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ABSTRACT. Significance: Compressed ultrafast photography (CUP) is currently the world’s
fastest single-shot imaging technique. Through the integration of compressed sens-
ing and streak imaging, CUP can capture a transient event in a single camera expo-
sure with imaging speeds from thousands to trillions of frames per second, at
micrometer-level spatial resolutions, and in broad sensing spectral ranges.

Aim: This tutorial aims to provide a comprehensive review of CUP in its fundamental
methods, system implementations, biomedical applications, and prospect.

Approach: A step-by-step guideline to CUP’s forward model and representative
image reconstruction algorithms is presented with sample codes and illustrations
in Matlab and Python. Then, CUP’s hardware implementation is described with a
focus on the representative techniques, advantages, and limitations of the three key
components—the spatial encoder, the temporal shearing unit, and the two-dimen-
sional sensor. Furthermore, four representative biomedical applications enabled by
CUP are discussed, followed by the prospect of CUP’s technical advancement.

Conclusions: CUP has emerged as a state-of-the-art ultrafast imaging technology.
Its advanced imaging ability and versatility contribute to unprecedented observa-
tions and new applications in biomedicine. CUP holds great promise in improving
technical specifications and facilitating the investigation of biomedical processes.
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1 Introduction
Optical imaging of transient events in their actual time of occurrence exerts compelling scientific
significance and practical merits.1 Occurring in two-dimensional (2D) space and at femtosecond
(1 fs ¼ 10−15 s) to microsecond (1 μs ¼ 10−6 s) time scales, these transient events reflect many
important fundamental mechanisms in biology.2–4 However, many transient phenomena are
either nonrepeatable or difficult to reproduce. Examples include the spontaneous synaptic activ-
ities,5 nanoparticles’ luminescence lifetime at different temperatures,6 and light scattering in liv-
ing tissue.7 Under these circumstances, the conventional pump–probe methods, requiring
numerous repeatable experiments, are inapplicable. Meanwhile, the pump–probe approaches
sense photons’ time-of-arrival using complex apparatus to perform time-consuming scanning
in either space or time. In these cases, even if the transient phenomena are reproducible, these
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methods would suffer from substantial inaccuracy due to experimental perturbation and low pro-
ductivity due to the events’ low occurrence rates.

Single-shot ultrafast optical imaging techniques8,9 can overcome these limitations by cap-
turing the entire dynamic process in real time (i.e., in the actual duration of the event’s occur-
rence) without repeating measurements. Benefiting from advancements in optoelectronics, laser
science, information theory, and computational techniques, single-shot ultrafast optical imaging
has become a burgeoning research field in the past decade. Thus far, the mainstream techniques
can be generally categorized into the domains of active illumination and passive detection. For
the former, temporal information of a dynamic scene is mapped into an optical marker (e.g.,
spectrum and spatial frequency) of one or multiple ultrashort probe pulses. On the detection
side, appropriate devices and methods (e.g., color filter and spatial Fourier transformation) are
used to extract the corresponding optical marker, which deduces the scene’s evolution. These
active-illumination-based approaches feature femtosecond temporal resolution by leveraging
ultrashort durations of ultrafast probe pulses and provide high sensitivity by being compatible
with advanced cameras based on the charge-coupled device (CCD) or complementary metal–
oxide semiconductor (CMOS) technology. Nonetheless, they cannot capture the self-lumines-
cence scenes, including dynamic scattering,10 photoluminescence intensity decay,11 and plasma
emission.12 Passive detection can overcome this limitation. In this category, receive-only ultrafast
detectors are used to record the emitted and/or scattered photons from the dynamic scene. Various
mechanisms, including Kerr-effect-based time gating,13 deflection of moving photoelectrons by a
varying electrical field,14 and charge transfer in a series of registers,15 have been used to provide
ultrahigh temporal resolution. Meanwhile, the inferior bandwidth of electronics to its optical
counterpart caps the ultimate imaging speed of these passive-detection approaches lower to the
active-illumination modalities. Overall, the active illumination and passive detection approaches
often carry highly complementary technical specifications. Altogether, they incessantly expand
the human vision to see previous inaccessible events.

