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Abstract. Lateral in-homogeneities in lipid compositions cause microdomains formation and change in the
physical properties of biological membranes. With the presence of cholesterol and mixed species of lipids,
phospholipid membranes segregate into lateral domains of liquid-ordered and liquid-disordered phases.
Coupling of two-dimensional intralayer phase separations and interlayer liquid-crystalline ordering in multi-
component membranes has been previously demonstrated. By the use of digital holographic microscopy
(DHMicroscopy), we quantitatively analyzed the volumetric dynamical behavior of such membranes. The spec-
imens are lipid mixtures composed of sphingomyelin, cholesterol, and unsaturated phospholipid, 1,2-dioleoyl-
sn-glycero-3-phosphocholine. DHMicroscopy in a transmission mode is an effective tool for quantitative visu-
alization of phase objects. By deriving the associated phase changes, three-dimensional information on the
morphology variation of lipid stacks at arbitrary time scales is obtained. Moreover, the thickness distribution
of the object at demanded axial planes can be obtained by numerical focusing. Our results show that the volume
evolution of lipid domains follows approximately the same universal growth law of previously reported area evo-
lution. However, the thickness of the domains does not alter significantly by time; therefore, the volume evolution
is mostly attributed to the changes in area dynamics. These results might be useful in the field of membrane-
based functional materials. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.21.12.126016]
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Epidemiology of several important human diseases, such as ath-
erosclerosis, Alzheimer’s disease, and cancer, contains a lipid
component.1–3 Moreover, it is known that the lipid composition
of membranes and membrane–protein adsorption mechanisms
are connected, and this connection affects the intermembrane
spacing and adhesion and has direct effect on demyelinating
diseases such as multiple sclerosis.4 In general, information on
the structure of membranes including the dynamic organization
across the lipid bilayer and in the lateral dimension to create
unique composition of lipids with multiple functionalities
have been of particular importance for biochemical and bio-
physical investigations.5–7

Smectic liquid-crystalline (LC) order is spontaneously created
in multilamellae stacked lipids, as lyotropic materials, through
hydrophobic forces of lipid–water interactions.8–10 Moreover,
these materials show long-ranged orientation order in the pres-
ence of a solvent in LC phases.11 In smectic mesophases materi-
als, including multilamellae stacked lipids, in-plane translational
degrees of freedom are allowed, but their out-of-plane undulatory
fluctuations are impeded due to their confinement by the near-
located layers.11–13 One-dimensional smectic order lipidic meso-
phases can be stabilized by losing entropy through Helfrich
intermembrane repulsive interactions.14

Studies on ordering mechanisms of such membrane multila-
mellae find useful applications in the field of membrane-based
functional materials. Functional membranes offer innumerable

possible applications such as pharmaceutical purification
processes,15,16 organic solvent filtration,17 sustainable energy
production,18 and high-performance filtration under harsh
conditions.19,20 Functional multilamellae membranes can
be resembled by a multicomponent mixture of lipids and
proteins, which contains coexisting phases from facile phase
separations.11 In these membranes, two-dimensional (2-D) intra-
layer phase separation of lipids and proteins in individual mem-
brane lamellae can be combined with the interlayer smectic
ordering, which leads to arranged functional components across
membrane lamellae in a self-organized manner.11,21 Higher order
organization in multilayered membranes has been observed by
conventional wide-field epifluorescence microscopy.11

In this paper, a quantitative study on volumetric dynamics of
multilamellar multicomponent membranes is considered. We
used digital holographic microscopy (DHMicroscopy) to evalu-
ate thickness, surface area, and volume of the domains extracted
from phase separation in multicomponent lipids versus time.
DHMicroscopy is a nondestructive and marker-free imaging
technique suitable for three-dimensional (3-D) visualization
of phase objects.22–27 The interference pattern of a coherent
beam passing through the object with a reference beam from
the same source forms a hologram on a digital camera. The
reconstruction process toward acquiring a 3-D image of the
object is performed by numerical reconstruction of the digital
holograms by a computer.28–31

*Address all correspondence to: Ali-Reza Moradi, E-mail: moradika@znu.ac.ir 1083-3668/2016/$25.00 © 2016 SPIE

Journal of Biomedical Optics 126016-1 December 2016 • Vol. 21(12)

