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Abstract. Pulse rate variability (PRV) can be extracted from functional near-infrared spectroscopy (fNIRS)
(PRVNIRS) and photoplethysmography (PPG) (PRVPPG) signals. The present study compared the accuracy
of simultaneously acquired PRVNIRS and PRVPPG, and evaluated their different characterizations of the
sympathetic (SNS) and parasympathetic (PSNS) autonomous nervous system activity. Ten healthy subjects
were recorded during resting-state (RS) and respiratory challenges in two temperature conditions, i.e., room
temperature (23°C) and cold temperature (4°C). PRVNIRS was recorded based on fNIRS measurement on
the head, whereas PRVPPG was determined based on PPG measured at the finger. Accuracy between
PRVNIRS and PRVPPG, as assessed by cross-covariance and cross-sample entropy, demonstrated a high
degree of correlation (r > 0.9), which was significantly reduced by respiration and cold temperature.
Characterization of SNS and PSNS using frequency-domain, time-domain, and nonlinear methods showed
that PRVNIRS provided significantly better information on increasing PSNS activity in response to respiration
and cold temperature than PRVPPG. The findings show that PRVNIRS may outperform PRVPPG under conditions
in which respiration and temperature changes are present, andmay, therefore, be advantageous in research and
clinical settings, especially if characterization of the autonomous nervous system is desired. © 2016 Society of Photo-

Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.21.9.091308]
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1 Introduction
Heart rate variability (HRV), i.e., the variations in the inter-beat-
interval of the heart rate (HR), is a physiological phenomenon.
The usefulness of HRVas a tool for basic research as well as for
medical diagnostic purposes to assess the function of the auto-
nomic nervous system has been verified in numerous studies.1–4

The gold standard is the analysis of interbeat (RR) intervals
derived from electrocardiography (ECG). Alternatively, pulse
cycle intervals variability based on blood flow pulsations
(i.e., PRV) can be derived from pulse oximetry, i.e., photoplethys-
mography (PPG) (PRVPPG). PRVPPG is convenient, noninvasive,
and widely available and has, therefore, been suggested for
simplifying ambulatory HRV monitoring.5–7 Under resting con-
ditions, recordings derived from PPG and ECG demonstrate
a high degree of correlation (∼r > 0.93).7,8 However, PRVPPG

also has disadvantages. While sufficient accuracy can be
obtained when subjects are under optimal resting conditions,
PRVPPG has been reported to be vulnerable to motion artifacts,6

physical exercise,5 or mental stressors,7 making it considerably
less accurate compared to ECG. The smaller accuracy may arise
due to probe instability, sweating, artifacts during exercise,
and the influence of different cardiovascular components.
Furthermore, the accuracy has been reported to particularly
decrease for high frequency (HF) or short-term variability; in
other words, PRVPPG has been shown to have a smaller accuracy

in particular for the contributions of the parasympathetic nerv-
ous system (PSNS)7,9 compared to the HRV derived from ECG.

The sympathetic nervous system (SNS) and PSNS have pro-
found impacts on HRV and thus PRV. For example, decreased
SNS activity or increased PSNS activity typically results in
a reduction versus an increase of HRV. To characterize the
contributions of the SNS and PSNS on HRV and PRV, fre-
quency-domain methods have been typically applied. Activity
in the HF band (0.15 to 0.40 Hz) can be associated with
increased PSNS activation. For example, variation of HF can
be driven by respiratory changes that modulate HRV and PRV
via increases or decreases in PSNS activity.10–12 Similarly, expo-
sure to cold temperature leads to a reduction in HRV and PRV
via increased PSNS activity in order to save and restore body
energy. The relationship between the HF component and the
PSNS state is thereby mainly caused by the cardiac PSNS’s
input and thus not directly reflects the parasympathetic “tone”
per se.13 Activity in the low frequency (LF) band (0.04 to
0.15 Hz), in contrast, in thought to represent a mixture of
the modulation of both SNS and PSNS.14 Therefore, the ratio
between LF and HF (LF/HF ratio) has been suggested to
reflect an approximation of the association between SNS and
PSNS.15–17 However, recent studies reported that the LF/HF ratio
does not accurately measure cardiac SNS-PSNS balance.14,18,19

Based on this, the SDNN/RMSSD has been proposed as another
surrogate measure for the LF/HF ratio in the time-domain.20
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Whereas SDNN (i.e., the standard deviation of normal to
normal RR intervals) is thought to represent characteristics of
long-term HRV and PRV changes, RMSSD (i.e., the root mean
square of successive heartbeat interval differences) is associated
with short-term HRV and PRV changes. The SDNN/RMSSD
ratio is, therefore, thought to represent the balance between
long-term and short-term variabilities and thus represents the
SNS-PSNS balance.21

The two described measures can be related to one of the most
commonly used method for analyzing HRV and PRV, i.e.,
Poincaré plots. Poincaré plots are graphical illustrations of
two consecutive RR intervals and are valuable due to their
ability of displaying the nonlinear aspects of HRV and PRV
sequences.22 The typical elongated shape of a Poincaré plot can
be evaluated numerically using an ellipse fitting technique that
provides a ratio of two standard deviations, i.e., the ratio
between the dispersion (standard deviation) on the minor axis
(SD1) and on the major axis (SD2), called the SD1/SD2
ratio. Whereas SD1 represents the short-term HRV and PRV
thought to reflect PSNS activity, SD2 represents the long-
term HRV and PRV thought to reflect SNS activity, with the
SD1/SD2 ratio denoting the SNS-PSNS balance.

