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Abstract. The possibility to adopt biological matter as photonic optical elements can open scenarios in biopho-
tonics research. Recently, it has been demonstrated that a red blood cell (RBC) can be seen as an optofluidic
microlens by showing its imaging capability as well as its focal tunability. Moreover, correlation between an
RBC’s morphology and its behavior as a refractive optical element has been established and its exploitation
for biomedical diagnostic purposes has been foreseen. In fact, any deviation from the healthy RBC morphology
can be seen as additional aberration in the optical wavefront passing through the cell. By this concept, accurate
localization of focal spots of RBCs can become very useful in the blood disorders identification. We investigate
the three-dimensional positioning of such focal spots over time for samples with two different osmolarity
conditions, i.e., when they assume discocyte and spherical shapes, respectively. We also demonstrate that a
temporal variation of an RBC’s focal points along the optical axis is correlated to the temporal fluctuations in
the RBC’s thickness maps. Furthermore, we show a sort of synchronization of the whole erythrocytes ensemble.
© 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.21.12.121509]
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1 Introduction
Frontiers in biophotonics could be opened by adopting biologi-
cal matter as an optical element.1–3 Recently, it has been discov-
ered that a red blood cell (RBC) behaves as a tunable optofluidic
biophotonic lens.1 Healthy erythrocytes have typically flexible
biconcave disk-like shapes with homogeneous distribution of
the refractive index. Pathological conditions affecting erythro-
cytes can significantly modify their natural discocyte shape,
thus full morphologic characterization of RBCs is relevant
for diagnostics. In fact, blood disorders are typically reflected
in specific findings from erythrocytes analysis and their mor-
phometric signature can furnish a complete diagnosis as dem-
onstrated by challenging recent results.4–6 Several studies focus
the attention on the imaging technique used to recover the
morphology of RBCs for diagnostic purposes.7–9 In this sense,
digital holography (DH) in microscopy10–13 has proved to be a
very powerful label-free, noninvasive technique for quantitative
phase imaging (QPI) of erythrocytes.14–28 In particular, in
Ref. 15, the three-dimensional (3-D) morphometric analysis
of flowing and not-adherent RBCs was carried out by using
a shape from a silhouette algorithm.29 In this case, a simple holo-
graphic approach, in combination with holographic optical
tweezers, has been demonstrated for accurate calculation of
RBCs biovolume, displaying their 3-D shapes, and classifying
them in terms of morphology. QPI by DH has been also applied
by Moon et al.16 for automated tracking of temporal displace-
ments of RBCs and analysis of 3-D morphology of RBCs stored
in different periods.18 Moreover, blood disease identification
through QPI methods have been explored for 3-D morphometry
of erythrocytes measuring volumes, refractive indices, and
morphological parameters.1,8 However, all the aforementioned

methods require quite complex image processing for morphol-
ogy retrieval in three-dimensional and 3-D and, most important,
the diagnosis is subjective, as it depends on the physician’s
personal evaluation of QPI images.

Recently, it has been demonstrated that erythrocytes can be
seen as an optofluidic biolenses1 by demonstrating their focus
tunability, imaging capability, and allowing the investigation of
their 3-D morphology through wavefront analysis by using
Zernike polynomials. Consequently, a healthy RBC can be mod-
eled as a biolens having two main aberrations, i.e., focus shift
and third-order spherical aberration, respectively. Furthermore,
due to its typical central convex shape, an erythrocyte provides
two focal planes, identified by a real and a virtual focal loci. Any
deviations from the biconcave disk-like shape produce a change
in such foci. In fact, in analogy to adaptive optics testing, blood
diagnosis has been demonstrated by screening abnormal cells
through wavefront analysis applied to RBCs ensemble as a biol-
ens array. However, it is well known that membranes of living
RBCs fluctuate continuously. Consequently, it is important to
study if, and how much, the mentioned fluctuations affect the
foci positions in order to understand if a diagnostic based on
focal spot analysis is impaired by such dynamic behavior.
It is important to note that temporal fluctuations of the focal
points loci have not been investigated yet, despite many studies
in literature on membrane fluctuations.

