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ABSTRACT

A wavelet tomographic algorithm is presented for statistical reconstruction of a lymphocyte nucleus. The
investigation is concerned with lymphocyte nuclei of peripheral blood from two groups of patients: those
who live in the area affected by the Chernobyl accident and the control group. The purpose of reconstruction
is to find the probability density function of radial distribution of condensed chromatin. The difference
between the two test groups is seen from considering the results of reconstruction and the wavelet energy
spectra. The Radon transform is treated here as a singular wavelet transform, which allows us to reconstruct
the essential scales from projection and to denoise them simultaneously. The algorithm of reconstruction
involves back projecting and continuous wavelet synthesis with denoising. The use of a special local filter
insures the stability of reconstruction. © 1999 Society of Photo-Optical Instrumentation Engineers. [S1083-3668(99)00603-6]

Keywords lymphocyte; chromatin; tomography; singular wavelets; continuous wavelet transform; energy
decomposition.
1 INTRODUCTION

The three-dimensional (3D) analysis of a nucleus is
required to study the mechanism of interphase
structural regulation and has wide application in
early diagnostics of diseases. The problem of tomog-
raphic reconstruction arises from the necessity to ana-
lyze the spatial structure of a nucleus by optical mi-
croscopy. All known methods are based on
examination of the two-dimensional (2D) projection
and can be used to study plane structures only.1,2

The algorithm proposed is an attempt to recon-
struct the 3D structure from 2D projection.

The initial assumption for reconstructing the
nucleus is that intranuclear chromatin is radially ar-
ranged on the supramolecular level. ‘‘Cytologically,
chromatin is classified into condensed and dif-
fuse... . This classification holds for most cell nuclei.
The condensed (DNA-containing) structures make
up 15% to 30% of total area, occupied by nuclear
material. The two types of chromatin also differ
functionally.’’ 1 Under the light microscope the in-
terphase nucleus looks like a halftone image of dark
(granular) and light (nongranular) areas. The
granular areas correspond to condensed chromatin
and demonstrate the low genetic activity. The non-
granular areas correspond to diffused chromatin
and indicate strong genetic activity.1 The hypoth-
esis for the radial symmetry of distribution of gran-
ules is frequently used as a first approximation and
will be employed in our investigation. Thus, the
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statistical reconstruction of condensed chromatin
3D structure in a spherical coordinate system is re-
duced to restoration of the radial distribution.

The second assumption implies that the image ac-
quired from the optical microscope can be consid-
ered as the projection of a nucleus onto the plane at
random angle. A set of representative images
makes it possible to reconstruct the radial symmet-
ric probability density function (PDF) or, at least, its
large-scale structure. Theoretically, the reconstruc-
tion of the unique nucleus structure is feasible but
in practice the noise, distorting the data, decreases
the accuracy of reconstruction. Therefore, we re-
strict our task to reconstruction of the averaged
large-scale density distribution. In the context of
this problem it is favorable to use an algorithm,
which includes the scale separation in a generic
way. Wavelets seem to be suitable for this objective.
We have used the results by Holschneider, which
demonstrate how to use the inverse wavelet trans-
form for computing the inverse Radon transform in
the 2D case.3,4 With these ideas we have developed
a program which inverts the discrete Radon data
only for the radial symmetric function and is
adapted to noisy data. The program has been tested
for several benchmark signals with various levels of
noise. For stable reconstruction, a local filter was
designed and applied.

In this work, use is made of the arrays of normal-
ized radius vectors of granule centers of lympho-
cytes of peripheral human blood obtained by the
morphodensitometry method.1 Individuals were
divided into two groups: those who live in the area
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affected by the Chernobyl accident (Group I) and
others who live outside this area, i.e., control Group
II. All morphodensitometric data were kindly
granted by A. Zhukotsky.

On the hypothesis that chromatin is radially sym-
metric arranged, we have taken the proposed
method for nucleus reconstruction. The main ques-
tion was how to distinguish between two groups
on the supramolecular level. For each group we
constructed its own histogram indicating the distri-
bution of radius vectors over the rings of equal area
in the projection of a nucleus. Considering these
histograms as the Radon data, we have recon-
structed the central profile of a nucleus for Groups I
and II. Finally, we have compared the wavelet en-
ergy spectra for these groups.