Finally, based on the SD1 and SD2 parameters, yet another
measure has been recently proposed, the complex correlation
measure (CCM).23,24 CCM is a nonlinear HRV and PRV mea-
sure that quantifies the temporal aspects of Poincaré plots.
In contrast to SD1 and SD2, CCM measures the beat-to-beat
dynamics and is particularly thought to have a greater sensitivity
to changes in PSNS activity.

In the present analysis, we aimed to apply the described
linear and nonlinear measures to examine the accuracy and char-
acterize the contributions of the SNS and PSNS of PRVPPG in
comparison to PRV derived from functional near-infrared spec-
troscopy (fNIRS) (PRVNIRS).

So far, PRV quantitation using fNIRS has been investigated
in two studies. Trajkovic et al.25 quantified the correlation
between PPG (and HRV, respectively) signals derived from
simultaneously acquired fNIRS and ECG in 11 healthy adults
and reported a high correlation (r > 0.98). Perdue et al.26 inves-
tigated simultaneously acquired fNIRS-based pulse activity
and ECG-based heart activity in 10 healthy infants and
reported not only a high correlation during the RS (median r ¼
0.90), but also during visual stimulation (median r ¼
0.981), despite high levels of movements typically occurring
in infants.

To characterize the contributions of the SNS and PSNS on
the PRV, the present study assessed the impact of changes in
respiration and temperature on the PRV, which are both impor-
tant variables affecting PRV via the SNS and PSNS.27 Changes
in respiration were induced by respiratory challenges, i.e.,
hyperventilation (HV), breath-holding (BH), and rebreathing
(RB) compared to RS. Changes in temperature were induced
by changing the environmental (i.e., room) temperature
(23°C versus 4°C). PRVNIRS was measured on the head and
PRVPPG was measured on the finger.

By addressing both the accuracy and contributions of the
autonomic nervous system, we hypothesized to provide mean-
ingful information on the performance of PRVNIRS and PRVPPG.
In particular, we hypothesized that both changes in respiration
and temperature would elicit larger short-term variability (HF,
RMSSD, and SD1) reflecting increased PSNS activity, and
that PRVNIRS may characterize these changes better compared

to PRVPPG, due to the known drawbacks of motion artifacts in
PRVPPG. Extracting PRVNIRS may further be advantageous for
both research and clinical settings, as fNIRS is a brain imaging
method at the same time, which would enable to measure both
brain activity and PRV simultaneously.

2 Materials and Methods

2.1 Subjects

Ten healthy subjects (age 32� 2.3 years, five females) were
recruited at the University of Zurich. Exclusion criteria were any
psychiatric or neurological disorder or current medication. All
subjects gave written informed consent. The study was approved
by the ethics committee of the Canton Zurich (KEK-ZH-Nr:
2014-0056) and conducted in accordance with the Declaration
of Helsinki.

2.2 Experimental Protocol

Each subject underwent two experimental series separated by
1 week. Both experimental conditions were conducted at the
same day and time between 9:00 and 12:00 am with a total
duration of 10 min. Subjects were seated in a comfortable chair
with the head positioned in a head rest in order to minimize
head motion; this postural position was maintained during the
whole experiment.

• CONTROL temperature: The first experimental series
was conducted at a room temperature of 23°C.

• COLD temperature: The second experimental series was
conducted at a cold temperature of 4°C within a cold
storage room.

In both temperature conditions, subjects wore regular street
wear and there was no other difference in the setup between the
conditions. The following four respiratory challenges were
assessed in each condition:

• RS (5 min) consisted of subjects sitting still with eyes
open with normal breathing (60 s break interval,
∼15 cycles∕min).

• HV consisted of one period of rapidly breathing in and out
with constant respiratory volume (30 s, ∼60 cycles∕min)
followed by normal breathing (60 s break interval).

• BH consisted of one period of breath hold (30 s, no
breathing) followed by normal breathing (60 s break
interval).

• RB consisted of one period of breathing in an RB bag
(3 L) (30 s, respiration rate did not differ from normal
breathing, i.e., ∼15 cycles∕min) followed by normal
breathing (60 s break interval).

For BH and RB, subjects were trained prior to recording to
perform the inspirational volume of air before the challenge sim-
ilar to a normal breath cycle, in order to avoid inhaling a larger
volume of air than the volume of a normal breath cycle.

