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Abstract. Hyperspectral imaging is a technology that is beginning to occupy an important place in medical
research with good prospects in future clinical applications. We evaluated the role of hyperspectral imaging
in association with a mixture-tuned matched filtering method in the characterization of open wounds. The meth-
odology and the processing steps of the hyperspectral image that have been performed in order to obtain the
most useful information about the wound are described in detail. Correlations between the hyperspectral image
and clinical examination are described, leading to a pattern that permits relative evaluation of the square area of
the wound and its different components in comparison with the surrounding normal skin. Our results showed that
the described method can identify different types of tissues that are present in the wounded area and can objec-
tively measure their respective abundance, which proves its value in wound characterization. In conclusion, the
method that was described in this preliminary case presentation shows promising results, but needs further
evaluation in order to become a reliable and useful tool. © The Authors. Published by SPIE under a Creative Commons
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1 Introduction
Wounds represent a prevalent medical condition worldwide,
with negative effects on patient quality of life and high costs
for treatment. Statistics show that each year hundreds of millions
of people suffering from acute and chronic wounds are globally
reported. This high incidence makes the accurate assessment,
accurate diagnosis, and effective documentation to be essential
tasks for the effective treatment of wounds with consequences
on patient health and health cost reduction.

Currently, there is a wide variety of methods available for
measuring physical parameters (surface area, structure, and
types of tissues in the wound bed) or some attributes of wounds
(color, bleeding, erythema, edema, exudate, odor, temperature,
and so on), as well as new approaches for their improvement in
terms of accuracy, efficiency, costs, and possibly providing
more quantitative information about the characteristics of
wounds. The most used methods for measuring physical
parameters of wounds are linear methods, tracing methods,
planimetry, photography, sterophotogrammetry, etc., while
paraclinical evaluation of wound can be done by thermogra-
phy, laser Doppler imaging, magnetic resonance imaging,

ultrasound imaging and so on.1 More recently, multispectral
and hyperspectral imaging have proven their ability to provide
important information that can help in better documentation of
the wound.

Hyperspectral imaging (HSI) is an emerging medical tech-
nology that offers the possibility of extracting both spectral
and spatial information about each pixel from a tissue/organ/
body image. This information is very useful in the characteri-
zation, identification, and classification of different biological
tissues for diagnostic purposes and medical treatment monitor-
ing. The basic idea of this method is to acquire a set of images in
many adjacent narrow spectral bands and to reconstruct the
reflectance spectrum for every pixel of the image.2 The set of
images is a three-dimensional hyperspectral data cube, known
as a hypercube, comprising two spatial dimensions (the spatial
coordinates of a pixel) and one spectral dimension (the wave-
length of a particular spectral band). Therefore, both spatial
and spectral information about the object or scene under inves-
tigation can be simultaneously obtained from the analysis of the
hypercube. The difference between hyper- and multispectral im-
aging is given by the arbitrary number of bands and/or the type
of measurement. While hyperspectral imaging systems collect
hundreds of spectral bands of 1–20 nm width, multispectral im-
aging sensors are systems collecting of tens, generally noncon-
tiguous, of spectral bands.
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HSI has found its utility in a wide array of applications in
numerous fields, such as mining and geology,3 agriculture,4 sur-
veillance,5 astronomy,6 chemistry,7 and environment.8 More
recently, some studies have shown that HIS can be considered
as a valuable tool in the medical field for noninvasive detection
of cancer,9 diabetic foot ulcers,10 peripheral vascular disease,11

or to assess levels of tissue blood oxygenation during surgery.12

The successful use of HSI in any of these areas depends,
however, on the hyperspectral image processing techniques
used to analyze the large volume of generated data.13 A variety
of existing or newly developed techniques for preprocessing,
extraction, and classification of specific information contained
in hyperspectral data sets have been investigated in recent years.
Twelve categories of image classification methods have been
identified by Lu and Weng14 depending on the nature of the
available information: supervised and unsupervised classifica-
tion (based on the use of training samples), parametric and non-
parametric classification (based on an parametric model), hard
and soft (fuzzy) classification (based on class information), per-
pixel, subpixel, and perfield classification (based on pixel infor-
mation), and spectral, contextual, and spectral-contextual
classification (based on spatial information).