In fact, investigations about blood membranes fluctuation
phenomenon are widely reported,24,30–34 where the strong corre-
lation between membrane dynamics and the characterization of
blood-related diseases is demonstrated.24 Since erythrocytes
membrane fluctuations also affect the calculation of the RBC
biolens aberrations, the position of the focus planes along
the optical axis changes. Here, we report comprehensive
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measurement of focal spots stability of an RBCs ensemble in
different experimental conditions. This study is preliminary
but it opens a way for the detection of blood diseases through
focal spots analysis. Specifically, we implement a 3-D tracking
algorithm35,36 to locate, along the optical axis, both real and
virtual foci fluctuation over time. We tested two samples
with different osmolarity conditions, i.e., isotonic solution,
where healthy RBCs have the classical discocyte shape, and
the hypotonic solution, where erythrocytes present spherical-
like shapes, respectively. In addition, we reveal that (i) focus
loci stability in 3-D is influenced by the intensities of temporal
fluctuations in the RBC’s thickness map, thus, a low fluctuation
of the RBC membrane corresponds to a relative small variation
of the position of its foci along the optical axis and vice versa
and (ii) the positions of focal spots along the optical axis are
synchronized, with an average movements’ correlation greater
than 0.5 in both experiments.

2 Materials and Methods

2.1 Experimental Setup and Samples Preparation

The experiments are realized with heparinized blood drawn
within the hour before use. Blood is withdrawn into a hematocrit
tube and centrifuged at room temperature, for 15 min at 2500
revolutions per minute, in order to obtain separated component
parts as plasma, buffy coat, and RBCs at the bottom of the
centrifuge tube. We consider two different osmolarities of
the medium, i.e., ∼308 mOsm∕L that is isotonic with the
membrane of RBCs where healthy erythrocytes appear as
classical biconcave disk-like shapes, and a hypotonic solution
at ∼205 mOsm∕L, where RBCs assume a spherical-like
shape. The two samples are imaged by using a classical DH
in microscopy setup, as sketched in Fig. 1(a). The laser light

source is coupled into an optical fiber, which splits the laser
light into an object beam (OB) and reference beam. The OB
impinges on the sample (S) and passes through a 100× micro-
scope object before both beams are recombined using a beam
splitter and are collected by the 1024 × 1024 CCD camera at
10 frames per seconds. Specifically, we recorded two holo-
graphic time sequences (5 min each one, about 500 frame
acquired) of the RBCs ensemble for both discocytes and spheri-
cal-like erythrocytes, with the aim to inspect their self-motility.
Figures 1(b) and 1(c) show the first QPI reconstructions of time
sequences of both samples. Notice that the RBCs ensemble is
placed on the bottom surface of the chamber and no transversal
migration occurs, a part of the Brownian motion (with null
average value) around their centers of mass.

2.2 Red Blood Cells Wavefront Analysis: Focal
Spots Detection and Tracking

To investigate the focal spots’ stability of erythrocytes ensemble
in time, we implemented the following steps:

i. Phase maps segmentation, by using the anisotropic
diffusion filter,37 with the aim to extract isolated
RBCs of each QPI reconstruction, i.e., removing super-
posed cells.

ii. Numerical propagation of each segmented phase
reconstruction along the optical axis. In the case of dis-
cocytes, intensity distributions in the transverse planes
and along the optical axis (plane X − Z and plane
Y − Z) are used to detect both virtual and real foci,
while for spherical-like erythrocytes only real foci are
detected.1

iii. 3-D tracking of foci, by identification their reconstruc-
tion planes through refocusing criterion based on the

Fig. 1 (a) Optical setup for RBCs holographic recording. (b) and (c) Phase map reconstructions of
discocytes ensemble and spherical-like erythrocytes ensemble, respectively.
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maximization of the Tamura coefficient,38,39 while the
transverse positions are obtained from the positions
of the maximum intensity values in the detected foci
planes.