2.3 Functional Near-Infrared Spectroscopy
Instrumentation

An NIRSport instrument (LLC NIRx Medical Technologies)
was used for the fNIRS recordings. The system utilized
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time-multiplexed dual-wavelength light-emitting diodes. Each
diode contained two light sources with wavelengths of
760 and 850 nm. Optical detection was performed with photo-
electrical detectors containing silicon photodiodes (Siemens,
Germany). Sources and detectors were placed in a head cap
to allow for direct skin contact (Epitex Inc., Japan). The data
acquisition board was connected to a notebook computer run-
ning LabVIEW 2011 (National Instruments, Austin, Texas).
The fNIRS data were recorded with a sampling frequency of
7.81 Hz. The probe setup covered parts of the prefrontal cortex
(Fig. 1). Functional recordings were visually inspected for
motion artifacts (in particular, “steps” and “spikes”) without the
need for removal of artifacts. The time series of oxyhemoglobin
(O2Hb) were then used to extract HRV (Sec. 2.4).

2.4 Pulse Rate Variability Extraction from Functional
Near-Infrared Spectroscopy

PRVNIRS was extracted using the automatic multiscale-based
peak detection (AMPD) algorithm developed by Scholkmann
et al.30 AMPD is based on the calculation and analysis of the
local HR maxima in the raw fNIRS time series. AMPD detects
the HR peaks, which are then used to calculate the interpeak

intervals frequency via interpolating the time difference signal.
The first step of the AMPD algorithm consists of calculating the
local maxima scalogram (LMS). To this end, the signal is first
linearly detrended in that the least-squares fit of a straight line to
a given raw O2Hb signal is calculated and subtracted from the
signal. The local maxima of the signal are then determined using
a moving window approach. The second step of the algorithm
comprises a row-wise summation of the LMS matrix resulting in
a vector v. The global minimum λ of the vector v represents the
scale with the most local maxima, which is then used in the third
step to reshape the LMS matrix by removing all elements larger
than λ. In the last step of the algorithm, the HR peaks are
detected by calculating the columnwise standard deviation of
the LMS matrix. Each point of the total number of detected
peaks of a given signal indicated the values of the detected
peaks (Fig. 2). The AMPD calculation was done for each of
the channels (i.e., 1 to 16) and for each subject. Channels
without cardiac components due to noise were identified and
excluded from analysis. A final PRVNIRS estimate was obtained
for each single subject by computing the median PRV over all
channels at each time point.

2.5 Photoplethysmography-Derived Pulse Rate
Variability

A LifeSense LS1-9R multiparameter instrument (Nonin
Medical, Sweden) was used to derive HR from finger PPG.
Subjects wore a finger pulse oximeter through which HR were
sampled at 10 Hz. Triggers were logged to allow for temporal
synchronization with the fNIRS data. For statistical analysis,
HR values were automatically computed by the LifeSense
instrument from the raw data.

3 Data Analysis
Data collection and statistical analysis were performed in accor-
dance with the Task Force Guidelines of The European Society
of Cardiology and the North American Society of Pacing and
Electrophysiology31 and the related literature.32,33

Statistical analysis was performed using MATLAB®

(Version 2015b, MathWorks). All methods were applied on
the single-subject level, and presented on the group-level.
The analysis included the RS series (5 min), HV, BH, and
RB (each 30 s). The break intervals between the respiratory
challenges were not included in the analysis. Statistical signifi-
cance was assessed using repeated measures ANOVA with the

Fig. 1 fNIRS channel positions. Channel setup covering the prefron-
tal cortex (channels indicate the middle between source and detec-
tor). The MATLAB® toolbox NFRI28 was used to estimate the MNI
coordinates of the used EEG 10 to 20 position. Channel positions
were visualized using BrainNet Viewer.29

Fig. 2 PRV-extraction from fNIRS. Illustration of the results of applying the AMPD algorithm30 to raw
fNIRS time series to calculate PRVNIRS. Red dots represent the detected HR peaks in a given signal
with the peaks indicating the values of PRV at each point.

Journal of Biomedical Optics 091308-3 September 2016 • Vol. 21(9)

Holper, Seifritz, and Scholkmann: Short-term pulse rate variability is better characterized. . .



between-subject factor “temperature” (CONTROL versus
COLD) and the within-subject factor “respiration” (RS, HV,
BH, and RB). In the case of significance, a paired t-test was
used as post hoc comparison. To illustrate the performance of
PRVNIRS and PRVPPG, receiver operating characteristic (ROC)
curves were generated based on logistic regression using the
binary classifier “temperature” (CONTROL versus COLD).
The significance level was considered to be p < 0.05.

3.1 Accuracy Between Pulse Rate Variability
Measures

3.1.1 Cross-covariance

Normalized cross-covariance (C-COV) was quantified to assess
the accuracy between PRVNIRS and PRVPPG as suggested by
Perdue et al.26 The covariance was scaled; hence, the auto-
covariance was 1 for each signal at time lag 0. The time lag
between the two traces was allowed to vary, and the highest cor-
relation coefficient (r) was reported. Coefficients higher than
r > 0.3 were considered moderate, coefficients higher than r >
0.7 were considered large. A mean time lag of 0.4� 4.6 s was
found between PRVNIRS and PRVPPG. The smallest time lags
were observed in the RS, but there were overall no significant
lag-differences between the RS, the respiratory challenges, or
the temperature change. Perdue et al.26 suggested that this delay
is due to the slow hemodynamic response time that may vary
between subjects and may be dependent upon variations in
subject blood vessels.