In the medical field, with the use of HSI being in its infancy,
little work has been done with hyperspectral data classification
for wound assessment. Only three classification methods have
been mainly tested for chronic skin ulcers diagnosis and wound
healing evolution. Thus, Denstedt et al.15 tested and compared
the performance of spectral angle mapping and K-means clus-
tering as supervised and unsupervised classification methods of
hyperspectral data acquired from patients with venous leg
ulcers. K-nearest neighbors (K-NN) is another supervised clas-
sification method applied by Nouri et al.16 for the classification
of multispectral data in the wound assessment in the context of a
preclinical study in apitherapy.

This study is designed as an initial investigation into the use
of subpixel mixture-tuned matched filtering (MTMF) classifica-
tion of the hyperspectral data as a method for mapping open
wounds. We chose this method based on its ability to map
an individual target (endmember) without requiring the knowl-
edge of all the endmembers within an image by combining the
linear spectral mixing model with the statistical matched filter
(MF) model.17

The main objectives of this work were: (1) identification of
all the tissue types in the wound and (2) evaluation of the relative
surface area of each identifiable tissue type.

The goal of this classification is to produce an image in
which each pixel is categorized according to the presence,
absence, or relative abundance of the tissue types.

2 Methods

2.1 Hyperspectral Image Acquisition

A hyperspectral image of an open wound located on the medial
part of the right hind leg of a dog using a line-scan hyperspectral
imaging system was acquired 2 days after it was admitted to the
medical clinic. The investigation was done with the approval of
the Animal Ethics Committee.

On clinical examination, the wound consisted of granulating
tissue in the center (covering most of the surface) with some
marginal necrosis and scattered blood clots and marginal spon-
taneous epithelialization. The wound was cleansed with a 10%
Betadine® solution and gentamicin. There were no signs of
wound infection (hyperemia or edema on the surrounding
healthy skin).

A line-scan HSI system consisting of an imaging spectro-
graph (ImSpector V8E, Specim, Oulu, Finland) equipped with
a 19 deg field-of-view Xenoplan1.4/17 lens (Schneider, Bad
Kreuznach, Germany), which allows the simultaneous acquisi-
tion of 205 spectral bands from 400 to 800 nm with a spectral
resolution of 1.95 nm and a DX4 CCD camera (Kappa,
Gleichen, Germany) with a recording speed of 42 fps at a spatial
resolution of 50 × 53 pixels mounted on a tripod was used for
hyperspectral image acquisition (Fig. 1).

Uniform illumination of the entire investigation area was pro-
vided by an illumination unit containing two 300 W halogen
lamps (OSRAM, Germany) equipped with diffusion filters
(Kaiser Fototechnik GmbH & Co.KG, Buchen, Germany).
An image acquisition computer with image acquisition software
(SpectralDAQ—Specim, Oulu, Finland) and image processing
and analysis software (ENVI v.5.1—Exelis Visual Information
Solutions, Boulder, Colorado) was connected to the hyperspec-
tral system.

Fig. 1 The schematic illustration of the experimental setup for hyperspectral imaging (HIS) of the wound.
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2.2 Mixture-Tuned Matched Filtering Classification

The MTMF method addressed in this study is a supervised
method that performs data classification based on a combination
of a statistical MF method and linear spectral mixing theory.17

MF method allows the estimation of the subpixel abundance of a
single target in mixed pixels by filtration of the hyperspectral
data up to a good match to the target spectrum. This is done
by maximizing the response of the target spectrum and sup-
pressing the response of other unknown elements from the
pixel.18 The output from the MF method is a target abundance
image where each pixel has an MF score.17 This MF score rep-
resents the fraction of the pixel that contains the target, with val-
ues between 0 and 1. A pixel with an MF score of 1 would be
considered as a perfect match while a pixel with a value of 0 or
less would be interpreted as representing the background.
Sometimes, irregularities in MF score values may be encoun-
tered (i.e., values greater than 1) because the MF method is
not subject to the sum-to-one and non-negative constraints.18

To address the problem of these false results that often appear
as MF solutions, a mixture tuning (MT) method is applied as the
second component of the MTMF classification.17 The MT
method uses a linear spectral mixing model19 to add constraints
to the feasibility of MF results by considering the sum-to-one
and non-negative requirements, so that the number of false pos-
itives is reduced. The output from the MT method is an infea-
sibility image where each pixel has an infeasibility score (IF
score).19 The IF score is a measure of good matches for each
MF result. An IF score of zero is the best match, meaning an
MF result with zero false positives. Pixels with a high IF
score are liable to be regarded as false positives irrespective
of their MF score. Therefore, pixels that combine low IF scores
with high MF scores can be considered as correctly mapped,
because they show the best match to the target spectrum.