Among existing techniques, compressed ultrafast photography (CUP) has emerged as a
potent single-shot ultrafast optical imaging modality.16 Invented in 2014 in Dr. Lihong V.
Wang’s laboratory,17 CUP innovatively synergizes compressed sensing (CS) with streak imag-
ing. Leveraging the sparsity existing in the targeted scenes, the operation of this hybrid approach
includes physical data acquisition followed by computational image reconstruction.18,19 In data
acquisition, the light from a 2D dynamic scene is recorded in one or more snapshots in a single
shot via a CS paradigm containing spatial encoding, temporal shearing, and spatiotemporal inte-
gration. Different from conventional ultrafast imaging, the acquired snapshot often bears no
resemblance to the scene. Then, the snapshot is input into an algorithm to retrieve the movie
of the target dynamic scene by solving a minimization problem.20

CUP provides many attractive conceptual novelties and practical advantages. First, the spa-
tial encoding and temporal shearing operations allow a mixture of information between time and
space, which enables CUP to have a large sequence depth (i.e., the number of frames in each
recorded movie) compared with other single-shot ultrafast imaging systems based on spatial
frequency multiplexing,21–24 spectral filtering,25–30 and beam splitting.31–34 Meanwhile, it over-
comes the limitations in sensing dimension in conventionally regarded one-dimensional (1D)
high-speed sensors.14,35 Compared with ultrafast CCD sensors that have a low fill factor,
CUP uses spatiotemporal multiplexing to effectively enhance the light throughput in data acquis-
ition, which improves the feasibility of image reconstruction.36 It is compatible with many sci-
entific-grade CCD/CMOS sensors without interrupting their normal operations, which retains
their responsive spectrum and sensitivity while endowing them with ultrahigh speeds.37

Second, its generic sensing paradigm can be embodied in both active-illumination and pas-
sive-detection schemes. Each major operation (i.e., spatial encoding, temporal shearing, and spa-
tiotemporal integration) can be optically realized by various devices, indicating high design
flexibility, multi-spatiotemporal-scale imaging ability, and broad spectral coverage. Third, com-
putational image reconstruction, as an indispensable step in CUP’s operation, lifts certain bur-
dens in system design from hardware. Advances in CS,38 machine learning,39 and information
theory40 can be directly implemented in CUP’s image reconstruction. Finally, CUP exhibits light
throughput advantages by capturing information in two spatial dimensions and time simultane-
ously in a single exposure. In contrast, the multiple-shot methods can only collect information

Lai, Marquez, and Liang: Tutorial on compressed ultrafast photography

Journal of Biomedical Optics S11524-2 Vol. 29(S1)



from a column (from point scanning) or a slice (from line scanning) of the datacube.41

Meanwhile, distinguished from single-shot framing (or mapping) photography,30,34,42 CUP main-
tains time continuity in data acquisition, which further enhances the amount of acquirable
information.18

Because of its unprecedented imaging ability, CUP immediately became a research focus
since its invention. New designs in hardware and innovative development of image reconstruc-
tion are being reported frequently. New applications in biomedicine, physics, and engineering are
highlighted. Comprehensive reviews of CUP can be found in the literature.16,43 Other reviews of
CUP are included in the surveys of ultrafast imaging technologies.1,8,9,18,44–48 However, thus far,
there has not been a practical guide for developing CUP systems using an anatomy fashion. Thus,
in this tutorial, we first review the operating principle of CUP with simulation examples (in
Matlab and Python) to guide readers on how to generate compressively recorded snapshots from
a spatiotemporal datacube using the forward model as well as how to reconstruct the spatiotem-
poral datacube from the snapshots using representative methods in analytical-modeling-based
approach and machine learning. Then, we will provide an extensive survey of existing methods
for each of the major operations in CUP’s sensing paradigm—spatial encoding, temporal shear-
ing, and spatiotemporal integration. Afterward, we will discuss the representative applications of
CUP in biomedicine. Finally, we summarize CUP’s accomplishments and provide the prospect
of its future development.