3.1.2 Cross-sample entropy

Cross-sample entropy (C-SampEn) was applied as a nonlinear
measure to quantify the regularity or synchronicity in the poten-
tially nonstationary PRV signals.34 Entropy-based measures
have been widely used for the analysis of physiological time
series to explore the complexity between two time-series.35,36

C-SampEn measures the relative regularity of two signals,
with lower C-SampEn values denoting greater conditional
regularity or synchronicity, whereas higher values implicate
that the given signals are less predictable (or more complex).
While C-SampEn may be intuitively understood as the opposite
of temporal correlation, it does not assume that signals are
temporally stationary processes, but provides an alternative and
complementary measure to assess the nonlinear statistics of
PRV.37–39

3.2 Sympathetic and Parasympathetic Autonomous
Nervous System Contributions on Pulse Rate
Variability

The following measures of short-term and long-term variabil-
ities were assessed only in the RS series. The respiratory
challenges were analyzed only with respect to the short-term
variability (see rationale in Secs. 3.2.1 and 3.2.2).

3.2.1 Frequency-domain (low frequency/high
frequency ratio)

Power spectral density (PSD) in the frequency-domain was
applied to calculate the averaged power in the HF band (0.15
to 0.4 Hz) and the LF band (0.04 to 0.15 Hz). We applied
the Lomb-Scargle power spectral density (LS-PSD) estimate
that has been proposed as a more appropriate method for

HRV compared to classical fast Fourier transform-based meth-
ods,40 since it can be used without the need to resample and to
detrend the typically unevenly sampled HRV time series.

PSD only provides an accurate estimation when the signal is
supposed to maintain stationarity, which typically requires long-
term recordings. Recordings should be at least 10 times the
wavelength of the lowest frequency bound of interest. Thus,
recordings of ∼1 min are needed to assess the HF components
(i.e., a lowest bound of 0.15 Hz is a cycle of 6.6 s, therefore 10
cycles require ∼60 s), while more than 4 min are needed to
address the LF component (with a lower bound of 0.04 Hz).
In the present analysis, we, therefore, only analyzed the RS
series (5 min, consisting of at least 256 samples32).

3.2.2 Time-domain (SDNN/RMSSD ratio)

As suggested by Wang and Huang,20 the two surrogate indices,
SDNN and RMSSD, in the time-domain were computed.
Analysis was performed using the HRVAS toolbox.41 Analog
to the frequency-domain, very short time series may not provide
an accurate estimate of SDNN,42,43 therefore, the present analy-
sis focused only on the RS series (5 min).

3.2.3 Poincaré plot (SD1/SD2 ratio)

Poincaré plots were constructed as a delay scatter plot between
the intervals RRi (x-axis) and RRiþ1 (y-axis), with each point in
the plot corresponding to two consecutive RR intervals.22,44 The
Poincaré shapes representing an elongated cloud of points
(Fig. 5) around the line-of-identity were evaluated numerically
using the ellipse fitting technique. The minor axis of the ellipse
perpendicular to line-of-identity is the standard deviation SD1,
whereas the major axis is represented by the standard deviation
SD2. Analysis was performed using the HRVAS toolbox41 based
on only the RS series (5 min).

3.2.4 Complex correlation measure

The complex correlation method (CCM) was applied to quantify
the nonlinear temporal aspects of the Poincaré plot.23,24 CCM
was computed in a windowed manner, which embeds the tem-
poral information of the signal. A moving window of three con-
secutive points obtained from the Poincaré plot was considered
to measure the temporal variation of the points. The detailed
mathematical formulation has been previously reported.23

4 Results

4.1 Pulse Rate Variability Near-Infrared
Spectroscopy and Photoplethysmography

Extraction of PRVNIRS was performed for each of the fNIRS
channels 1 to 16 per subject. 13% of the channels over all sub-
jects did not contain cardiac components due to a low signal-to-
noise ratio and were excluded from analysis. A single-subject
example of the final PRVNIRS estimate obtained by computing
the median PRVover all channels at each time point is shown in
Fig. 3(a) in comparison to PRVPPG.

Using a general linear model, the beta estimates of the HR in
response to the respiratory challenges were calculated per
subject and shown on the group-level [Fig. 3(b)]. Results
showed that compared to RS, HV (PRVNIRS: p < 0.001,
PRVPPG: p < 0.046) and RB (PRVNIRS: p < 0.009, PRVPPG:

Journal of Biomedical Optics 091308-4 September 2016 • Vol. 21(9)

Holper, Seifritz, and Scholkmann: Short-term pulse rate variability is better characterized. . .



p < 0.0001) induced a larger increase in HR in the CONTROL
condition compared to the COLD condition, whereas BH
(PRVNIRS: p ¼ 0.044, PRVPPG: p < 0.0001) induced a smaller
HR decrease in condition CONTROL compared to condition
COLD. These results indicated that the HR response was
overall diminished in the COLD compared to the CONTROL
condition.