In this study, the MTMF method, as implemented in ENVI v
5.1 software, was used to generate a map of the injured tissues
from the wound and surrounding skin.

The MTMF method involves the following processing
steps:20,21

1. Determination of the inherent dimensionality of image
data and the noise reduction in data using the mini-
mum noise fraction (MNF) transformation modified
from Green et al.22 and implemented in ENVI software
v 5.1. This processing step consists of a succession of
two principal component transformations. The first
transformation, derived from the noise covariance
matrix for the sensor noise, is designed to decorrelate
and rescale the noise in the data. This first step results
in transformed data for which the noise is uncorrelated
with the unit variance. The second transformation is a
standard principal component analysis on the noise-
whitened data. The results of MNF transformation are
eigenvalues for each MNF transformed band and the
MNF images. The inherent dimensionality of the data
can be determined by examining both of these results.
Coherent MNF images associated with large eigenval-
ues provide useful information while small eigenval-
ues (close to one) indicate noise-dominated data. By
using only the components with large eigenvalues, the
noise is separated from the data and the inherent
dimensionality of the image is determined.

2. Determination of endmembers (spectrally pure pixels)
from the MNF image using the pixel purity indexing
(PPI) procedure developed by Boardman.23 PPI pro-
cedure works by projecting each pixel onto one line
from a series of randomly generated lines in the n-
dimensional space comprising a scatter plot of the
MNF transformed data. The pixels that fall at the
extremes of the lines are recorded and the total number
of times each pixel is marked as extreme is counted.
The pixels with a count above a threshold value are
considered to be spectrally pure. These pixels are high-
lighted in the created PPI image as brighter pixels and
denote potential endmembers. Darker pixels are less
spectrally pure.

3. Extraction of endmembers spectra using an n-dimen-
sional visualizer tool that allows localization, identifi-
cation, and clustering of the purest pixel in the n-
dimensional space.24 This procedure allows the visu-
alization of the purest pixels determined from the PPI
procedure as points in an n-dimensional scatter plot,
where the number of dimensions is defined by the
total number of coherent MNF bands. In this n-dimen-
sional space, the best endmembers are located at the
corners of the n-dimensional data cloud. By interac-
tively rotating the data cloud, the corners of the
data cloud can be localized and highlighted, and the
endmembers can be selected.

4. Estimation of the subpixel endmember abundance in
each image pixel using the MTMF method. The end-
members selected in step three are used as input for
MTMF classification of the wound hyperspectral
image. The output of the MTMF method is an abun-
dance map pertaining to each type of injured tissue
from open wounds and surrounding skin.

This method helps us to characterize the wound by extracting
useful spectral/spatial information about the injured tissue type
from hyperspectral image without a priori knowledge of all the
tissue classes within the image.

3 Results
Figure 2 shows the RGB image of the examined wound and the
hyperspectral image (hypercube) with spatial dimensions
50 × 53 pixels, and spectral data of 205 bands from 400 to

Fig. 2 The RGB image and hyperspectral image of the wound:
(a) RGB image; (b) hyperspectral image.
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800 nm. The RGB image [Fig. 2(a)] shows a granulating defect
with some hypertrophic granulations in the center. There is a
newly formed marginal epithelium mainly on the left edge
and some minor areas of necrosis or hematic crusts (upper
left, lower center). A limited area of infiltration can be depicted
at the lower wound border. Two linear recent scars can be seen
on the right side (the upper one being slightly longer). The sur-
rounding skin is hair-bearing and shaved.

The tissue types were mapped by applying the MTMF
method to the hyperspectral image [Fig. 2(b)]. First, an MNF
transform was run on this input hyperspectral image providing
an output of 205 MNF bands. By examining the eigenvalues
(EV) and after a careful visual inspection of the spatial informa-
tion contained in the output MNF bands, we selected the first six
MNF bands as being coherent images (Fig. 3). The remaining
MNF bands primarily contain noise.