2 Method
A schematic of dual-view CUP is shown in Fig. 1. In data acquisition, a dynamic scene is imaged
by front optics and split into two arms. The transmitted component forms the image of the
dynamic scene on a spatial encoder. Unlike many other compressive temporal imaging modal-
ities that use multiple fast-changing patterns during image acquisition,49–54 a single static pattern
is used for CUP’s spatial encoder. Then, the frames in the spatially encoded scene are deflected
by a temporal shearing unit to different spatial positions along the sweeping direction. Finally,
the encoded and sheared scene is spatiotemporally integrated by a sensor, producing a compres-
sive 2D snapshot, which is defined as the time-sheared view and used hereafter in this tutorial.
This paradigm to capture the time-sheared view was implemented in the original CUP
configuration.17 In the ensuing implementations, it was found that a direct capture of a time-
integrated snapshot of the dynamic scene could enhance the reconstructed imaging quality.55

Defined as the time-unsheared view and used hereafter in this tutorial, this snapshot outlines
the region of occurrence of the dynamic scene, which reduces the number of unknowns for image
reconstruction and facilitates its convergence to the optimal result. It is particularly useful when
the dynamic scene occurs on a static or slowly moving object (e.g., intensity decay of photo-
luminescence emitted from nanoparticle-labeled cells56). It is noted that CUP systems of more
than two views have been featured in recent progress to further boost image quality.57–66 For
example, lossless-encoding CUP contains the time-unsheared view and two complementary
time-sheared views.58 Nonetheless, the formation of these views shares similar data acquisition
paradigms as the ones described above and thus is not discussed here.

To assist readers in comprehending CUP’s paradigm, in Secs. 2.1 and 2.2, we provide in-
depth theoretical derivation and simulation. The presented examples are meticulously designed
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Fig. 1 Operating principle of dual-view CUP. The illustration depicts the beam paths for time-
sheared and time-unsheared views, represented by magenta and green colors, respectively.
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to use basic features and functions in Matlab (R2020b) and Python (version 3.9). Two versions of
Python codes are prepared for readers with different levels of programming experience.

2.1 Forward Model
The forward model of CUP formulates the process of recording a three-dimensional [3D; i.e.,
ðx; y; tÞ] scene to one or a few 2D snapshots. In general, this forward model can be expressed
mathematically using either element-wise or matrix-vector notations.

2.1.1 Element-wise notation

Many mathematical and scientific libraries are designed to efficiently handle element-wise oper-
ations. The dynamic scene and the binary-valued encoding mask are denoted by F ∈ RM×N×L

and R ∈ RM×N , respectively. M and N represent the data lengths in the two spatial dimensions,
and L signifies the data length in time. The discrete output from the sensor for the time-sheared
view (hence the subscript “ts”) can be modeled as

EQ-TARGET;temp:intralink-;e001;114;554ðGtsÞi;j ¼
XL−1
l¼0

Fi;j;lRi;j þ ðEtsÞi;j; (1)

where

EQ-TARGET;temp:intralink-;sec2.1.1;114;500Fi;j;l ¼
�
Fi;j−l;l if l ≤ j ≤ ½N þ ðl − 1Þ�
0 otherwise;

and

EQ-TARGET;temp:intralink-;sec2.1.1;114;451Ri;j ¼
�
Ri;j−l if l ≤ j ≤ ½N þ ðl − 1Þ�
0 otherwise;

where Fi;j;l is the intensity of the ði; j; lÞ’th element of a right-zero-padded version with a frame-

dependent right circular shifting of the dynamic scene’s datacube with F ∈ RM×½NþðL−1Þ�×L. Ri;j

stands for the intensity of the ði; jÞ’th element a right-zero-padded version with a frame-depen-
dent right circular shifting of the spatial encoder with R ∈ RM×½NþðL−1Þ�. ðGtsÞi;j is the intensity
measured on the ði; jÞ’th element of the sensor with Gts ∈ RM×½NþðL−1Þ�. ðEtsÞi;j stands for the
noise of the ði; jÞ’th element in Gts with Ets ∈ RM×½NþðL−1Þ�.