4.2 Accuracy Between Pulse Rate Variability
Measures

The overall correlation between PRVNIRS and PRVPPG was
r > 0.9. The accuracy between PRVNIRS and PRVPPG was
assessed using C-COV and C-SampEn (Fig. 4). Repeated
measures ANOVA showed a consistent pattern with significant
main effects for both factors “temperature” and “respiration”
(Table 1). The between-subject factor “temperature” (CONTROL
versus COLD) revealed a smaller main effect for C-COV
(F ¼ 10.026, p ¼ 0.005) compared to C-SampEn (F ¼ 52.134,
p < 0.0001). The within-subject factor “respiration” (RS, HV,
BH, and RB) revealed larger C-COV correlation coefficients
between PRVNIRS and PRVPPG in the RS in the CONTROL
(r ¼ 0.903) compared to the COLD (r ¼ 0.803) condition.
During the respiratory challenges, correlation coefficients
decreased with the smallest values in response to BH under
both the CONTROL and the COLD condition. Sample entropy
represented a mirrored pattern of the correlation analysis, but
with an overall larger “temperature” effect, but smaller effects

Fig. 3 PRNIRS and PRPEG. (a) Single-subject examples illustrating raw time courses of HRNIRS and
HRPPG. (b) Group-level beta estimates of HR responses to respiratory challenges, HV, BH, and RB.
Error bars indicate standard error of the mean (SEM). Significance between temperature conditions
was highlighted (*).

Fig. 4 C-COV and C-SampEn. Group-level results of the accuracy
between PRVNIRS and PRVPPG assessed using C-COV and C-
SampEn. Error bars indicate SEM. Significant differences between
temperature conditions were highlighted (*). See Table 1 for ANOVA.

Journal of Biomedical Optics 091308-5 September 2016 • Vol. 21(9)

Holper, Seifritz, and Scholkmann: Short-term pulse rate variability is better characterized. . .



of “respiration” indicating less variance between the respiratory
challenges.

4.3 Sympathetic and Parasympathetic Autonomous
Nervous System Contributions on Pulse Rate
Variability

4.3.1 Frequency-domain (low frequency/high
frequency ratio)

To investigate the frequency aspects that may characterize the
contributions of the SNS and PSNS, the HF (0.15 to 0.4 Hz)
and LF (0.04 to 0.15 Hz) activities were assessed. Results
from the RS indicated that the COLD condition elicited an over-
all smaller LF/HF ratio compared to the CONTROL condition
(Fig. 5). The difference was significant only for PRVNIRS

(p < 0.018), but not for PRVPPG (p ¼ 0.829). The proportional
change from the CONTROL to COLD condition was larger
in HF activity (76.48%) compared to LF activity (25.48%)
(Table 2), indicating that higher HF activity under the COLD
condition was the main proportional contributor to the statistical
difference. Results obtained from the respiratory challenges
showed that the difference in HF activity reached statistical
significance only for PRVNIRS for all challenges, but not for
PRVPPG (Fig. 6).

4.3.2 Time-domain (SDNN/RMSSD ratio)

Results from the RS in the time-domain indicated that the
COLD condition elicited an overall smaller SDNN/RMSSD
ratio compared to the CONTROL condition (Fig. 5). The
difference was significant only for PRVNIRS (p ¼ 0.041), but
not for PRVPPG (p ¼ 0.801). The proportional change from
the CONTROL to COLD condition was larger in RMSSD
(27.63%) compared to SDNN (4.24%) (Table 2), indicating
that a higher RMSSD index in the COLD condition was the
main proportional contributor to the statistical difference.
Results obtained from the respiratory challenges showed that
the difference in the RMSSD index reached statistical signifi-
cance only for PRVNIRS for all challenges, but not for PRVPPG

(Fig. 6).

4.3.3 Poincaré plot (SD1/SD2 ratio)

Results from the RS of the Poincaré plot revealed that the COLD
condition elicited a larger SD1/SD2 ratio compared to the
CONTROL condition (Fig. 5). Again, the difference was signifi-
cant only for PRVNIRS (p ¼ 0.004), but not for PRVPPG

(p ¼ 0.690). The proportional change from the CONTROL
to COLD condition was larger in SD1 (18.22%) compared to
SD2 (−14.31%) (Table 2), indicating that a higher SD1 index

Table 1 ANOVA C-COV and C-SampEn. Repeated measures ANOVA assessing the accuracy between PRVNIRS and PRVPPG using C-COV and
C-SampEn, with the between-subject factor “temperature” (CONTROL versus COLD) and the within-subject factor “respiration” (RS, HV, BH, and
RB), followed by post-hoc comparisons using paired-test. See Fig. 4 for illustration.