Journal of Biomedical Optics 21(12), 126016 (December 2016)

http://dx.doi.org/10.1117/1.JBO.21.12.126016
http://dx.doi.org/10.1117/1.JBO.21.12.126016
http://dx.doi.org/10.1117/1.JBO.21.12.126016
http://dx.doi.org/10.1117/1.JBO.21.12.126016
http://dx.doi.org/10.1117/1.JBO.21.12.126016
http://dx.doi.org/10.1117/1.JBO.21.12.126016
mailto:moradika@znu.ac.ir
mailto:moradika@znu.ac.ir
mailto:moradika@znu.ac.ir


The samples we used for membrane multilamellae are nonuni-
form systems consisting of more than a single lipid. They are lipid
mixtures composed of cholesterol (Chol), sphingomyelin (SM),
and unsaturated phospholipid, 1,2-dioleoyl-sn-glycero-3-phos-
phocholine (DOPC), as putative raft-forming ternary. This kind
of rafts or domains in biomembranes is used for signaling activ-
ities. For example, ion channels are localized in liquid-ordered
(Lo) domains and the alignment of domains also aligns the
ion channels. The alignment of domains across several bilayers
may be used for coupling of the functionality of single bilayers.
We purchased the lipids in powder type from Avanti, and chloro-
form was used as the solvent. Clean and dry glass slides were
used during the experiments. Droplets with the volume of 1 to
3 μl of the solution were put on a glass plate. The samples
were kept in a vacuum overnight for chloroform evaporation

and then were incubated at 50°C to 60°C in a humid environment
with relative humidity of 98% for 48 to 72 h. For each experi-
ment, by fast immersion of dried plaques of multilamellar
lipids in deionized bulk water, the phase separating regime
was achieved from quenching the high temperature of the
homogeneous phase. The whole process was observed using a
DHMicroscopy setup in which a laser beam illuminates the object
and the magnification is provided by the microscope objective
lens and imaging lens combination. The DHMicroscopy setup
is based on Mach–Zehnder geometry to allow off-axis hologra-
phy of a transparent sample, as shown schematically in Fig. 1.
On the same setup, a conventional homemade inverted micro-
scope was built; it consists of a white light illumination
source (KL1500 compact, Olympus), condenser (C, NA 1.25,
Olympus), microscope objective (MO1, 40×, NA 0.65, WD
0.17 mm, Olympus), and the camera (DCC1545M, Thorlabs,
8-bit dynamic range, 5.2-μm pixel pitch). The samples were
observed through the microscope to adjust the best focus before
the holography experiments. Laser light emitted from a He–Ne
laser (MEOS, 632.8 nm, 5 mW) is expanded by a beam expander
and is split into object wave and reference wave by a beam splitter
(BS1). The reference beam is sent to the camera through mirror
M1, a similar microscope objective (MO2), which was used to
adjust the beam curvature, and a beam splitter (BS2). The refer-
ence beam is focused at a point conjugate to the back focal plane
of the objective lens so that it arrives at the detector plane with the
same wave front curvature as the object wave. Digital holograms
that are formed by the interference pattern of the two beams have
3-D information of the sample under study. The numerical
reconstruction process is performed by simulating the diffraction
from the digital hologram when illuminated by the reference
wave. Previously, we have utilized similar DHMicroscopy setups
and also self-referencing DHMicroscopy scheme for 3-D imaging
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Fig. 1 Schematic DHMicroscopy setup based on Mach–Zehnder
configuration.

Fig. 2 Bright-field images of phase separation in stacked lipid mixture, consisting of equimolar propor-
tions of DOPC and SM, and 30% of Chol immersed in bulk water. Domain evolution is shown for various
times after immersion.
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and investigating lipids.32–34 In Ref. 32, the effect of thermal gra-
dient on multilamellar cylindrical tubes of membrane lipids,
which are called myelin figures, has been investigated. In
Ref. 33, we have shown the lipid resource humidifying impact
on the growth control of myelin figures. In Ref. 34, we have
used a common-path self-referencing DHMicroscopy arrange-
ment coupled to a fiber optical trapping system to induce mor-
phological changes on lipid membranes by the forces applied
by an optical fiber with an enhanced numerical aperture.