The discrete output for the time-unsheared view (hence “tu” as the subscript) can be
modeled as

EQ-TARGET;temp:intralink-;e002;114;307ðGtuÞi;j ¼
XL−1
l¼0

Fi;j;l þ ðEtuÞi;j; (2)

where ðGtuÞi;j is the intensity measured at the ði; jÞ’th element of the time-unsheared view with

Gtu ∈ RM×N , and ðEtuÞi;j represents the noise in Gtu with Etu ∈ RM×N .
As an example, a Matlab script that simulates dual-view CUP’s forward model, with a linear

shearing operator and a pseudorandom binary mask, is shown in Algorithm 1. Moreover, a step-
by-step guide with illustrations of the “cell-division” dynamic scene is shown in Fig. 2. The
ground truth video was taken from the public “Mouse Embryo Tracking” database67 and can
be downloaded using the link in Ref. 68.

2.1.2 Matrix-vector notation

The element-wise notation of CUP’s forward model, despite owning simple expression and easy
comprehension, is inherently limited by its sequential execution. This characteristic engenders
surplus calculations within specific functions when the modeling is subjected to extensive
datasets or algorithms mandating intricate computations—such as matrix inversion, matrix fac-
torization, eigenvalue decomposition, and low-rank approximation. Thus, most practices use
matrix-vector operations by converting F into vector f ∈ Rn×1, where n ¼ M · N · L. In this
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way, CUP’s forward model can be expressed by matrix multiplication, which can be computed
by powerful linear algebra methods to concisely formulate solutions.

In particular, dual-view CUP’s forward model, by following a matrix-vector representation,
can be expressed as

EQ-TARGET;temp:intralink-;e003;117;386 g ¼
�
gts
gtu

�
¼ Φf ¼

�
TtsSC
Ttu

�
f; (3)

where, gts ∈ Rmts×1 and gtu ∈ Rmtu×1 are the vectorial version of the time-sheared view and the
time-unsheared view with sizes mts ¼ M · ½N þ ðL − 1Þ� and mtu ¼ M · N, respectively.
g ∈ Rm×1 is the vectorial version of the concatenated two views with a size m ¼ mts þmtu.Φ ∈
Rm×n is the dual-view CUP’s sensing matrix. C ∈ Rn×n is the spatial encoding matrix.
S ∈ Rðmts·LÞ×n is the temporal shearing matrix. Tts ∈ Rmts×ðmts·LÞ and Ttu ∈ Rmtu×n are the spa-
tiotemporal integration matrices of the time-sheared view and the time-unsheared view, respec-
tively. Φts ¼ TtsSC ∈ Rmts×n is also defined as the time-sheared sensing matrix.

The entries of C, S, Tts, and Ttu are given as

EQ-TARGET;temp:intralink-;e004;117;250Ci;j ¼
�
rv if i ¼ j
0 otherwise

; (4)

EQ-TARGET;temp:intralink-;e005;117;201Si;j ¼
�
1 if i ¼ jþM · L ·

� j
M·N

�
0 otherwise;

(5)

EQ-TARGET;temp:intralink-;e006;117;169Tts ¼ 1TL ⊗ Imts×mts; (6)

EQ-TARGET;temp:intralink-;e007;117;150Ttu ¼ 1TL ⊗ Imtu×mtu
: (7)

In Eq. (4), v ¼ modðj;M · NÞ with v ∈ W, and rv ∈ f0;1g is the value at the v’th position
of r ∈ RM·N×1, which is the vectorial version of the encoding mask R. In Eqs. (6) and (7),
1L ∈ RL×1 is an all-one vector. I is the identity matrix. The matrix Ttu has a structure similar
to Tts (i.e., a horizontal concatenation of identity matrices) but with a shorter diagonal dimension.