2 SINGULAR WAVELET TRANSFORM AND
ABEL EQUATION

For the sake of completeness we briefly review the
main notions of the 2D continuous wavelet trans-
form. The set of wavelets over the plane R2 is gen-
erated with respect to the function g by applying
the 2D translation T, dilation D, and, in the case of
anisotropic wavelet, rotation V,3,4

~Tbx ,byg !Fx
y G5gFx2bx

y2by
G ,

~Dag !Fx
y G5a22gFa21x

a21y G , (1)

~Vwg !Fx
y G5gS F cos w 2sin w

sin w cos w
G Fx

y G D .

The continuous wavelet transform with parameters
bx , by , a, w is defined as a convolution of the func-
tion f with the wavelet g:

Wf~bx ,by ,a ,w!5E
R2
E f~x ,y !~Tbx ,byDaVwg !

3~x ,y !dx dy . (2)

Thus, the 2D wavelet transform maps the function
f(x ,y) onto the four-dimensional space. For a more
precise description of the 2D continuous wavelet
transform, we refer to Ref. 3.

For the radially symmetric function f(p), the
translation T depends on the radial coordinate only,
and the wavelet space is reduced to the three-
dimensional case

Wf~b ,a ,w!5E
R2
E f~p !~TbDaVwg !~x ,y !dx dy ,

(3)

where

p5Ax21y2, b5Abx
21by

2. (4)
The projection data acquisition is traditionally
simulated using the Radon transform. In the 2D
case, the Radon transform is defined as the set of
integrals along all straight lines s with parameters p
and w,3–5

Rf~p ,w!5E
2`

`

f~p cos w2s sin w ,p sin w1s cos w!ds .

(5)

In view of the fact that the integral of f along the
straight line is equal to the integral over the whole
plane of the product f and the d function concen-
trated on this straight line, the previous equation is
written as

Rf~p ,w!5E
R2
E f~x ,y !d~x cos w1y sin w2p !dx dy ,

(6)

where the argument of the d function is taken from
the left-hand part of the secant line equation

x cos w1y sin w2p50. (7)

Since every straight line can be obtained from the
line x50 by translation and rotation, then the Ra-
don transform can be defined in terms of the wave-
let transform3,4 as

Rf~p ,w!5E
R2
E f~x ,y !~TpVwd!~x !dx dy . (8)

Consequently, the Radon transform can be consid-
ered as a wavelet transform with singularity. The
singular d function differs from the regular wave-
lets and its mean value is not equal to zero. More-
over, the regular wavelets are localized simulta-
neously in signal and frequency spaces. Singular
wavelets are concentrated in the infinitesimal do-
main and, therefore, have infinite spectrum, or, in
other words, the d function does not obey the ad-
missibility condition.3

The d function as a singular wavelet has some
specific features, such as the invariance to dilation,
allowing us to establish the link between the singu-
lar wavelet transform of function f and its Radon
transform3,4

Wf~bx ,by ,a ,w!5
1
a

Rf~p8,w!, (9)

where p8 is governed by the formula known in to-
mography as ‘‘back projection’’ 5

p85bx cos w1by sin w . (10)

For the radially symmetric function, Eq. (6) is re-
duced to the Abel equation, because the function
and its Radon image are independent of w

Af~p !52E
p

` rf~p !

Ar22p2
dr . (11)
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The Abel equation (11) is considered as a particular
case of the Radon transform and can be redefined
through the singular wavelet transform using Eq.
(8),

Af~p !5E
R2
E f~x ,y !~Tpd!~x !dx dy . (12)

Substituting (10) with bx5b , by50 into (11) gives

Wf~b ,a ,w!5
1
a

Af~b cos w!. (13)

It should be noted that the behavior of singular
wavelet image (11) or (13) is the same at any scale a.

Equations (11) and (13) make it possible to apply
the wavelet potentialities (singularity detection, en-
ergy spectrum analysis, etc.) in reconstructing the
function from its projection.