An example of focal spots detection and tracking processes is
reported in Fig. 2. Specifically, Figs. 2(a) and 2(d) show
extracted erythrocytes, obtained after step (i) by applying
the anisotropic diffusion filtering, in the case of isotonic
[Fig. 2(a)] and hypotonic [Fig. 2(d)] solutions. The intensity
distribution maps along X − Z [Figs. 2(b) and 2(e)] and Y − Z
[Figs. 2(c) and 2(f)] planes highlight the detection and 3-D
tracking of virtual and real foci of the single erythrocyte, labeled
by white dashed line. Notice that only a real focal spot is
retrieved for the spherical-like erythrocyte, while both real and
virtual foci are detected for the dyscocyte.1 In Figs. 2(b) and
2(c), the virtual focus is due to the convex central portion of the
RBC, while the positive focal spot is produced by the toroidal
external shape. Instead, Figs. 2(e) and 2(f) refer to a spherical-
like erythrocyte thus only a positive focal spot is present.

3 Results and Discussion
The focal spots stability is investigated by applying the tracking
process to focal loci of each RBC of a single QPI reconstruction
observed over 5 min. Figures 3(a)–3(e) and Videos 1 and 2 show
the results of focal loci tracking for time-lapse sequences of
discocytes and spherical-like erythrocytes, respectively. In par-
ticular, in Fig. 3(a) (last frame of Video 1), we report the 3-D
tracking of both real and virtual foci for discocytes ensemble,
while only the real focal plane tracking of the spherical-like
erythrocytes ensemble is show in Fig. 3(d) (last frame of
Video 2). Positions of focal planes along the optical axis are
influenced by the intrinsic fluctuation in RBC thickness
maps. In fact, any morphological variation of the whole curva-
ture of the erythrocyte shape alters the wavefront transmitted by
RBC thus dynamically varying focal spots position along the
optical axis. To prove such a relationship, we calculated the
thickness maps for both QPI reconstruction sequences assuming

a homogeneous refractive index for the RBCs.24,25 In this
case, the physical thickness map can be derived from the QPI
image by dividing it by a constant value C ¼ 2πΔn∕λ, where
Δn ¼ ncell − nmedium with ncell ¼ 1.395 and nmedium ¼ 1.334,
and λ ¼ 532 nm is the laser wavelength. We report an example
of two thickness maps in Figs. 3(b) and 3(e), from which we
calculate the root-mean-square (RMS) membrane fluctuation
map of RBCs24 for discocytes [Fig. 3(c)] and spherical-like
erythrocytes [Fig. 3(f)], respectively. Finally, in Fig. 4, we report
the time evolution of focal spots [Fig. 4(a)] and the correspond-
ing probability density distributions [Fig. 4(b)], for a single
discocyte and a single spherical-like erythrocytes, in the first
10 s of the experiment. By comparing only the real focal
spot trends in time, we reveal that the spherical-like erythrocyte
presents a greater focal spot variation than the discocyte, as con-
firmed by calculating the corresponding standard deviations σ
[see Fig. 4(b)].

Instead, similar average values μ, compared to those reported
in Ref. 1, are retrieved. On the other hand, observing Figs. 3(c)
and 3(f), we reveal that spherical-like erythrocytes suffer from
greater membrane fluctuations than discocytes, thus a correla-
tion of these two phenomena is evident.

We believe that this aspect can be attributed to (i) the intrinsic
shape of spherical RBC that has less contact surface with
the substrate and (ii) the hypotonic condition, where the lower
osmotic pressure causes greater fluctuation sensitivity.

