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Abstract. We investigate the problem related to the averaging procedure in functional near-infrared spectros-
copy (fNIRS) brain imaging studies. Typically, to reduce noise and to empower the signal strength associated
with task-induced activities, recorded signals (e.g., in response to repeated stimuli or from a group of individuals)
are averaged through a point-by-point conventional averaging technique. However, due to the existence of var-
iable latencies in recorded activities, the use of the conventional averaging technique can lead to inaccuracies
and loss of information in the averaged signal, which may result in inaccurate conclusions about the functionality
of the brain. To improve the averaging accuracy in the presence of variable latencies, we present an averaging
framework that employs dynamic time warping (DTW) to account for the temporal variation in the alignment of
fNIRS signals to be averaged. As a proof of concept, we focus on the problem of localizing task-induced active
brain regions. The framework is extensively tested on experimental data (obtained from both block design and
event-related design experiments) as well as on simulated data. In all cases, it is shown that the DTW-based
averaging technique outperforms the conventional-based averaging technique in estimating the location of task-
induced active regions in the brain, suggesting that such advanced averaging methods should be employed in
fNIRS brain imaging studies. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.22.6.066011]
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1 Introduction
Functional near-infrared spectroscopy (fNIRS) is an emerging
noninvasive brain imaging technique that uses light in the
near-infrared (NIR) range to measure local changes in the cer-
ebral concentration of oxygenated hemoglobin (Δ½HbO2�) and
deoxygenated hemoglobin (Δ½HbR�) associated with the under-
lying brain activities.1–4 Compared to functional magnetic
resonance imaging (fMRI), which is only sensitive to Δ½HbR�,
fNIRS is able to detect both Δ½HbO2� and Δ½HbR�, providing
additional information related to brain activity. In addition, com-
pared to fMRI, fNIRS is relatively compact, inexpensive, and is
a less restraining imaging system, allowing for brain studies that
are conducted in naturalistic settings. Because of these advan-
tages, fNIRS has been widely used in a variety of neuroscience
studies including spatiotemporal mapping of brain activities,5–11

investigating functional connectivity of brain networks,12–16 and
brain computer interface applications.17–21

The averaging operation is performed at different stages of
analysis (e.g., across trials, blocks, subjects, and channels) in
fNIRS brain imaging studies, with the objective of enhancing
the signal strength associated with task-induced brain activities,
and reducing noise and randomness. For example, in task-based
fNIRS studies, the averaging operation is used at the early stages
of analysis. Task-based experimental paradigms are categorized
as “block design” and “event-related design.” In block design

experiments, to increase the detection power for estimating
the location of task-induced active regions, the general idea
is to present multiple trials of the same type to the subject within
each block, and repeat the experiment across multiple blocks.
Blocks of different experimental conditions are often inter-
leaved, and recorded fNIRS signals across blocks of similar con-
ditions are averaged through the conventional point-by-point
averaging technique.10,11,22–26 In event-related design studies,
brain activities associated with individual trials are recorded,
allowing for estimating the brain’s hemodynamic response
related to the stimulus. This hemodynamic response can be
obtained through averaging recorded activities in response to
several discrete events of the same type. In both categories, to
estimate the location of brain regions associated with the task,
the stimulus or the event of interest, various statistical tests (e.g.,
student’s t-test) are used to evaluate the statistical significance of
features (e.g., amplitude) of the averaged signals.27

As the averaging operation is conducted at the early stages of
the analysis,10,11,23,28–30 inaccuracies in the averaged signal could
lead to type I (incorrectly detecting a region as active) or type II
(incorrectly detecting a region as inactive) errors in the statistical
analysis, resulting in inaccurate conclusions about the function-
ality of the brain. As stated before, to perform the averaging
operation, typically a conventional point-by-point averaging
technique is used in fNIRS studies. Previous work, however,
has shown that there exists variability (e.g., latency differences)
in the brain response to trials of the same type (e.g., trial-to-trial
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variability) due to for example differences or delays in neural
responses, or individual’s performance.31–34 Furthermore,
in patient populations (e.g., patients with autistic spectrum
disorders [ASD]), several studies have reported variable
latencies in their responses to stimuli.35,36 While preserving