3 STABLE TOMOGRAPHIC
RECONSTRUCTION VIA WAVELET
SYNTHESIS

The reconstruction of the function from its singular
wavelet image is realized by convolution with a
synthesizing wavelet and by integration with re-
spect to the angle coordinate w and the scale coor-
dinate a. For the Radon transform, the choice of
synthesizing wavelet h is made under the following
restriction:3,4

E
2`

` dg

ugu2 ĥ~geW !52p , (14)

where eW5(cos w,sin w), ĥ is the Fourier image of
synthesizing wavelet, and g is the radial frequency

ĥ~g!5E
2`

`

h~p !e2igp dp . (15)

Expression (14) allows us to compensate the singu-
larity of the analyzing wavelet by choosing the suit-
able regular wavelet at the stage of synthesis.

For the radial symmetrical function synthesized
at a single scale, a is defined by a convolution of the
singular wavelet image Wf with h(p) taken under
condition (14). From (13) it follows that

f̃~p ,a !5a22E
0

2p

dwE
2`

`

Af~b !hS b2p cos w

a D db .

(16)

For complete reconstruction of the function from its
wavelet image, the following inversion holds:3,4

f~p !5 lim
e˜0,r˜`

1
C2 E

e

r

f̃~p ,a !
da
a

, (17)

where C is the normalizing coefficient.
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The appropriate synthesizing wavelet is chosen
under such conditions as resolving power of wave-
let, etc. For example, the Mexican hat function
meets condition (14) and can be used to reconstruct
the function from its projection

h~p !5~12p2!exp~2p2/2!. (18)

For the Mexican hat function, C52p . This wavelet
has been used in our work.

The exact reconstruction of the function from its
projection described above is unstable in the event
we use the noisy projection data. Let the projection
data be distorted by the additive noise h; then

f~p !5 lim
e˜0,r˜`

1
C2 E

e

r da
a E

0

2p

dwE
2`

`

~Af1h!

3a22hS b2p cos w

a D db . (19)

The internal integral can be considered as a convo-
lution with a high-pass filter. From (19) it is seen
that there will be amplification of the small-scale
components of noisy projection data. If the level of
noise on small scales is high, then the regularizing
filter is required for stable reconstruction.5 The el-
ementary variant of regularization is to restrict
small scales during integration. In this case no fine
details (at a,amin) are restored at any point of p.
This way of regularization is similar to the low-pass
filtering in classical tomography.5 The local filtering
of the function at each point depending on its be-
havior is a more complicated procedure. One such
filter will be described in the next section.

4 RECONSTRUCTION OF LYMPHOCYTE
NUCLEUS

Consider the granule center radius vectors in a lym-
phocyte nucleus. The geometry of projections is
shown in Figure 1. Each nucleus usually contains
10–15 granules of condensed chromatin. Unfortu-
nately, the small number of granules does not allow
the reconstruction of the nucleus structure from
unique projection. However, the superposition of
many nuclei gives enough data for the reconstruc-
tion of averaged (statistical) values. In this article,
lymphocytes of peripheral human blood from the
area affected by the Chernobyl accident (Group I)
and from the control Group II are studied. The total
number of granules comprises 820 and 819 for
Groups I and II, respectively.

Histograms of radius vectors are constructed for
each group. For this, the nucleus projection is di-
vided into 16 rings and the number of radius vec-
tors on each ring is counted. Histograms for each
group are shown in Figure 2. In this case, the pro-
jecting can be mathematically treated as a random
hit onto the plane; therefore the nucleus projection
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is divided into rings of equal area. Hence, the ring
width decreases from the nucleus center to its cir-
cumference.

We consider these histograms as the projection
data. The reconstruction of statistical distribution of
granules in a lymphocyte nucleus was made using

Fig. 1 Geometry of projections. Three-dimensional lymphocyte is
projected to the plane during specimen preparation; p—distance
from the center of nucleus (3D radial coordinate) to the center of
granule, r—distance from the center of nucleus projection (2D ra-
dial coordinate) to the center of granule projection. Total number of
granules is 1639 (belong to more than 100 lymphocyte nuclei).

Fig. 2 Histograms of radius vectors of the centers of granule’s
projections. All radius vectors are normalized to the radius of the
nucleus projection. Number of granules is counted among the rings
of equal area. Top: Affected territories (Group I); bottom: control
group (Group II).
the Mexican hat function (18) as a synthesizing
wavelet for each group. The parameters taken were
as follows: the number of reconstructed points is 64,
and the scale a ranges from amin50.02 to amax54.