CONTROL COLD CONTROL versus COLD

Main effect “respiration”

F ¼ 0.025 F ¼ 8.285

Main effect “temperature”

F ¼ 10.026

p ¼ 0.877 p ¼ 0.018 p ¼ 0.005

η2p ¼ 0.003 η2p ¼ 0.479 η2p ¼ 0.358

C-COV

RS versus HV 0.674 0.579 RS 0.039

RS versus BH 0.872 0.024 HV 0.154

RS versus RB 0.866 0.209 BH 0.005

HV versus BH 0.931 0.013 RB 0.033

HV versus RB 0.721 0.116

BH versus RB 0.637 0.327

Main effect “respiration”

F ¼ 28.698 F ¼ 8.029

Main effect “temperature”

F ¼ 52.134

p < 0.001 p ¼ 0.020 p < 0.0001

η2p ¼ 0.761 η2p ¼ 0.471 η2p ¼ 0.743

C-SampEn

RS versus HV 0.001 0.308 RS 0.000

RS versus BH 0.025 0.190 HV 0.094

RS versus RB 0.000 0.030 BH 0.005

HV versus BH 0.383 0.790 RB 0.004

HV versus RB 0.927 0.126

BH versus RB 0.323 0.511
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in the COLD condition was the main proportional contributor to
the statistical difference. Results obtained from the respiratory
challenges showed that the difference in the SD1 index reached
statistical significance only for PRVNIRS for all challenges, but
not for PRVPPG (Fig. 6).

4.3.4 Complex correlation measure

The CCM was calculated based on the SD1 and SD2 derived
from the Poincaré plot.23 Results from the RS revealed that
the COLD condition elicited a larger CCM value compared
to the CONTROL condition (Fig. 5). Again, this difference
was significant only for PRVNIRS (p ¼ 0.047), but not for
PRVPPG (p ¼ 0.806).

4.3.5 Receiver operating characteristic for pulse rate
variability measures

To illustrate the performance of PRVNIRS and PRVPPG in pre-
dicting the temperature change, ROC curves were generated
based on logistic regression with the binary classifier “temper-
ature” (CONTROL versus COLD) and the PRV measures as
response variables. The AUC values obtained from the RS

showed that PRVNIRS predicted the temperature change better
than PRVPPG for all measures, i.e., the LF/HF ratio, the
SDNN/RMSSD ratio, the SD1/SD2 ratio, and the CCM (Fig. 7).
The differences between AUC reached significance level only
for the SD1/SD2 ratio p < 0.0001 (LF/HF ratio p ¼ 0.054,
SDNN/RMSSD ratio p ¼ 0.069, and CCM p ¼ 0.224). Results
obtained from the respiratory challenges confirmed these
findings, showing that the AUC values for HF activity, RMSSD,
and SD1 were larger for PRVNIRS for most of the challenges
compared to PRVPPG (exceptions see Fig. 8).

4.3.6 Correlation between pulse rate variability measures

Pearson correlation coefficients were computed between LF,
HF, SDNN, RMSSD, SD1, SD2, and CCM values, for the
COLD and CONTROL condition (Fig. 9). Results confirmed
that the indices of short-term variability (HF, RMSSD, and
SD1) and long-term variability (LF, SDNN, and SD2) exhibited
a strong positive correlation each other, and a negative correla-
tion with CCM. The correlations were less stable for PRVPPG

under the COLD condition. Results obtained from the respira-
tory challenges are shown in the Fig. 10.

Fig. 5 PRVNIRS and PRVPPG measures (RS). (a) Single-subject level. Examples of the PRV measures
assessed in the frequency-domain, the time-domain, the Poincaré plot, and the CCM. (b) Group-level.
Bar graphs illustrating the mean� SEM of the LF/HF ratio, the SDNN/RMSSD ratio, the SD1/SD2 ratio,
and the CCM. Significant differences between temperature conditions were highlighted (*). See Table 2
for statistics.
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Table 2 PRVNIRS and PRVPPG measures (RS). Mean∕median� SEM of LF, HF, SDNN, RMSSD, SD1, SD2, and CCM. Differences between the
CONTROL and the COLD condition were assessed using paired t -test. Units are given in milliseconds.

CONTROL COLD T -test Proportional
change
(mean)Mean SEM Median Mean SEM Median F p-value