As we can see in Fig. 3, the eigenvalue for each of the first six
MNF bands is greater than 2. The eigenvalues for the remaining
MNF bands are lower and are all close to 1. We can also notice
MNF band 1 mirroring a vague general image of the wound
being dominated by some instrument artifacts, while MNF
band 2 shows a much better image quality where all types of
tissues are present (epithelial tissue, granular tissue, blood
crusts, and so on). In MNF band 3, the edges of the wound
and all kinds of affected tissues are well represented, but
other features of the wound are not well distinguished. MNF
band 4 highlights mainly skin with hair, granulation, the line
of the infiltrating zone, and the newly formed epithelium,
and the noise starts to appear. MNF bands 5 and 6 are dominated
by noise, but some features of the wound such as granulating
tissue can still be distinguished. Starting with the MNF band
7, the noise increases substantially and a lot of primary infor-
mation is lost. Based on this analysis, the intrinsic dimension-
ality of the image was determined to be 6 in this case. We have
used a spatial coherence threshold level of 0.12 to set the num-
ber of bands at 6.

The potential endmembers from the image were then deter-
mined by running the PPI procedure on the MNF data using an

optimal number of 10,000 iterations established based on the
PPI plot and a threshold value of 2.5 to exceed the noise
level in our MNF transformed data.25 Figure 4 presents the
PPI image thus created. The brighter pixels in PPI image denote
the potential endmembers and darker pixels are considered as
less spectrally pure.

These potential endmembers derived from the PPI procedure
were then loaded into an interactive n-dimensional visualizer
tool to identify the clusters of pure pixels and to derive the
final set of endmember candidates from these clusters. A num-
ber of six endmembers were derived for this study. The location
of these endmembers in the scene and their spectral profile is
shown in Fig. 5.

By examining the spatial location and spectral profile of each
of the endmembers and based on our expertise in wound

Fig. 3 First seven minimum noise fraction (MNF) images of hyperspectral image data. The eigenvalues
(EV) of MNF images are between 98.527 and 1.768. (a) MNF band 1 EV: 98.527, (b) MNF band 2 EV:
25.558, (c) MNF band 3 EV: 8.942, (d) MNF band 4 EV: 3.557, (e) MNF band 5 EV: 2.514, (f) MNF band 6
EV: 2.183, (g) MNF band 7 EV: 1.768.

Fig. 4 Pixel purity index (PPI) image. This image was created using
the first three MNF bands. The white areas show the pixels selected
as those that had the greatest occurrence as extreme, and are, thus
potential endmembers.
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assessment, we have identified the endmembers as being
(Table 1): skin with hair (outside the shaved zone) in green
color (endmember 1), its spectrum is so flat probably due to
black hair abundance, and in cyan (endmember 4) is a large
area with granulations. In the lower part of the cyan zone,
there is a zone in magenta (endmember 5) which seems to
be necrotic tissue, surrounded by some blue color (endmember
2) which has a similar spectrum as endmember 5, which sug-
gests that it corresponds to necrotic areas (maybe thinner
than the one in endmember 5). Both endmembers 3 and 6 (yel-
low and maroon, respectively) are situated in the area of normal
shaved skin and their spectra have the same reflection peaks,
with endmember 6 having higher values. They even have the
same reflection peak at 550 nm, a feature that does not appear
in the spectra of the other members. They do not have the same
spatial distribution and there is a large area of normal shaved
skin that is not covered by either endmember 3 or 6.

It is interesting that the newly formed epithelial tissue easily
identified on clinical examination has no endmember corre-
spondent and it looks in Fig. 5 like normal shaved skin.

This set of endmembers was used as input into the MTMF
method to derive individual tissue type cover abundances. As a
result, an MF image and an infeasibility (IF) image for each end-
member were obtained. MF images that allow an estimate of the
fractional abundance for each target tissue are presented
in Fig. 6.

The MF images show areas with higher MF scores as
brighter pixels, thus highlighting the areas with large abundance
where the target tissue likely occurs. However, if we examine

these images compared to the RGB image [Fig. 2(a)], we can
see that the selected target tissues cannot be found in all
areas with brighter pixels. IF images help us to improve the
MF results by causing rejection of these false alarms using
the mixture feasibility constraints. For this purpose, a scatter
plot of IF scores versus MF scores was used in this study to
extract pixels with a high MF score and low IF score for
each endmember (Fig. 7).

In Fig. 7, a great number of pixels present negative MF
scores or MF scores greater than 1, both of which are physically
meaningless. Therefore, we set MF scores between 0 and 1 to
indicate the no match to a perfect match, respectively, for each
selected endmember. Pixels having such an MF score and low IF
score (<4) were interactively selected from the scatter plot of MF
scores versus IF scores to delineate the distribution of each end-
member (triangular area of each figure). The selected pixels
were exported to a region of interest (ROI) created for each end-
member. The ROIs were then converted into a classification
image (Fig. 8) showing those pixels in the image that
most closely match the spectral signature of each selected
endmember.

