dysplasia/CIS were
lassified correctly. While the set of four features was selected
s the best, the subsets of two and three features, with trace
alues of 1.54 and 1.39, respectively, were also able to sepa-
ate the classes effectively.

The second step of the decision tree consisted of two parts,
ne that attempted to distinguish images of papillary
esion	 invasion from normal/exudative, and one that at-
empted to distinguish them from dysplasia/CIS. None of the
ubsets had particularly high trace values when comparing
ormal/exudative images to papillary lesion	 invasion, indi-
ating that it would be difficult to accurately separate the
lasses. The subset eventually chosen was the subset contain-
ng �1� the second moment of the histogram and �2� the maxi-

um autocorrelation. The trace for this subset was only 0.59.
hen the discriminant function was used to classify the im-

ges, 47 out of the 51 normal/exudative images remained in
he class normal/exudative while 10 of the 13 papillary
esion	 invasion images previously in the normal/exudative
lass were reassigned to the papillary lesion	 invasion class.

As with the previous comparison, none of the subsets had
articularly high traces when comparing dysplasia/CIS with
apillary lesion	 invasion. The subset chosen for this branch

Table 2 Algorithm performanc

Decisi

Pathology Results Noncancerous

Normal 26

Exudative inflammation 21

Infiltrative inflammation 42

Dysplasia 0

CIS 0

Invasive tumor 1

Papillary lesion 2

Total noncancerous 89

Total cancerous 3
ournal of Biomedical Optics 024003-
of the tree had a trace value of 1.08, and included the follow-
ing three features: �1� the second moment of the histogram,
�2� the third moment of the histogram, and �3� the amount of
energy in a horizontal band around the origin of the Fourier
transform of the image. The discriminant function left 10 of
the 15 dysplasia/CIS images classified as dysplasia/CIS and
moved 6 of the 11 papillary lesion	 invasion images previ-
ously in the dysplasia/CIS set to the correct class.

4.2 Classification Results

Using the decision tree described previously, we classified �as
either cancerous or noncancerous� each of the 182 images in
the test set using leave-one-out cross validation. The results
are shown in Table 2. As expected from the scatter plots, the
specificities for normal tissue and exudative inflammation are
fairly high, 87 and 88% respectively, while the specificity for
infiltrative inflammation is only 47%, giving an overall speci-
ficity of 62%. The sensitivities were 100, 93, and 78% for
dysplasia and CIS, invasive tumors and papillary lesions, re-
spectively.

The results for correctly distinguishing dysplasia/CIS and
papillary lesion	 invasion are shown in Table 3, along with
the sensitivity for each specific diagnosis. The sensitivity for
papillary lesions is 86%, but the others are lower, with dys-
plasia having a sensitivity of only 50%.

If the results of the first step in the decision tree are con-
sidered separately, it becomes apparent that the specificity
was significantly reduced by the second set of decisions. The
specificity after the first branch of the decision tree was 100%
for normal images, 88% for exudative inflammation, and 80%
for infiltrative images, producing an overall specificity of
85%. The sensitivity for the cancerous classes involved in the
first step, dysplasia and CIS, was 100%. The implications of
this observation are discussed later.

erous versus noncancerous.

cerous Specificity�%� Sensitivity�%�

4 87

3 88

47 47

6 100

9 100

14 93

7 78

54 62

36 92
e: canc

on

Can
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Discussion
hile a number of studies have attempted to characterize the

ppearance of various types of bladder pathology in OCT im-
ges, there have been only a few studies that have attempted
o use OCT images to differentiate pathological states within
he bladder mucosal surface, and none that has attempted to
utomate the process. The studies that used human observers
o analyze OCT images of the bladder produced results
lightly better than the results presented here, but those results
ay have been affected by some outside knowledge such as

he visual classification of the image as suspicious or the ap-
earance of the other OCT images taken in the same area.
oreover, those results are highly dependent on the particular

bserver. The results presented here, on the other hand, are
ased entirely on the features in the image in question along
ith the features present in the training set. Inter- and intra-
perator error is eliminated by this process.

The results of our study are presented two ways, one in
hich the images are classified as being either cancerous or
oncancerous, and one in which the images are classified as
eing noncancerous, dysplasia/CIS, or papillary
esion	 invasion. While the second instance is more infor-
ative, simple recognition of cancerous tissue is a significant

tep in guiding for biopsy. In fact, one of the studies that used
uman observers to classify OCT images of the bladder epi-
helium did not even attempt to distinguish between the types
f cancerous tissue.12

Note that the cancerous condition with the worst sensitiv-
ty in our study, a papillary lesion, is the condition that is most
eadily visible with video endoscopy. One contributing reason
or this anomaly is that when papillary growths were present,
he surgeon obtained OCT images at the base of the lesion,
hich often resulted in images that did not include features

pecific to papillary lesions, but rather features of the neigh-
oring tissue. It is reasonable to expect that recognition of a
apillary lesion with OCT is not of high priority because it
ill be recognized visually during the procedure, although
CT imaging of these lesions is still necessary to determine

he penetration depth. The sensitivity of our algorithm in-
reases from 92 to 97% if papillary growths are excluded
rom the sensitivity calculation.