Frequency-
domain

PRVNIRS

LF 2852.753 588.569 2514.700 3579.560 640.651 3093.000 0.698 0.414 25.48%

HF 156.343 34.445 130.115 275.921 58.104 217.925 3.134 0.094 76.48%

PRVPPG

LF 484.164 80.638 390.130 477.207 137.414 328.095 0.002 0.966 −1.44%

HF 21.344 1.531 21.422 22.738 6.747 12.380 0.041 0.843 6.53%

PRVNIRS
LF/HF ratio 18.399 1.090 1869.181 14.016 1.275 1348.546 6.826 0.018

PRVPPG
LF/HF ratio 22.085 2.903 1851.050 21.254 2.426 2331.723 0.048 0.829

Time-domain

PRVNIRS

SDNN 102.090 13.579 82.350 106.420 16.210 106.250 0.042 0.840 4.24%

RMSSD 3.330 0.339 3.300 4.250 0.508 3.650 2.271 0.149 27.63%

PRVPPG

SDNN 40.080 5.714 37.150 40.540 3.556 37.950 0.005 0.946 1.15%

RMSSD 1.180 0.106 1.133 1.260 0.138 1.150 0.212 0.651 6.78%

PRVNIRS
SDNN/RMSSD ratio 30.218 1.772 28.843 24.533 1.884 22.755 4.834 0.041

PRVPPG
SDNN/RMSSD ratio 33.117 1.886 31.217 34.106 3.386 32.025 0.065 0.801

Poincaré plot

PRVNIRS

SD1 0.003 0.000 0.003 0.004 0.001 0.003 0.571 0.460 18.22%

SD2 0.133 0.011 0.119 0.114 0.020 0.079 0.705 0.412 −14.31%

PRVPPG

SD1 0.001 0.000 0.001 0.001 0.000 0.001 0.007 0.932 −1.52%

SD2 0.052 0.006 0.048 0.055 0.004 0.054 0.179 0.678 5.87%

PRVNIRS
SD1/SD2 ratio 0.022 0.002 0.023 0.032 0.003 0.031 11.204 0.004

PRVPPG
SD1/SD2 ratio 0.018 0.001 0.017 0.017 0.002 0.015 0.164 0.690

CCM
PRVNIRS

CCM 0.003 0.000 0.003 0.005 0.001 0.005 4.492 0.047

PRVPPG CCM 0.004 0.000 0.004 0.004 0.000 0.004 0.062 0.806

Fig. 6 PRVNIRS and PRVPPG measures (respiratory challenges). Bar graphs illustrating the mean� SEM
of the short-term variability measures, HF, RMSSD, and SD1, during HV, BH, and RB, for PRVNIRS and
PRVPPG. Significant differences between temperature conditions were highlighted (*).
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5 Discussion
Previous studies showed that information on the temporal inter-
beat-intervals of the heart can be extracted from fNIRS data.25,26

By comparing simultaneously acquired PRV from NIRS
(PRVNIRS) and PRVPPG, the present study showed that PRVNIRS

may outperform PRVPPG under conditions involving respiratory
and temperature changes. In particular, we show that PRVNIRS

may provide a better characterization of the contributions
of the SNS and parasympathetic autonomous nervous system
compared to PRVPPG, especially regarding the short-term

variability. Extracting PRVNIRS may, therefore, be advantageous
for both research and clinical settings as an alternative to
PRVPPG.

A main methodological limitation of the present study was
that we did not assess simultaneous ECG, the gold standard for
investigating PRV. This limitation should be considered when
interpreting our results. In 1996, a task force31 specified stan-
dards for calculating PRV measures and reporting results, which
have been considered in the present study. Accuracy of the ECG
has since then been investigated in numerous studies in health and

Fig. 7 ROC for PRVNIRS and PRVPPG (RS). Group-level ROC curves and AUC values based on logistic
regression with the binary classifier “temperature” (CONTROL versus COLD) for each of the PRV mea-
sures, the LF/HF ratio, the SDNN/RMSSD ratio, the SD1/SD2 ratio, and the CCM. Statistical significance
of AUC-differences: LF/HF-ratio p ¼ 0.054, SDNN/RMSSD ratio p ¼ 0.069, SD1/SD2 ratio p < 0.0001,
CCM p ¼ 0.224.

Fig. 8 ROC for PRVNIRS and PRVPPG (respiratory challenges). Group-level ROC curves and AUC values
based on logistic regression with the binary classifier “temperature” (CONTROL versus COLD) for each
of the short-term variability measures, HF, RMSSD, SD1, during HV, BH, and RB, for PRVNIRS and
PRVPPG. Statistical significance of AUC-differences in HV: HF p ¼ 0.009, RMSSD p ¼ 0.015, SD1
p ¼ 0.011; statistical significance of AUC-differences in BH: HF p < 0.0001, RMSSD p < 0.0001,
SD1 p < 0.0001; statistical significance of AUC-differences in RB: HF p ¼ 0.285, RMSSD p ¼ 0.091,
SD1 p < 0.0001.
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Fig. 10 Correlation between PRVmeasures (respiratory challenges). Pearson correlation coefficients for
PRVNIRS and PRVPPG between the short-term variability measures, HF, RMSSD, and SD1, for the
CONTROL and the COLD conditions.
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Fig. 9 Correlation between PRV measures (RS). Pearson correlation coefficients for PRVNIRS and
PRVPPG between LF, HF, SDNN, RMSSD, SD1, SD2, and CCM values, for the CONTROL and the
COLD conditions.
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disease,1–4 and the correlation with both PRVPPG
7 and PRVNIRS

25

under resting conditions has been reported to be high.

5.1 Accuracy Between Pulse Rate Variability
Measures

To compare the accuracy between PRVNIRS and PRVPPG, the
present analysis assessed C-COV and C-SampEn. C-COV
showed the relative correlations between the PRVNIRS and
PRVPPG, whereas C-SampEn reflected the regularity between
the two PRV measures. Overall, we found good agreement
between the two methods with the largest coefficients under
RS (r ¼ 0.903). However, both changes in respiration and tem-
perature resulted in reduced correlation (C-COV) and stronger
irregularity (C-SampEn) between PRVNIRS and PRVPPG (Fig. 4
and Table 1). The lower correlation in response to respiratory
and temperature changes may reflect the previously reported
inaccuracy of PRVPPG under nonoptimal conditions, such as
including motion artifacts,6 physical strenuous exercise,5 or
mental stressors.7 Although our subjects were instructed to
keep the body as still as possible during the respiratory chal-
lenges, the breathing and temperature changes certainly induced
minor body motions and mental stress, respectively, that may
have contributed to the inaccuracy of PRVPPG. The PRVNIRS

signal shows more high-frequency variability compared to
PRVPPG. That this high-frequency variability contains some
physiological relevant information (i.e., diminished in the
PRVPPG data) is a shown by the present results.