In our experiments, we recorded the holograms of the sam-
ples of multicomponent lipids by a Mach–Zehnder-based
DHMicroscopy setup. The holograms were recorded in video
format and were converted into image sequences for post-
processing. The lipid mixtures are phase-separated into two

coexisting liquid phases below their miscibility transition tem-
perature. One of the phases is enriched in Chol and SM,
designated as the Lo phase, and the other is the liquid-disordered
(Ld) phase consisting primarily of unsaturated DOPC.11,35 Since
the incubation of the lipids were performed in the range of
50°C and 60°C, and this range is above the miscibility transition
temperatures of the lipid mixtures, the separated domains are not
formed during the incubation.

Phase-separated domains in individual layers of multilamel-
lar membrane stacks align with one another, spontaneously pro-
ducing 3-D aligned domains across hundreds of lamellae.11

Figure 2 shows a selected set of frames from conventional
microscopy imaging of examination of the domain formation
and domain surface size evolution, immediately after immersing

50% Chol 60% Chol

20 µm

Fig. 3 Up to 40% of Chol concentrations coexisting Lo and Ld phases were observed. However, in com-
position with 50% and 60% concentrations of Chol, materials appear as crystals, as shown in these
figures.

Fig. 4 Hologram of a lipid mixture sample when the domains are formed and associated reference holo-
grams. A smaller region of interest for both holograms is shown in the lower panel to demonstrate the
holographic intehreference patten formation and fringe inclination changes.
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the multilamellar lipids cakes in bulk water. The lipid mixture
consists of equimolar proportions of DOPC and SM and 30% of
Chol. We have also shown that in higher Chol concentrations
the domain alignment process is substantially reduced, and in
more than 40% concentrations, the domains turn to appear as
crystals, as shown in Fig. 3.

However, toward a better examination of interlamellar
domain alignment and phase separation in multicomponent lip-
ids, we utilized DHMicroscopy and investigated the thickness
profile of samples. This, in turn, provides quantitative volumet-
ric information on the evolution of the formed domains and
alignment process. In Fig. 4, a digital hologram of a lipid mix-
ture sample when the domains are formed and the associated
reference holograms are shown. Smaller regions of interest
for both holograms are shown in the lower panel of Fig. 4; it
demonstrates the holographic interference pattern formation
and fringe inclination changes. We record reference holograms
in which no lipid sample is presented to remove the background
contaminations from the sample container and the fluid for
every sample. This ensures that the phase changes in various
times in the domain evolution process are only due to its
growth. The recorded holograms are subjected to numerical
reconstruction. The reconstruction process is performed by
simulating the diffraction from the digital hologram when

illuminated by the reference wave. We utilized the angular spec-
trum propagation approach in scalar diffraction theory for
numerical reconstruction of the holograms.28–31 The phase
and intensity of the reconstructed wavefront can be computed
by the ratio of imaginary and real parts, and the squared absolute
value of the derived complex amplitude, respectively. The
objects under study in our case are almost transparent; hence,
we are interested in measurement of phase changes during
the experiments. According to the dynamics speed of the phe-
nomenon, we recorded holographic movies with a rate of
5 frames∕s in various states of domain formation and evolution.

Figure 5 shows the reconstruction results for typical domain
evolution that we have observed in multicomponent lipid samples.
The holograms are in left and right panels belong to t ¼ 40 s and
t ¼ 45 s after immersing the lipid cake in bulk water, respectively.
The two formed domains at t ¼ 40 s join together to form a big-
ger one at t ¼ 45 s. In Figs. 5(a)–5(c), different illustrations of
the phase information from the DHMicroscopy reconstruction
are shown. Assuming negligible changes for the refractive index,
the thickness at each point can be calculated from the phase map.
A 3-D map of thickness of the domains in the two chosen times is
shown in Fig. 5(a). A vertical view (2-D map) of the two recon-
structed images is shown in Fig. 5(b). As can be seen, the phase
of the domain and the rest of the field of view have different

Fig. 5 Reconstructed holographic images of domain formation in multicomponent lipid samples at t ¼
40 s and 45 s after the formation starts: (a) 3-D thickness of the domains, (b) 2-D thickness map, and
(c) cross sectional profile along the (AB) line indicated on the 2-D images in panel (b). Information such as
volume, surface, and thickness of the domains can be derived from the reconstruction of holograms.
A field of view of about 20 μm × 20 μm from the recoreded holograms was selected for measurements.
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value ranges. By a simple Red-Green-Blue to binary transforma-
tion of the map, the surface covered by any domain can be calcu-
lated. The cross sectional thickness profile along any arbitrary line
(like AB) across the lipid can also be calculated, as shown in
Fig. 5(c).