information related to variability would be important in
identifying parameters related to behavioral variability (e.g.,
understanding neural mechanisms related to variability in
response time),31,34,37 in several neuroimaging studies (e.g.,
those interested in functional specificity) conclusions are
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Fig. 1 Visual illustration of using point-by-point conventional averaging technique for three scenarios:
(a) when three signals are temporally aligned, (b) when there exists linear temporal variation in the
alignment of three signals, and (c) when there exists nonlinear temporal variation in the alignment of
three signals.
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made based on an “aggregate-then-analyze” approach. In these
type of studies, using conventional point-by-point averaging
approach, which does not take temporal variation of signals
into account, can result in inaccuracies (e.g., blurring the
peaks and valleys) in the averaged signal. Examples of three
scenarios are conceptually visualized in Fig. 1. In the scenario
shown in Fig. 1(a) (left column), no temporal variation exists in
the alignment of the three signals to be averaged. In the scenario
shown in Fig. 1(b) (middle column), a “linear” temporal varia-
tion exists among the three signals. In the scenario shown in
Fig. 1(c) (right column), a “nonlinear” temporal variation
exists among the three signals. The averaged signals obtained
through a point-by-point averaging technique for each scenario
are shown in the last row. It can be seen that, compared to
Fig. 1(a), the presence of linear temporal variation for signals
in Fig. 1(b) has resulted in attenuation of the amplitude of
the averaged signal. The presence of nonlinear temporal
alignment for signals in Fig. 1(c) has caused nonlinear distor-
tion in the averaged signal obtained through conventional
point-by-point technique. In reality, such inaccuracies in the
averaged signal can lead to misunderstandings about the brain
function.38

To address the problem of temporal variation across fNIRS
signals, in this paper, a dynamic time warping (DTW)-based
averaging technique is presented for fNIRS-recorded time
series. DTW algorithm was originally introduced in the field of
speech processing39 and has been widely used for measuring the
similarity of two time series in various fields of research, such as
biometric, data mining, gene expression analysis, human motion
recognition, and EEG signal analysis.32,40–44 Various forms of
DTW-based averaging approaches have also been proposed for
applications, such as EEG32 and satellite image time series.45

To extensively examine the performance of the proposed
DTW-based averaging technique in fNIRS-based detection
studies, experiments and simulation are performed. For the
experimental part, both block design and event-related design
experiments are considered. For the simulation study, a dataset
is generated based on the standard model of hemodynamic
response function (HRF), and receiver operating characteristic
(ROC) curves are used to compare the performance of conven-
tional- and DTW-based averaging techniques. It is shown from
both experimental and simulation studies that the DTW-based
averaging technique outperforms the conventional averaging
technique in terms of accurately estimating the location of
task-induced brain regions. While for the proof of concept, in
this paper, we focus on the problem of localizing task-induced
active brain regions, the presented averaging technique can be
used in other averaging stages of fNIRS neuroimaging studies
(e.g., computing grand averages).

The remainder of this paper is organized as follows: in Sec. 2,
the DTW-based averaging technique is described. In Sec. 3, the
experimental and simulation studies are presented and results
are discussed. Finally, the paper is concluded in Sec. 4.

2 DTW-Based Averaging
Let bk ¼ ½bkð1Þ; · · · ; bkðNÞ� represent the k’th time series of
a group of K time series, each with N time points. In fNIRS
neuroimaging experiments, each of these time series corre-
sponds to the signal from a channel associated with a given
block (in a block design experiment, K being total number
of blocks) or associated with a given trial (in an event-related
design experiment, K being total number of events). The aim

is to obtain the averaged representation of these K time series
using DTW.45

To obtain the DTW-based averaged representation of K
signals, first, the best alignment between each signal and a
“reference” signal c ¼ ½cð1Þ; · · · ; cðNÞ� is found. The reference
signal could be, for example, the conventional averaged signal
of all K time series. To optimally align signal bk and the refer-
ence signal c, a cost matrix Dk needs to be determined. Dk is
a N × N matrix in which its elements are obtained through a
cost function representing the discrepancy between the i’th
and j’th samples (i ¼ 1; · · · N and j ¼ 1; · · · N) of signals c
and bk. Measures of the Euclidean distance, or the square of
difference between normalized samples, can be used as the
cost function.32