In Fig. 8, the center of the wound granulating tissue (end-
member 4) covers 233 pixels. Necrotic tissue (endmembers 2
and 5) covers 37 pixels. Normal shaved skin around the wound
is covered by endmembers 3 and 6, with endmember 6 being
closer to the wound (maybe edema, which should be present
in this area, differentiates normal skin into two different end-
members). The area of normal skin is 196 pixels for endmember
6 (edematous skin) and 139 pixels for endmember 3. This kind
of estimation of the surface area covered by the wound with its
components (granulating tissue, necrotic tissue) in comparison
with normal skin and newly formed epithelium may be of value
in monitoring the wound evolution during a certain period of
time and in assessing the wound tendency toward spontaneous
healing.

4 Discussion
Clinical evaluation of open wounds (including ulcers of differ-
ent etiology) is the usual tool currently used in medical practice.
It strongly depends on the experience of the examiner and is
hardly objective in terms of assessing wound surface and its ten-
dency toward healing. The HIS method in association with
MTMF classification of the image has shown in our study
that it can provide measurable information about the relative sur-
face area of the wound and surrounding skin. While the specific
spectrum of each endmember generated by this method is

Fig. 5 The endmember extracted from an n-dimensional visualizer: (a) spatial location of the endmem-
bers; (b) spectral profile of the endmembers.

Table 1 Interpretation of the endmembers based on spectral features
and spatial context.

Endmembers Description

Endmember 1 Normal skin with hair

Endmember 2 Necrotic tissue

Endmember 3 Normal shaved skin

Endmember 4 Granulating tissue

Endmember 5 Necrotic tissue

Endmember 6 Normal shaved skin
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difficult to explain [we have seen different spectra for the same
type of tissue, such as normal skin or necrotic tissue (see results
section)] and needs more detailed studies in which common
chromophores such as oxy- and deoxyhemoglobin or melanin
must be taken into account, combining HIS/MTMF with clinical
examination takes open wound monitoring and evaluation to a
new level. Our results show that HIS/MTMF is not enough in
the absence of a calibration study, but it can help the clinician in
objectification of his observations and in conducting the best
possible treatment. It may tell the surgeon if the ulcer is healing
at a good pace or even the rhythm in which granulating tissue is
eliminating necrotic areas if the method is applied several times

during the evolution of the wound (which the authors plan to test
in further studies).

Few studies have been directed toward HIS assisted wound
evaluation so far, but with encouraging results. Denstedt et al.15

showed that K-means clustering provides an accurate determi-
nation of wound margins when used to analyze hyperspectral
images. K-NN classification method was proven by Nouri16

to discriminate between granulating tissue and normal skin
when used as a supervised classification method for HIS in a
preclinical study on apitherapy. In a previous study, we pre-
sented a method of burns’ characterization based on HIS and
a linear unmixing model with good results (good identification

Fig. 6 Matched filtering (MF) abundance image for each endmember derived from the mixture-tuned MF
(MTMF) classification. Each pixel in the image has an MF score: (a) endmember 1, (b) endmember 2,
(c) endmember 3, (d) endmember 4, (e) endmember 5, (f) endmember 6.

Fig. 7 Scatter plot of IF scores versusMF scores for each endmember: (a) endmember 1, (b) endmember
2, (c) endmember 3, (d) endmember 4, (e) endmember 5, (f) endmember 6.
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of normal and injured skin) with prospects that this method
could be used in determining burn depth.26 In this study, we
have proven that the MTMF method can also identify necrotic
tissue and it can provide useful information about the relative
surface areas of different endmembers.

All these studies, including this report, have shown good
results using different methods to analyze HIS generated images
of open wounds. There is a need for further research in this field
because the analyzed wounds are not comparable so there is not
any element that can prove which is the most reliable classifi-
cation method. We have to admit that the method described in
this study has its flaws (such as not differentiating between
newly formed epithelium or scars and normal skin), but it can
show if the wound surface is regressing and at what pace if
applied at various moments in its evolution. It is important to
maintain the same investigation setup in order to provide reliable
data when monitoring the wound evolution. Furthermore, HIS
imaging is noninvasive and noncontact, regardless of the method
that analyzes it, so its perspectives in open wounds characteri-
zation are worth investigating in the future.
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