The specificity of our algorithm suffers significantly due to
ifficulty recognizing infiltrative inflammation. If the cases of
nfiltrative inflammation are removed from the study, the
pecificity increases to 87%. The study by Zagayanova et al.12

Table 3 Algorithm performance: dysp

Decis

Pathology Results Noncancerous Dysplasia/CI

Dysplasia 0 3

CIS 0 7

Invasive tumor 1 4

Papillary lesion 2 1
ournal of Biomedical Optics 024003-
noted a similar problem with nonproliferative cystitis being
misdiagnosed 30% of the time. The study by Manyak et al.11

indicated that inflammatory conditions contributed to the rate
of false positives. Infiltrative inflammation can be common in
the epithelial lining of the bladder when cancer is present, so
to improve the specificity of diagnoses based on OCT images,
new techniques must be found to distinguish infiltrative in-
flammation from cancerous conditions.

In regard to the texture features selected for the decision
tree, it appears that the second moment of the histogram is
indeed well suited for distinguishing between tissue classes,
in that it was included in each of the subsets used for the
decision tree. On the other hand, the fact that some of the
images of superficial papillary growths and invasive tumors
were not recognized by our algorithm, while all cases of dys-
plasia and CIS were recognized, could indicate that the de-
scription of a homogeneous image may apply better to cases
of dysplasia and CIS than to invasive tumors or papillary
lesions. The nature of the texture in those cases requires fur-
ther explication. In addition to the second moment of the his-
togram, the mean of the histogram, the range of intensities,
and the correlation between a pixel and the pixel immediately
to the right were selected as features when distinguishing be-
tween normal or exudative tissue and dysplasia or CIS. Im-
ages of dysplasia or CIS appear to have both a lower mean
intensity and a smaller intensity range than images of normal
tissue or tissue with exudative inflammation, while having a
higher correlation between neighboring pixels. A possible ex-
planation for this is that the growth of cancerous cells disrupts
the normal structure of the bladder wall. Larger optical reflec-
tions occur at boundaries between tissue types, especially
when these boundaries are smooth and flat �acting as specular
reflectors�. Consequently, less heterogeneous, less structured
cancerous tissues would be expected to exhibit lower mean
intensities and ranges of intensities. In addition, the locally
homogeneous nature of the cancerous tissue would increase
the possible correlation between a pixel and its neighbor. We
are unsure, however, why not all the images of invasive tissue
or papillary lesions appeared to have similar characteristics,
since they too should have become more homogeneous and
unstructured. As mentioned previously, the nature of the im-
ages of papillary lesions or invasive tumors needs to be fur-
ther studied.

IS versus papillary lesion±invasion.

llary Lesion±Invasion Specificity Sensitivity �%�

3 50

2 78

10 71

6 86
lasia/C

ion

S Papi
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Conclusions
ur algorithm, which was tested on 182 OCT images of blad-
er tissue, had a sensitivity of 92% and a specificity of 62%
hen classifying tissue as either cancerous or noncancerous.
he results indicate that texture analysis is a viable method

or analyzing OCT images of the bladder. Other researchers
ave used computer analysis of OCT images to recognize
ysplasia in the esophagus15,16 and tumors in the breast17 with
imilar performance, indicating that computer-aided diagnosis
f OCT images is realistic.

Our study, as well as studies using human observers, suf-
ers from a common problem, namely, the difficulty in distin-
uishing infiltrative inflammation from cancerous tissue when
nalyzing OCT images of the lining of the bladder. To im-
rove the specificity of diagnoses provided by OCT, new
ethods must be found to make this distinction. Once a
ethod of distinguishing infiltrative inflammation from can-

erous tissue is found, computer diagnosis of OCT images of
he lining of the bladder should be much more specific, en-
bling physicians to begin treatment at the time and place of
he identification of the cancer, rather than having to attempt
o return to that site in a subsequent procedure.

While our algorithm did produce a sensitivity of 92%, this
ust be improved, as does the algorithm’s ability to distin-

uish between the types of cancerous tissue. Further research
nto other texture and image analysis methods must be con-
ucted to see if methods can be found that provide more re-
iable recognition of invasive tumors and papillary lesions. In
his study, we did not differentiate between invasive tumors
nd papillary lesions since these cases seemed to have similar
exture features for the features considered. However, this in-
ormation is critical when determining the course of treatment
nd must be addressed. Invasive lesions are much more dan-
erous and require significant alterations in treatment.

As mentioned previously, the specificity after the first step
f our algorithm was 85%, while producing a sensitivity of
00% for dysplasia and CIS. If the goal of our study had been
o recognize dysplasia, and distinguish it from noncancerous
issue, as in the studies by Qi et al.15,16 our algorithm would
ave been very successful. It is therefore realistic to assume
hat the features selected for the first step of our algorithm are
ufficient to distinguish between dysplasia/CIS and noncan-
erous tissue.

Further testing on an independent data set will strengthen
he clinical value of this approach.
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