Next, from the cost matrix, an optimal alignment path,
Wopt

k ¼ ½w1; · · · ;wL�T, N ≤ L ≤ 2N − 1, where wl ¼ ½iðlÞ; jðlÞ�,
1 ≤ l ≤ L, 1 ≤ iðlÞ, jðlÞ ≤ N, must be determined so that
the overall similarity between the two signals is maximized.
The optimal alignment path Wopt

k shows how the mapping
between the indices of the two time series c and bk must be
made to achieve the best alignment. For example, if Wopt

k ¼
½ð1; 1Þ; ð2; 3Þ; ð2; 4Þ; : : : ; ðN;NÞ�T, then the sample cð1Þ is
aligned with bkð1Þ, cð2Þ is aligned with bkð3Þ and bkð4Þ, etc.
To obtain Wopt

k the solution to the following optimization
problem32

EQ-TARGET;temp:intralink-;e001;326;469 min
XL
l¼1

Dk½iðlÞ; jðlÞ�; (1)

subject to the following constraints should be found32

• Monotonicity alignment: The search for the alignment
path must be monotonic, so that the natural time ordering
in the sequence is preserved, i.e.,

EQ-TARGET;temp:intralink-;e002;326;364iðlÞ ≥ iðl − 1Þ and jðlÞ ≥ jðl − 1Þ: (2)

• Continuity: The alignment function does not skip any
samples in two sequences, i.e.,

EQ-TARGET;temp:intralink-;e003;326;307iðlÞ − iðl − 1Þ ≤ 1 and jðlÞ − jðl − 1Þ ≤ 1: (3)

• End-point alignment: The first and the last points of the
sequences must be aligned, i.e.,

EQ-TARGET;temp:intralink-;sec2;326;249ið1Þ ¼ jð1Þ ¼ 1 and iðLÞ ¼ jðLÞ ¼ N:

Once Wopt
k is obtained, a new N-points time series,

bkðalignedÞ ¼ ½bkðalignedÞð1Þ; · · · ; bkðalignedÞðNÞ�, is formed as
follows

• if the index represented by iðlÞ in Wopt
k is unique,

bkðalignedÞðmÞ ¼ bk½jðlÞ�, (m ¼ 1; · · · ; N),

• if the index represented by iðlÞ in Wopt
k is not unique,

bkðalignedÞðmÞ ¼ average of all bk½jðlÞ�’s corresponding
to iðlÞ.
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As an example, if
EQ-TARGET;temp:intralink-;e004;63;557

Wopt
k ¼ ½ð1; 1Þ; ð2; 2Þ; ð2; 3Þ; ð2; 4Þ; ð3; 5Þ; · · · ;

ðN − 1; N − 1Þ; ðN;NÞ�T; (4)

then, bkðalignedÞ is obtained as

EQ-TARGET;temp:intralink-;e005;63;499bkðalignedÞ ¼
�
bkð1Þ;

bkð2Þ þ bkð3Þ þ bkð4Þ
3

; · · · ; bkðNÞ
�
:

(5)

This procedure will be performed for all K signals. Once all
signals are aligned with the reference signal c and their aligned
representations are determined, the DTW-based averaged signal
is obtained as

EQ-TARGET;temp:intralink-;e006;63;401bDTWaveraged ¼
P

K
k¼1 bkðalignedÞ

K
: (6)

Figure 2(a) shows an example of aligning signal b1 with a
reference signal c. The color-coded cost matrix and the obtained
optimal warping path (in blue) are shown in Fig. 2(b). It can
be observed that when a sample in b1 is aligned with several
samples in c, the warping path has a vertical direction, whereas
when a sample in c is aligned with several points in b1, the warp-
ing path follows a horizontal direction. Note that the optimal
warping path is mostly along the antidiagonal elements of the
cost matrix, illustrating that the two signals experience tempo-
rally variable latencies. Table 1 summarizes the steps involved in
the DTW-based averaging procedure using a reference signal.

It should be noted that the DTW-based averaging technique
can be realized in various forms.45 For example, in Ref. 32,
instead of using a reference signal, the average is obtained
sequentially in a pairwise manner. As such, errors at early stages
of computation could propagate throughout the averaging proc-
ess, resulting in loss of information.45 To address the problems
associated with pairwise averaging, a global averaging strategy
was introduced in Ref. 45, in which the averaged signal is
obtained considering all signals and is updated through an
iterative process. The method presented here also computes the
average by considering all signals and therefore, will not be sen-
sitive to ordering effects.

3 Evaluation
The performance of the proposed averaging framework for ana-
lyzing fNIRS-recorded time series is evaluated through both
experimental and simulated data. On the experimental end,
two experiments, one block design and one event-related design,
are considered. The recorded time series are analyzed through
both conventional and DTW-based averaging techniques. As it
will be shown, compared to conventional point-by-point aver-
aging, when DTW-averaging is used, an increase in the detec-
tion power for the block-design task and a decrease in the false
positive rate for the event-related task are observed. For the
simulation study, data using a widely-used equation of the
hemodynamic response is generated, and ROC curves for the
conventional and the DTW-based averaging approaches are
obtained and compared. Furthermore, the impact of the choice
of reference signal on the performance of DTW-based averaging
technique is investigated.