Thus, the sensing matrix Φ ¼
�
Φts

Ttu

�
can be directly defined as

Algorithm 1 Simulating dual-view CUP’s forward model with the element-wise notation using
Matlab.

%% Example of dual-view CUP’s sensing process

% Encoding step (generating R)

load(‘Cell.mat’) % Loading the example video – F

[M,N,L] = size(F); % Calculating the video dimensions
% (y,x,t)->(M,N,L)

R = 1*(rand(M,N)>0.5); % Mask initialization with a
% transmittance of ∼50%

R = repmat(R,1,1,L);

Gts = F.* R; % Spatial encoding – Hadamard product

Gts = padarray(Gts,[0,L-1,0],0,‘post’); % Right column zero padding

for l=0:L-1 % Shearing operation

Gts(:,:,l+1) =circshift(Gts(:,:,l+1),[0,l]);

end

Gts =sum(Gts,3); % Integration of time-sheared view

Gtu =sum(F,3); % Integration of time-unsheared view
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EQ-TARGET;temp:intralink-;e008;114;248Φi;j ¼
(
rv if i ¼ vþM ·

� j
M·N

�
1 if i ¼ vþmts

0 otherwise

: (8)

A Matlab script for constructing the matrices C, S, Tts, Ttu, and Φ is presented in
Algorithm 2. In this example, M × N × L ¼ 256 × 256 × 25 pixels. The sensing matrix of the
time-sheared viewΦts is created by assembling a series of diagonal patterns that cyclically repeat
along the horizontal direction, shifting downward byM rows following each iteration. The sens-
ing matrix Φ, illustrated schematically in Fig. 3, is created by vertically concatenating Φts

with Ttu.

2.2 Image Reconstruction
After data acquisition, the captured 2D snapshots (i.e., Gts and Gtu) are input to an algorithm to
reconstruct the dynamic scene. To date, analytical-modeling-based algorithms are dominantly
used in CUP’s reconstruction because they can incorporate prior knowledge about the imaging
system and the underlying physics of light propagation,69–74 leading to accurate reconstructions.
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R = 1*(rand(M,N)>0.5); R = repmat(R,1,1,L);
Gts = F.*R;
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Gts(:,:,l+1) =circshift(Gts(:,:,l+1),[0,l]);
end

Gts =sum(Gts,3);

M

N
L

M

N

M

N
L

M

N+(L-1)
L

M

N+(L-1)
L

M

N+(L-1)

S
p
a
ti
o
te

m
p
o
ra

l 
in

te
g
ra

ti
o
n

M

N
Gtu =sum(F,3);

Gts =sum(Gts,3);

Time-sheared view

Time-unsheared view

Fig. 2 Illustrations of simulating dual-view CUP’s forward model with the element-wise notation
using Matlab.
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Before getting into sophisticated analytical-modeling-based reconstruction algorithms for CUP,
let us analyze the structure of a basic optimization problem:

EQ-TARGET;temp:intralink-;e009;117;298f̃ ¼ arg min
f

1

2
kg −Φfk22 þ λφðfÞ; (9)

where k · k22 is the l2-norm, λ > 0 is a regularization parameter, φð·Þ∶Rn → R is a convex and
smooth function, and f̃ ∈ Rn×1 represents the reconstruction.

Various reconstruction algorithms75–78 are developed based on Eq. (9). A popular choice,
especially in the early stage of CUP’s development, is the two-step iterative shrinkage/thresh-
olding (TwIST) algorithm.78 The regularizer, φðfÞ, can be set to various forms, including kΨfk1
and kfkTV, where k · k1 represents the l1-norm, Ψ ∈ Rn×n is an arbitrary representation basis
matrix, and k · kTV represents the total-variation (TV) regularization.79 The TwIST algorithm
combines the shrinkage operation used in iterative soft-thresholding algorithms with a correc-
tion step that enforces fidelity to the measurements. It exploits the sparsity naturally embedded
in the transient scene via the regularizer. In particular, the l1-norm requires prior knowledge
about the scene to select an adequate representation basis. The TV-norm uses spatiotemporal
correlation by removing low variations between neighboring pixels. These characteristics en-
able the TwIST algorithm to efficiently recover a transient scene from an underdetermined
measurement.