It should further be mentioned that the correlations between
PRVNIRS and PRVPPG were slightly lower than that has been
reported previously in adult25 and infant data.26 These
differences may arise due the difference between PPG (applied
in our study) versus EEG (applied in the two other studies).

5.2 Sympathetic and Parasympathetic Autonomous
Nervous System Contributions on Pulse Rate
Variability

To characterize the contributions of the SNS or PSNS on
PRVNIRS and PRVPPG in response to the temperature change,
we applied frequency- and time-domain measures based on
linear and nonlinear methods.

In general, exposure to cold temperature changes the rela-
tionship between the SNS or PSNS. Whereas the PSNS (the
“rest and digest” system) restores the body’s energy primarily
associated with decreases in PRV, the SNS (the “fight and
flight” system) is primarily associated with increases in PRV.
Furthermore, although the effect on PRVof cooling varies with
the duration of the temperature change, it is thought that cold
exposure modulates short-term variability (i.e., HF, RMSSD,
and SD1) more than long-term variability (LF, SDNN, and
SD2).8 This indicates that cold exposure modulates SNS-
PSNS balance by causing a shift toward increased PSNS activ-
ity. Previous studies comparing PRV derived from PPG and
ECG under optimal rest conditions did not report significant
differences in PRVassessment.6,45,46 However, studies that com-
pared PPG and ECG under less optimal conditions have shown
that PRVPPG assessed the parameters of short-term variability
(HF, RMSSD, and SD1) considerable less reliable compared
to ECG.7,9

In line with these findings, our results showed that the cold
temperature change (COLD) exhibited significant increases of

the parameters reflecting short-term variability (i.e., HF activity,
RMSSD, and SD1), whereas the parameters reflecting long-term
variability did not change significantly compared to the control
condition (CONTROL). Importantly, these differences between
the cold and control temperature could only be significantly
characterized by PRVNIRS, but not by PRVPPG. Furthermore,
the better performance in characterizing short-term variability of
PRVNIRS compared to PRVPPG was not only observed under
potentially stressful respiratory challenges (Figs. 6 and 8),
but were even detectable under RS conditions (Fig. 5 and
Table 2). The ROC analysis confirmed these results indicating
that PRVNIRS had a better predictive power to differentiate the
temperature change compared to PRVPPG, with the SD1/SD2
ratio obtained from the Poincaré plot revealing the best discrimi-
nation (AUC-/ROC-differences, Fig. 7).

Together, our results indicated that PRVNIRS had a signifi-
cantly higher sensitivity to the short-term contributions of the
PSNS compared to PRVPPG. These findings show that under
conditions which may induce changes primarily in short-term
variability, both research and clinical settings may benefit from
using PRVNIRS to overcome the lower reliability of PRVPPG.
That the PRVNIRS signal contains more high-frequency infor-
mation than PRVPPG can also be easily see in Fig. 3.

5.3 Methodological Considerations and Limitations

Core and skin temperature are the body’s two temperature com-
ponents. Core temperature (Tc) represents the internal or deep
body temperature, whereas skin temperature represents the
mean outside surface body temperature (Tsk). The average
temperature of the body at any time is a weighted balance
between these two temperature components. When confronted
with thermal stress (heat or cold), the body strives to control Tc

through physiological adjustments, and Tsk provides the major
feedback to the brain to coordinate this control.

While Tsk varies greatly with ambient temperature, Tb is rel-
atively stable. When Tsk decreases, HR in general goes down
due to a parasympathetic reflex.47 However, if the cold stress
is of sufficient magnitude to decrease Tc, HR may either
increase (due to sympathetic activation) or decrease (due to
increased central blood volume). Regarding the present study,
we hypothesized that the cold temperature change was not
strong enough to affect Tc (although, this hypothesis could
not be confirmed, since we did not directly assess Tsk or Tc).
Therefore, the induced cold temperature change in this study
was hypothesized to decrease Tsk only. In line with this
assumption, we found that HR amplitudes were significantly
reduced in response to the cold temperature change (Fig. 3),
most likely reflecting a general HR slowdown due to the
assumed increase in PSNS activity.8,47

5.4 Conclusion

By comparing simultaneously acquired PRVNIRS and PRVPPG,
the present study showed that PRVNIRS may outperform
PRVPPG under conditions involving respiratory and temperature
changes. In particular, our results indicated that PRVNIRS may
provide a better characterization of the short-term contributions
of the autonomous nervous system compared to PRVPPG.
Extracting PRVNIRS may, therefore, be advantageous for both
research and clinical settings, while being a brain imaging
method at the same time.
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