3.1 Experimental Studies

Two experiments, one block design (experiment I), and one
event-related design (experiment II) are performed. We first
describe the experimental setup for each case, and then present
and discuss the results.

3.1.1 Experimental Setup

Experiment I: block design paradigm. Five healthy right-
handed volunteers (one female) participated in experiment I. All
volunteers gave their informed consent approved by the Rutgers
University Institutional Review Board prior to the experiment.38

The paradigm for this experiment was the 2-back task [see
Fig. 3(a)], which has been widely used in determining brain

Fig. 2 Illustration of the alignment process for an exemplary signal b1 and a reference signal c through
DTW: (a) time series b1 and c where their aligned points are connected, and (b) color-coded cost matrix,
representing the distance between the two time series. The warping path is shown in blue. Plots are
created using R programming package.46

Table 1 Summary of steps involved in DTW-based averaging pro-
cedure using a reference signal.

Step Operation

1 Define a reference signal c.

2 For each signal bk , k ¼ 1;2; · · · ; K , generate the cost
matrix representing the discrepancy between bk and c.

3 Based on the cost matrix, for each signal, find the optimal
alignment path such that the overall similarity between the
corresponding signal and the reference signal is maximized.

4 Find the average of aligned signals.
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activities related to working memory.25,26,47 Three blocks were
presented to participants. Each block lasted for 32 s and con-
sisted of 16 letters (computerized in a pseudorandom order
with four being target stimuli) with intertrial interval (ITI) of
2 s. The order of presentation of the target stimulus was different
across blocks. Participants were asked to respond by pressing
the right button on the mouse when the presented letter matched
the letter shown two stimuli back.

It is worth noting that the block design experiments are per-
formed with the goal of continuously engaging the brain in the
cognitive process of interest over the duration of the block, to
increase the detection power for localizing the related activities
in the brain. Here, the cognitive process of interest is “working
memory.” The process of memorizing and recovering letters is
carried out on a continuous basis over the duration of the block
for each letter (target or nontarget). For letters that satisfy the
2-back condition, other additional processes and functions such
as pressing the button (activating the somatosensory region) will
become involved. Through the averaging process across blocks,
the signal-to-noise ratio (SNR) related to these additional func-
tions would be small because of the variations in the timing of
the target stimulus from one block to other. But information
related to “working memory,” which is the main objective of the
n-back task, should be preserved over the duration of the block.

fNIRS data were collected using a 52-channel [Hitachi ETG-
4000, 17 sources (lasers, 695 and 830 nm) and 16 detectors] at
a sampling rate of 10 Hz. The source–detector separation was
3 cm. The headband optode holder was placed on the forehead
of volunteers to cover the prefrontal cortex, as shown in Fig. 3(b).

Experiment II: event-related paradigm. Six right-handed
healthy volunteers (all males) participated after giving their
informed consent. An event-related modified visual oddball
task44,48 consisting of three graphical stimuli (plus, square,
and circle), presented in random order, was used as the paradigm
[see Fig. 4(a)]. A total of 220 stimuli [30 target stimuli (“plus”),
and 190 nontarget stimuli] were presented. Each stimulus was
presented for 50 ms, with ITI of 10 to 12 s. To minimize the
periodic systemic effects,49 the ITI was randomized to prevent
the subjects from predicting the presentation time. Participants
were asked to press the left button of the mouse once the target
stimulus was shown on the screen.

fNIRS data were measured by an NIRx System [NIRx
NIRScout, 16 sources (LEDs, 760 and 830 nm) and 16 detec-
tors] at the sampling rate of 10.42 Hz. Measured signals from
source–detector pairs with a separation distance of 3 cm were
considered, resulting in a total of 38 channels. Optodes were
placed over the prefrontal and visual regions of the cortex, as
shown in Fig. 4(b).

3.1.2 Preprocessing

Recorded signals were visually inspected. Bad channels (for
example due to loose contact to skin) were excluded from
further analysis. In experiment II, the response to the first trial
for the majority of participants included traces of the subject’s
movement, and so it was excluded from the analysis, for all sub-
jects. Signals were then segmented. For experiment I, signals
were segmented by blocks. For each block, the segmentation

Fig. 3 (a) Experimental paradigm, and (b) optode setup (red: light emitter, green: detector, and blue:
fNIRS channel), for the 2-back task (experiment I).