Later, more advanced image reconstruction algorithms are developed based on the paradigm
of alternating direction method of multipliers (ADMM),69,80–83 which sets φðfÞ ¼ kf − fðkÞk22,

Algorithm 2 Programming matrices of dual-view CUP’s operation using Matlab.

clear all; close all; clc

M = 256; N = 256; L = 25;

R = 1*(rand(M,N)>0.5);

R = repmat(R,1,1,L);

%%

n = M*N*L;

mts = M*(N+L-1);

mtu = M*N;

%% Encoding matrix (C)

i = 0:n-1;

j = 0:n-1;

C = sparse(i+1,j+1,R(:),n,n);

%% Shearing matrix (S)

j = 0:n-1;

i = j+(M*L)*floor(j/(M*N));

S = sparse(i+1,j+1,1,mts*L,n);

%% Integration matrices (Ts and Tu)

Tts = kron(ones(1,L),speye(mts,mts));

Ttu = kron(ones(1,L),speye(mtu,mtu));

%% CUP sensing matrix (\Phi)

Phi = [((Tts*S)*C)’,Ttu’]’;
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where fðkÞ stands for the k’th reconstruction with k ¼ f0; : : : ; K − 1g and K ∈ N as the total
number of the algorithm’s iterations. The ADMM has gained increasing popularity due to its
flexibility to customize the optimization steps by incorporating additional constraints (e.g., noise
reduction algorithms or neural-network approaches), which is hence selected for this tutorial.

(e)

(a)

(b)

(c)

(d)

Fig. 3 Construction of the matrices of dual-view CUP’s operation using Matlab. (a) Spatial encoding
matrix. (b) Temporal shearing matrix. (c) Spatiotemporal integration matrix for the time-sheared view.
(d) Spatiotemporal integration matrix for the time-unsheared view. (e) Sensing matrix of dual-view
CUP. Insets: Zoomed-in views of local regions (indicated by the red boxes with different line types).
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2.2.1 Analytical-modeling-based approaches

The ADMM accomplishes distributed convex optimization using a divide-and-conquer
approach, where a global problem is split into a few subproblems.84 Leveraging dual decom-
position and the augmented Lagrangian (AL) methods for constrained optimization,77 the
ADMM solves problems expressed by the following form:

EQ-TARGET;temp:intralink-;e010;117;669minimize γðfÞ þ ψðzÞ subject to Df þ Bz ¼ b; (10)

where fγ;ψg are convex functions. In the equality constraint, D and B are arbitrary matrices that
establish a linear relationship between the objective variable (i.e., f) and an auxiliary variable
(i.e., z) that works as prior information. The variable b represents the limits (or bounds) for the
equality constraint. For instance, in dual-view CUP, an equality constraint can be imposed by
setting D ¼ Ttu, B ¼ −I, z ¼ gtu, and b ¼ 0.

Equation (10) can be solved using the method of Lagrange multipliers, which is a math-
ematical technique used to optimize a function subject to equality constraints. For Eq. (10), its
Lagrangian function is defined as

EQ-TARGET;temp:intralink-;e011;117;550Lðf; z; νÞ ¼ γðfÞ þ ψðzÞ þ νTðDf þ Bz − bÞ; (11)

where ν is the Lagrange multiplier. As a scaling factor, ν enables constructing, from Eq. (10), an
unconstrained optimization function, in which the gradients of both the objective function and
the constraint function are proportional to each other at the optimal solution.84 Then, Eq. (11) is
rewritten as85

EQ-TARGET;temp:intralink-;e012;117;478min
f;z

max
ν

Lðf; z; νÞ: (12)

Equation (12) is maximized when ν → þ∞ unless Df þ Bz − b ¼ 0. By converting the
maximization problem into a minimization problem [i.e., maxν Lðf; z; νÞ ¼ minν − Lðf; z; νÞ]
(Ref. 86) and using a proximal term87 to solve the new minimization problem, Eq. (12) results in