A more stable reconstruction with these param-
eters can be achieved if the values of the wavelet
image at small a corresponding to high frequencies
are reduced to the nucleus circumference. This en-
courages us to carry out further reconstruction with
a special (designed ad hoc) local filter

q~p ,a !5expS 2
p2

2s2~a ! D , (20)

where s is proportional to the scale a and is written
as

s~a !5
smax2smin

amax2amin
~a2amin!1smin . (21)

In this case, for experimental data processing the
following formula is used, which provides a stable
but approximate reconstruction:

f~p !5 lim
e˜0,r˜`

1
C2 E

e

r da
a E

0

2p

dwFq~p ,a !E
2`

`

~Af1h!

3a22hS b2p cos w

a D dbG , (22)

where Af1h changes to the histogram interpolated
through the ring centers for both groups.

Figure 3 presents the reconstruction results of the
statistical distribution of granule centers (a) without
a filter, (b) with a classical Ramachandran–
Lakshminarayanan (Ram–Lak) filter,5 and (c) with a
wavelet-based filter (20) at smin50.5, smax550. An a
priori condition, PDF.0, is provided by imposing
the additional restriction on the small-scale noise
near the nucleus center.

As seen from Figure 3, the groups have different
PDFs. A statistical distribution of granules (con-
densed chromatin) in a lymphocyte nucleus from
Group I is close to the Gaussian function with a
maximum near p050.7. The maximum is well de-
fined on the plot both with regularization and with-
out it. The PDF in the central region (upu,0.5) is
about zero; that is, no granules exist in the vicinity
of the nucleus center. The granule distribution in
lymphocyte nuclei from Group II is more uniform
as compared to Group I; however, some maximums
and minimums are observed. In the vicinity of the
nucleus center the PDF is nonzero. The nonregular-
ized and globally regularized filters amplify the
small-scale components of noisy projection data,
which explains the artifact that PDF is negative in
some intervals.

The difference between Groups I and II is readily
seen from their wavelet energy spectra, sometimes
called the ‘‘energy-scale decompositions,’’ which
are governed by
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Ef~a !5E
2`

`

u f̃~b ,a !u2 db . (23)

The wavelet energy spectra for Groups I and II are
shown in Figure 4. Abscissa is the scaling param-
eter a in the log scale.

Fig. 3 Reconstructed 3D probability density function under radi-
ally symmetric approximation. Each plot consists of three curves:
(a) without a filter, i.e., through the nonregularized algorithm
(crosses), (b) with a classical tomographic Ram–Lak filter that
passes the ten lowest frequences and provides the global regular-
ization (dashed line), and (c) with a wavelet-based filter that pro-
vides denoising depending on the radial coordinate (solid line).
Top: Affected territories (group I); bottom: control group (Group II).

Fig. 4 Wavelet energy spectra of both groups. Each spectrum is
calculated at 16 values of scaling parameter a and then smoothed
with cubic spline. Total energy is normalized to 1.
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Figure 4 shows that the wavelet energy spectra of
Groups I and II have their maxima in different parts
of the scale. For Group II one maximum is ob-
served. This means that the most energy is localized
on the large scales. Vice versa, for Group I the main
energy maximum shears to the medium scales, and
the local maximum exists on the large scales. The
bend of the curves on the smallest scale is probably
explained by noise.

5 CONCLUSION

We have applied the wavelet tomography algo-
rithm to study the chromatin density distribution in
a lymphocyte nucleus. Wavelets enable us to de-
noise the projection data and to reconstruct the
large-scale structures simultaneously. The statistical
reconstruction of a lymphocyte nucleus has been
done for two groups of patients: those who live in
the area affected by the Chernobyl accident, and the
control group. We have obtained the 3D probability
density function (PDF) of condensed chromatin in a
radially symmetric approximation using histo-
grams of granule distribution in 2D projection. In
addition, the energy-scale decomposition has been
done for both groups. To make the stable recon-
struction of the PDF, a specific regularizing filter
was designed and used. It has been found that the
groups have different PDFs and energy-scale de-
compositions. According to the PDF, there are no
granules in the nucleus center for Group I. The
granule distribution in a lymphocyte nucleus for
Group II is more uniform as compared to Group I.
Based on the energy-scale decomposition, we can
conclude that the large-scale structures of granules
dominate for Group I, and for Group II there are
the additional middle-scale structures.
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