Fig. 4 (a) Experimental paradigm, and (b) optode setup (circle: fNIRS channels in prefrontal cortex, tri-
angle: fNIRS channels in visual cortex), for the modified visual oddball task (experiment II). Locations of
optodes are visualized using MATLAB, BrainNet Viewer.50
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time window began at 5 s prior to the onset of the first stimulus
in the block and ended 15 s after the end of the block. For experi-
ment II, signals associated with “target” trials and “nontarget”
trials were segmented separately. Trials associated with missed
response (i.e., target trials without subject’s response) were
excluded from further analysis. The segmentation window
began at 1.9 s prior to the onset of the stimulus and had a dura-
tion of 13.9 s.

Next, signals related to Δ½HbO2� and Δ½HbR� with respect to
the baseline were extracted using the modified Beer–Lambert
law,51 based on the following equations

EQ-TARGET;temp:intralink-;e007;63;443

ln

�
Iλ1

Ibaseline;λ1

�
¼ −ðϵHbO2;λ1 · Δ½HbO2� þ ϵHbR;λ1 · Δ½HbR�Þ

· DPFλ1 · x;

ln

�
Iλ2

Ibaseline;λ2

�
¼ −ðϵHbO2;λ2 · Δ½HbO2� þ ϵHbR;λ2 · Δ½HbR�Þ

· DPFλ2 · x: (7)

In Eq. (7), Iλi and Ibaseline;λi (i ¼ 1, 2) are the optical intensities
measured at the detector location at wavelength λi, during task
and during prestimuli baseline period, respectively, x is the dis-
tance between the light source and the light detector, DPFλi is
the differential pathlength factor, and ϵHbO2;λi and ϵHbR;λi are
the extinction coefficient of HbO2 and HbR at wavelength λi,
respectively.

Band-pass filters (0.01 to 0.2 Hz) were then implemented
to remove artifacts and low-frequency drift. Furthermore,
following a procedure in Ref. 52, signals showing sudden fast
changes were detected, and excluded from further analysis.

3.1.3 Results—Experiment I

For each subject and each channel, averaged signals, using both
the conventional-based and the DTW-based averaging tech-
niques, were first obtained. Next, for each averaged signal,
the time point at which the signal reaches its maximum value
following the onset of stimuli was identified. A temporal win-
dow with a duration of 2.1 s53 around this time point was con-
sidered, and the mean of the averaged signal within this window
was calculated. This number, to which we refer to as activation
index (AI), was used in subsequent statistical tests to determine
if the region associated with the channel was active in response
to the external stimuli.

To determine active regions, one-sample t-test (with
p < 0.05) was performed on AIs (obtained through each aver-
aging technique), with the null hypothesis being the region that
is not active.53 Figure 5(a) shows the result of the statistical test.
As can be seen five channels (channels 1, 4, 9, 14, and 19) were
identified as being significantly active in response to the task
when DTW-based averaging technique is used for obtaining
the averaged signal. Table 2 summarizes the result of the stat-
istical test. These channels were not detected as active channels
when conventional-based averaging technique is used. The

Fig. 5 (a) Statistical activation map for 2-back task based on the averaged signal obtained from the
conventional-based averaging technique and the DTW-based averaging technique. Blue-colored circles
indicate channels with a significant increase in Δ½HbO2� identified based on averaged signal obtained
through both averaging techniques. Red-colored circles indicate channels with a significant increase in
Δ½HbO2� that were only detected from the averaged signal obtained through the DTW-based averaging.
The statistical significance level is p < 0.05. (b) Statistical map illustrating the difference between the
DTW-based and conventional-based averaged signals.

Table 2 Mean and standard deviation (SD) of AIs across subjects (units in μM) as well as results of t -test for channels showing statistically more
significant activation when DTW-based averaging technique is used as compared to when conventional point-by-point averaging technique is used
(df ¼ 4).