EQ-TARGET;temp:intralink-;e013;117;412min
f;z

�
arg min

ν
− Lðf; z; νÞ þ 1

2ρ
kν − νk22

�
; (13)

where ρ > 0 is the penalty parameter, and ν is a previous estimate of ν. Note that the “argmin” in
Eq. (13) is now a convex quadratic function with the trivial solution ν ¼ νþ ρðDf þ Bz − bÞ. By
inserting this trivial solution into Eq. (12), the AL-based dual-problem can be obtained as

EQ-TARGET;temp:intralink-;e014;117;339argmin
f;z

γðfÞ þ ψðzÞ þ νTðDf þ Bz − bÞ þ ρ

2
kDf þ Bz − bk22: (14)

Finally, Eq. (14) can be split into three optimization problems:

EQ-TARGET;temp:intralink-;e015;117;291fðkþ1Þ ≜ arg min
f

γðfÞ þ ðνðkÞÞTðDf þ BzðkÞ − bÞ þ ρ

2
kDf þ BzðkÞ − bk22; (15)

EQ-TARGET;temp:intralink-;e016;117;247zðkþ1Þ ≜ arg min
z

ψðzÞ þ ðνðkÞÞTðDfðkþ1Þ þ Bz − bÞ þ ρ

2
kDf ðkþ1Þ þ Bz − bk22; (16)

EQ-TARGET;temp:intralink-;e017;117;221νðkþ1Þ ≜ νðkÞ þ ρðDfðkþ1Þ þ Bzðkþ1Þ − bÞ; (17)

where fνðkþ1Þ; νðkÞg are the equal expressions of fν; νg, respectively. In this strategy,
Eqs. (15)–(17) are solved in an alternating and iterative form to find a point that belongs to the
intersection of the two closed convex solution sets. Here, for each step, all the parameters are
fixed except the optimization variables [e.g., f in Eq. (15) and z in Eq. (16)]. Then, by repeatedly
projecting the updated variables onto each set, the algorithm converges toward a point that sat-
isfies the constraints of all the sets simultaneously.

After defining the core structure of the ADMM algorithm, the following sections discuss two
popular variants of the ADMM in image processing.84

Scaled form ADMM. The scaled form84 can be obtained using the equality νTrþ
ðρ∕2Þkrk22 ¼ ρ

2
krþ wk22 − ρ

2
kwk22 (Ref. 86) with r ¼ Df þ Bz − b and the scaled Lagrange

multiplier w ¼ 1
ρ ν. This implementation modifies Eq. (14) as
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EQ-TARGET;temp:intralink-;e018;114;736arg min
f;z

γðfÞ þ ψðzÞ þ ρ

2
kDf þ Bz − bþ wk22 −

ρ

2
kwk22: (18)

Then, setting B ¼ −D ¼ −I and b ¼ 0, i.e., f ¼ z, Eq. (18) can be split into three optimi-
zation problems:

EQ-TARGET;temp:intralink-;e019;114;682fðkþ1Þ ≜ arg min
f

γðfÞ þ ρ

2
kf − zðkÞ þ wðkÞk22; (19)

EQ-TARGET;temp:intralink-;e020;114;638zðkþ1Þ ≜ arg min
z

ψðzÞ þ ρ

2
kfðkþ1Þ − zþ wðkÞk22; (20)

EQ-TARGET;temp:intralink-;e021;114;612wðkþ1Þ ≜ wðkÞ þ ρðfðkþ1Þ − zðkþ1ÞÞ: (21)

The scaled form of ADMM [i.e., Eqs. (19)–(21)] exhibits an improved convergence rate
compared with the standard ADMM [i.e., Eqs. (15)–(17)]. The acceleration is achieved by intro-
ducing ρ as a scaling factor, which is particularly beneficial for large-scale optimization problems
or problems with slow convergence rates. Further insights into these considerations, including
heuristics for the effective selection of an appropriate scaling factor, can be found in Ref. 84.