Nevertheless, we quantitatively evaluate the relation between

focal spots variation and membrane fluctuation. Let ZðiÞ
r and ZðiÞ

v

be the vectors of optical axis positions in time of real and virtual
focal spots of the i’th RBCs in the QPI reconstruction, where

ZðiÞ
v is the null-vector for each spherical-like erythrocyte. For

each RBCs, we calculate the standard deviations σ of both

ZðiÞ
r and ZðiÞ

v , then we averaged them in order to retrieve
the overall focal spots variation of the RBCs’ ensemble. In
Table 1, we report the calculated values, where the average oper-
ator is indicated as h·i. By calculating the average membrane
fluctuation for all RBCs as the spatial average value of the

Fig. 2 Segmented QPI reconstructions, obtained after the anisotropic diffusion filtering, for (a) discocytes
and (d) spherical-like erythrocytes. In (b and c) and (e and f) intensity distribution maps of a single
RBC, labeled through white dashed line, are reported and processes of detection and tracking of
the 3-D positions of foci are highlighted by indicating the positions of foci along the optical axis.
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RMSs map in Figs. 3(c) and 3(f), we reveal that spherical-like
erythrocytes present a two times greater average fluctuation than
that of discocytes, (see first row of Table 1), in perfect agreement
with the overall focal spots variation.

We also discover that a sort of synchronization occurs among
the foci movements. In order to quantify this, we calculate the
correlation coefficient (CC) between focal spots vectors for each
pair (i; j) of RBCs imaged in the segmented QPI reconstruction,
with I ¼ 1; : : : ; N and j ¼ iþ 1; : : : ; N, where N is the total

number of RBCs, then evaluate the corresponding average
values.

In Table 1, the mean value of such coefficients for both
discocytes (positive and negative focus, respectively) and
spherical-like erythrocytes are reported. These results confirm
the correlation in the overall synchronized movements of the
focus loci. This evidence in foci synchronization is an important
basis for future investigation in exploiting RBC collective
behavior as diagnostic paradigm.

Fig. 4 (a) Time evolution of focal spot position for a single discocyte and a single spherical-like
erythrocyte and (b) probability density functions calculated from data in (a).

Fig. 3 Results of foci tracking for time-lapse sequences of (a–c) discocytes and (d–f) spherical-like eryth-
rocytes. (a and d) report the calculated foci positions, while (b and e) and (c and f) are the thickness maps
and the RMS membrane fluctuation maps, respectively. (Video 1, MOV, 769 KB [URL: http://dx.doi.org/
10.1117/1.JBO.21.12.121509.1], and Video 2, MOV, 883 KB) [URL: http://dx.doi.org/10.1117/1.
JBO.21.12.121509.2], show the temporal tracking of foci and the corresponding thickness map fluctua-
tions, for (a and b) discocytes and (d and e) spherical-like erythrocytes, respectively.
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4 Conclusions
We report an investigation on RBCs as biophotonic lenses with
the aim of characterizing their dynamic behavior. In particular,
we have focused the attention on the time-stability of the focal
spots of an array produced by the focusing property of RBCs.
This is relevant from one side to understand how the living
RBCs vary their optical specification for future exploiting as im-
aging biological optical elements. On the other side, the full
characterization of the wavefront properties can be useful for
practical purposes in medical diagnostics. In fact, the dynamic
stability of foci observed as a result of the present study,
allows us to claim that the change in focus for both discocytes
and spherical-like erythrocytes is quite small thus avoiding
any ambiguity for discriminating different types of RBCs.
Therefore, the localization and tracking of their focal spots
can be of fundamental importance for the analysis of the health-
iness of an RBC through wavefront aberration investigation. In
particular, we have studied two different kinds of RBC biol-
enses, a divergent one (i.e., healthy discocyte) and a convergent
one (a spherical-like erythrocytes, i.e., a discocyte in a hypo-
tonic solution). By analyzing an ensemble of each of them,
we have studied the membranes’ fluctuations and the change in
their focal spots positions in time. We quantified these changes
through the calculation of different parameters such as the stan-
dard deviations of the focal lengths, the spatial average value of
RMS map, and the CCs between two RBCs in the ensemble.
Moreover, we discovered that the positions of focal spots
along the optical axis are in some way synchronized, with an
average movement correlation greater than 0.5 in both cases.
We hypothesize that a sort of collective movement is present
when the RBCs in the ensemble are close to each other at certain
characteristic distances and such collective movement influence
both membrane fluctuation and foci stability. This last intriguing
point needs more in depth investigation for full understanding of
how this can occur.
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