Channel

Conventional averaging technique DTW-based averaging technique

Mean (SD) p-value t -value Mean (SD) p-value t -value

1 0.65 (0.59) 0.068 2.48 0.84 (0.67) 0.048 2.82

4 0.45 (0.40) 0.068 2.49 0.61 (0.41) 0.035 3.14

9 0.50 (0.48) 0.081 2.32 0.73 (0.49) 0.029 3.34

14 0.44 (0.42) 0.082 2.31 0.61 (0.49) 0.048 2.83

19 0.98 (0.95) 0.082 2.31 1.30 (0.97) 0.040 3.00
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activation pattern obtained through the DTW-based averaging
technique appears to be more consistent with the results reported
in previous fMRI studies where activation in bilateral prefrontal
cortex was observed in response to working memory tasks.54,55

While Fig. 5(a) shows the statistical activation map by
employing a fixed threshold (p < 0.05), it would be informative
to also investigate the statistical significance of the difference of
the outcomes of the two averaging approaches. To achieve this,
for each channel and each subject, we subtracted the conven-
tional-based averaged signals from their DTW-based averaged
counterparts and conducted statistical test on the difference sig-
nals, with the null hypothesis that there are no significant
differences. Figure 5(b) presents the t-map obtained from the
one-sample right-tailed student’s t-test. It is shown that for
almost all regions, the obtained t-values are significantly larger
than zero, indicating that there are statistically significant
differences between the averaged signals obtained from the
two techniques. Next, we used the metric of contrast-to-noise
ratio (CNR)56,57 to quantify the SNR for the averaged signals
obtained from each averaging technique. We considered both
Δ½HbR� and Δ½HbO2� signals. Only channels that were identi-
fied as active through both averaging techniques [shown in
blue in Fig. 5(a)] were considered in this analysis. Denoting
meanðDURÞ and varðDURÞ as the mean and variance of the
signal amplitude during 5 to 15 s after the onset of the first
stimulus of the block, and meanðITIÞ and varðITIÞ as the
mean and variance of the signal amplitude corresponding to
10 to 15 s after the presentation of the last stimulus of the
block, the CNR is computed as

EQ-TARGET;temp:intralink-;e008;63;433CNR ¼ jmeanðDURÞ −meanðITIÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðDURÞ þ varðITIÞp : (8)

The results are shown in Fig. 6. It is shown that for Δ½HbO2�,
mean CNR across subjects is significantly higher when DTW-
based averaging technique is used, as compared to when con-
ventional averaging technique is used (p < 0.05, df ¼ 15).
Since Δ½HbR� signals are generally weaker than Δ½HbO2� sig-
nals, we observe a less significant difference between the CNR
in Δ½HbR� signals obtained from the two approaches, though
the mean CNR obtained through the DTW-based averaging

technique is still higher than that obtained through the conven-
tional-based approach. These results show that the DTW-based
averaging technique has increased the SNR in the averaged sig-
nals and can enhance the detection power in studies that aim to
identify active brain regions associated with external stimuli.

3.1.4 Results—Experiment II

Experiment II is an event-related experiment. The histogram of
response time for the “target” stimuli for each subject is shown
in Fig. 7. Variability in response time across trials is observed for
all individuals. This variability can also be an indication of the
presence of temporal variation in the timing of the occurrence of
task-induced events in the recorded fNIRS signals, and if not
addressed, would affect the accuracy of the averaged signal.

For each subject, Δ½HbO2� signals from each channel were
averaged for each condition (target and nontarget), using the
conventional and DTW-based averaging techniques, separately.
Figure 8 shows examples of Δ½HbO2� signals and their averaged
signals obtained through both averaging techniques, under the
“target” condition (shown in left) and “nontarget” condition
(shown in right) for channel 1, for a representative subject.
It is observed that in both cases, the peak amplitude of the con-
ventional-based averaged signal is lower than that of the DTW-
based averaged signal. Furthermore, comparing the two condi-
tions, the peak amplitude of the conventional-based averaged
signal for the nontarget condition is lower than the peak ampli-
tude of the conventional-based averaged signal for the target
condition, which may indicate that the brain region under chan-
nel 1, has been active for the target response (and hence sensitive
to the oddball effect). However, caution should be taken when
making an inference from this observation to avoid false alarm.
Indeed, when the averaging process is conducted using DTW-
based averaging technique, the difference in the peak amplitude
of the two conditions is minimized, and such conclusion cannot
be made.