For each frame of the recorded movies, we have recon-
structed the holograms, counted the number of formed domains,
and calculated the surface, thickness, and volume of the
domains. The average volume, surface, and thickness are calcu-
lated by averaging the values among all the domains in the field
of view of each frame. The thickness is the mean value of the
averaged domain thickness. These values are reported and
shown in Fig. 6. Figures 6(a)–6(c) are the evolution of the vol-
ume, surface, and thickness of domains, respectively, for 4 min
after the experiment is started. In the inset of Fig. 6(b), a similar
evolution curve for the covered surface by domains, which
is obtained from conventional microscopy image analysis, is
shown.

The temporal evolution of circular domain size (average area)
in single lipid monolayers or bilayers follows the universal
growth law as t2n.36 According to classical diffusion, the limited
growth n < 1∕3. It has been proven that in membrane multilamel-
lae the domain growth also follows the universal growth law.11

However, in this case, the growth exponent varies between
1∕3 and 1∕2. The higher exponents suggest that the domain
growth involves additional contributions beyond diffusional
dynamics, such as the domain–domain coalescence as shown
for a typical sample in Fig. 5. The coalescence-driven domain
growth results from an interplay between lateral phase separation
and interlamellar smectic coupling unique to membrane
multilamellae.11 Accordingly, we have fitted the universal growth
law for the all extracted sizes of domains including volume, area,
and thickness. As shown in Fig. 6, the growth of domain volume
and area follows similar behavior. For a typical sample after
averaging all the analyzed domains of the holograms, we
found that volume and area varies as hvi ¼ 0.0518t0.7406 and
hai ¼ 0.0402t0.7963, respectively. The growth component for
area evolution is iconsistent with the results of bright field micros-
copy analysis, as shown in the inset of Fig. 6(b). However, we
have observed that even if the volume of domains follows the
universal growth law, as shown in Fig. 6(c), the change in volume
should be attributed mostly to the changes in area of the domains,
and the average thickness of the domains does not have a sub-
stantial variation versus time. Yet, for several cases, the thickness
can be reduced even at longer times after the experiment is
started, which explains the difference between volume and area
exponents.

The evolution of the domain sizes was calculated and
sketched for the average of the domain sizes within the field
of view of each frame of the movies acquired through the
DHMicroscopy setup. Further, we have shown the histogram
of the domain area size versus time in Fig. 7. As the histograms
show, in the initial seconds of the experiments, the number of
domains with a smaller size is greater than the larger ones.
However, while time passes, the number of large sized domains
increases and, in contrast, the number of small ones decreases.
This proves the idea of the effective role of the domain–domain
coalescence on the domain size growth.

In conclusion, we have studied the coupling between
intralayer phase separations and interlayer LC ordering in
multicomponent membranes. We have used DHMicroscopy
for volumetric measurement of the phenomenon dynamics.
The samples include mixed species of lipids and cholesterol.
DHMicroscopy provides detailed information on the thickness
profile and volumes of the lipids. Our results show that the vol-
ume evolution of lipid domains follows approximately the same
universal growth law of area evolution. However, their thickness
will not change significantly by time. The volume evolution is
mostly attributed to the changes in area dynamics. We believe
that our results can be useful in the field of membrane-based

Fig. 6 Evolution of domain size in stacked multicomponent lipid
bilayers including of equimolar SM and DOPC1 and 30% Chol:
(a) relative volume of domains extracted from averaging several
domains in each acquired image, calculated through digital holograms
reconstruction; (b) evolution of average area covered by domains ver-
sus time, obtained from DHMicroscopy. Inset: Similar curve obtained
from conventional microscopy images analysis; and (c) evolution of
relative thickness averaged for several domains in each time. The uni-
versal growth law as hxi ∼ t2n have been fitted in all cases, showing
the similar growth behavior for volume and area, different from thick-
ness behavior. Fig. 7 Histogram of the area size of the domains versus time.
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functional materials, and the approach of DHMicroscopy has
the potential to be utilized for similar problems in the field
of membranes.
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