Next, for each subject and each channel, the AIs under the
target and nontarget conditions, denoted as AIta and AInt,
respectively, were estimated using the window length of 21
samples (2.02 s). The difference in AIs across two conditions,
defined as AIdiff ¼ AIta − AInt, was then computed. For each
channel, AIdiff obtained from all subjects, were pooled and
tested using one-sample right-tailed student’s t-test, to deter-
mine whether the channel is active in response to the oddball
effect, with the null hypothesis of meanðAIdiffÞ ¼ 0. With
a threshold of p < 0.05, the identified active channels, using
the conventional-based averaging technique and the DTW-based
averaging technique are shown in Figs. 9(a) and 9(b), respec-
tively. One can observe that, compared to the patterns obtained
through the conventional averaging, the active regions identified
through the DTW-based averaging are located mostly in the
prefrontal and occipital cortices, which appear to be consistent
with previous fMRI studies.58

3.2 Simulation Studies

Given that in simulations the “ground truth” in terms of the loca-
tion of brain activation is known, simulations are performed to
compare the performance of the conventional averaging and
the DTW-based averaging techniques. Furthermore, we also
investigate the impact of choice of reference signal on the
performance of DTW-based averaging procedure.

Fig. 6 Comparison of mean CNR values in averaged Δ½HbO2� and
Δ½HbR� signals, for experiment I, obtained through conventional-
and DTW-based averaging techniques, respectively.
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Fig. 7 Histogram of the response time for “target” stimuli for each subject in experiment II.

DTW-based averaging
Conventional averaging

DTW-based averaging
Conventional averaging

Fig. 8 Exemplary recorded Δ½HbO2� signals from one channel (channel 1) under “target” condition
(shown in left) and “nontarget” condition (shown in right) in experiment II. Each trace represents a signal
associated with a trial. The averaged signals obtained through conventional (shown in blue) and DTW-
based (shown in red) averaging techniques are also shown. The vertical bar represents the timing of
the onset of the stimulus.
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3.2.1 Simulation platform

We considered a scenario similar to experiment II where there
are 50 fNIRS channels, and the task is an oddball task, with
20 target trials, and 150 nontarget trials. The designed “ground
truth” was that 10 channels are sensitive to the oddball effect
(target > nontarget).

Simulated signals were generated based on the equation that
is typically used to model the HRF59

EQ-TARGET;temp:intralink-;e009;63;409HRFðtÞ ¼ A1

�
t − d
τ1

�
δ1
e½−ðδ1∕τ1Þðt−τ1Þ�

− A2

�
t − d
τ2

�
δ2
e½−ðδ2∕τ2Þðt−τ2Þ�; (9)

where parameters A1, A2, τ1, and τ2 determine the amplitude of
the peak and the undershoot, d represents the time delay, and δ1
and δ2 form the general shape of the peak and the undershoot.
Through fitting this model to a typical measured oxygenation
response from fNIRS recording, we used A1 ¼ 1, A2 ¼ 0.4,
δ1 ¼ 10, and δ2 ¼ 20 for signals under target and nontarget
conditions. The amplitude of the signals for the target condition
was set to be 3% larger than that of the non-target condition.

To simulate the nonlinear variability in the latency, parame-
ters τ1, τ2, and d were designated as normally distributed
random variables. Their variance was set to 20, 25, and 10,
respectively. Using this model, 20 target trials and 150 nontarget
trials were created 40 times (corresponding to 40 participants).
Additive white Gaussian noise was added to each of the simu-
lated signals such that SNR equals to 10 dB.

3.2.2 Performance Comparison of DTW-Based Averaging
with Conventional Averaging

The analysis procedure for the simulated dataset followed the
one we used for experiment II. First, the signals associated with
each channel, each condition, and each subject were averaged
separately using the conventional and DTW-based averaging
techniques. Next, AIdiff values were computed for each channel
and each subject. One-sample right-tailed student’s t-tests
were conducted across subjects for each channel, with the null
hypothesis being meanðAIdiffÞ ¼ 0. As the “ground truth” is
known, we expected that for the 10 “true” active channels, the
estimated AIdiff be significantly larger than zero.

The ROC curves were computed for each of the averaging
techniques to evaluate their performance. Here, the ROC
curve illustrates the fraction of detected active channels and
the associated false positive rate, when the threshold (given
as t-values) varies. Figure 10(a) shows the resultant ROC curves
for the conventional (blue dashed line) and DTW-based (solid
red line) averaging techniques using the simulation dataset. It is

Fig. 9 Location of channels (shown in red) that are specifically sen-
sitive to the target condition compared to the nontarget condition (sen-
sitive to the oddball effect) in experiment II, using the conventional-
based averaging [shown in (a)] and the DTW-based averaging
[shown in (b)], respectively.

(a) (b)

Fig. 10 ROC curves for the conventional and the DTW-based averaging techniques. For the right figure,
a standard HRF is used as the reference signal for the DTW-based averaging technique.
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clearly shown that the DTW-based averaging technique outper-
forms the conventional one.

Furthermore, to examine the effects of the choice of the
reference signal on the outcome of the DTW-based averaging
technique, we repeated the simulation study where instead of
the point-by-point averaged signal, we used the standard hemo-
dynamic response as the reference signal. The result is shown in
Fig. 10(b). It illustrates that the performance of the DTW-based
averaging, with the standard HRF as reference, is still better than
that of the conventional-based averaging. This result shows that
regardless of the choice of the reference signal, the DTW-based
averaging technique outperforms the conventional-based aver-
aging technique in fNIRS-based detection studies.

4 Discussions and Conclusion
The averaging operation is performed at different stages of a
wide range of fNIRS brain imaging studies (e.g., across trials,
blocks, and subjects), with the objective of enhancing the signal
strength associated with task-induced activities, and reducing
noise and randomness. The averaging approach commonly
used for fNIRS signals is the point-by-point averaging tech-
nique. As shown in this paper, due to the existence of variable
latencies across fNIRS signals, the use of conventional point-by-
point averaging technique can lead to inaccuracies in the
averaged signal, and, consequently, incorrect conclusions about
the functionality of the brain. To address this problem, a DTW-
based averaging technique for fNIRS signals was presented. The
technique optimally aligns each fNIRS signal with a reference
signal such that their similarity is maximized. Once all fNIRS
signals are optimally aligned, the averaged signal is computed.

To compare the performance of the DTW-based and conven-
tional point-by-point averaging techniques for fNIRS signals,
we focused on the problem of localizing task-induced active
regions in the brain. Results from both block design and event-
related design experiments showed that the location of task-
induced active regions estimated based on the DTW-based
averaged signals are better aligned with the results reported
from prior fMRI studies. Furthermore, since in the presented
algorithm fNIRS signals are individually aligned with a
reference signal, we also investigated the question of whether
choosing a different signal as the reference would impact the
performance of the algorithm. With a reference signal modeled
based on a standard HRF, the DTW-based averaging technique
continued to show improved performance compared to the con-
ventional point-by-point averaging technique, in localizing
active brain regions. The results also show that the performance
of the DTW-based averaging can be further improved with
a proper choice of reference signal. In our simulation setup,
all generated fNIRS signals were created based on the HRF
model (with randomized parameters and added noise), hence the
choice of the standard HRF as the reference signal resulted in
an improved performance, compare to the scenario where point-
by-point averaged signal was chosen as the reference signal.

Improvement in the accuracy of the average of fNIRS signals
is expected to introduce a significant impact in various fNIRS-
based neuroscience and clinical research studies. For example,
in multimodal EEG-fNIRS experiments,23,60,61 the location of
active regions estimated from fNIRS signals, has been used as
constraint for the EEG source localization problem.23 Errors in
localizing active brain regions due to inaccuracies in the average
signal can negatively influence the outcome of the EEG source
localization problem, and therefore, the method presented here

can be employed to avoid such errors. While for the proof of
concept, in this paper, we focused on the problem of localizing
task-induced active brain regions, DTW-based averaging frame-
work can be employed in other steps of the analysis of fNIRS
signals, to avoid loss of information. For example, several stud-
ies report grand averages of the hemodynamic response across
subjects.8,62–66 We suggest DTW-based averaging be used in
these averaging steps, instead of the commonly used point-
by-point technique, since variations in latencies for signals
recorded from different individuals are inevitable. This issue
is of particular importance when the study focuses on patient
population, as several investigations have confirmed the exist-
ence of variable latencies in responses of patients (e.g., those
with ASD) to stimuli.35,36

In conclusion, our results suggest that the conventional point-
by-point averaging technique, commonly used in fNIRS brain
imaging studies, can result in inaccurate conclusions about
the brain function, and therefore, use of advanced averaging
techniques such as DTW-based averaging that consider the tem-
poral variations in the alignment of recorded fNIRS signals
is highly recommended. Simulation results showed that the per-
formance of the DTW-based averaging technique can be further
improved based on the choice of reference signal. Future work
involves investigating this issue in depth and developing quan-
titative statistical measures and iterative procedures to obtain
an optimum choice for a reference signal that maximizes the
accuracy of the averaged signal. We also plan to implement
a MATLAB toolbox with capabilities of computing the DTW-
based averaged of fNIRS signals and make it available to the
broader fNIRS neuroimaging scientific community.
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