Plug-and-play ADMM. The ADMM’s modular structure is one of its main features because
it enables the decomposition of a complex optimization problem [i.e., Eqs. (14) or (18)] into
several simpler subproblems [i.e., Eqs. (15)–(17) or Eqs. (19)–(21)] that can be solved independ-
ently or using established solution methods. Moreover, ADMM’s versatility enables modeling
different sparse-based optimization problems. For example, the Tikhonov optimization problem
can be modeled by setting ψðzÞ ¼ kzk22 in Eq. (20). As another example, by setting B ¼ Ψ,
D ¼ I, b ¼ 0, f ¼ Ψz, and ψðzÞ ¼ kzk1 in Eq. (18), Eq. (20) can be converted into the
basis-pursuit denoising problem. In this regard, a popular framework is the plug-and-play
(PnP)-ADMM,69 which allows plugging in an off-the-shelf image-denoising algorithm as a
solver for the subproblems (see a Matlab implementation in Algorithm 3). In the PnP-ADMM,
by setting γðfÞ ¼ kΦf − gk22, Eq. (19) has the closed-form solution

EQ-TARGET;temp:intralink-;e022;114;400fkþ1 ¼
�
ΦTΦþ ρ

2
I
�
−1
�
ΦTgþ ρ

2
ðz − wÞ

�
: (22)

Then, Eq. (20) can be rewritten as a denoising problem by setting ρ ¼ 1
σ2
, resulting in

EQ-TARGET;temp:intralink-;e023;114;347zðkþ1Þ ¼ arg min
z

ψðzÞ þ 1

2σ2
kz − z̃ðkÞk22; (23)

where z̃ðkÞ ¼ fðkþ1Þ þ wðkÞ, and σ represents the denoising strength.88 Equation (23) can be
solved as

EQ-TARGET;temp:intralink-;e024;114;288z ¼ Dσðz̃ðkÞÞ ¼ Dσðfðkþ1Þ þ wðkÞÞ; (24)

where Dσ is a denoiser. Note that the PnP-ADMM algorithm supports any denoiser that fulfills
restrictive conditions, such as being non-expansive and having a symmetric Jacobian.89 For
example, the block-matching and 3D filtering algorithm has been extensively used to enhance
the denoising capabilities of the ADMM algorithm while preserving textures and fine details.90,91

2.2.2 Deep-learning approaches

Deep-learning approaches have been increasingly featured owing to their faster reconstruction
compared with their analytical-modeling-based counterparts. Recent advances have allowed
embedding mathematical properties offered by the CS theory by designing custom layers that
emulate the forward sensing model or exploiting spatiotemporal sparsity via image-denoising
nets.93 Given access to rich available training datasets, many novel methods based on convolu-
tional neural networks (CNNs) have been developed for CUP’s reconstruction as well as for the
encoding mask design, including the end-to-end CNN with residual learning,94 the U-Net-based
DeepCUP,95 the hybrid algorithm that combines the AL method with deep learning,96 and the
snapshot-to-video autoencoder based on a generative adversarial network.97–103
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Algorithm 3 Simulating dual-view CUP’s image reconstruction by a
PnP-ADMM algorithm using Matlaba.

clear all

close all

clc

%% Load datacube

load(‘Cell.mat’)

[M,N,L] = size(F);

F = F./max(F(:));

n = M*N*L;

mts = M*(N+L-1);

mtu = M*N;

m = mts + mtu;

global m

%% Mask

R = 1*(rand(M,N)>0.5);

R = repmat(R,1,1,L);

%% Sensing matrix

j = 0:n-1;

i = mod(j,M*N)+M*floor(j/(M*N));

Phi_ts = sparse(i+1,j+1,R(:),mts,n);

Phi_tu = kron(ones(1,L),speye(mtu,mtu));

Phi = [Phi_ts;Phi_tu];

%% Measurement

G = Phi*F(:);

G = G/max(G(:));

G = G/L;

%% PnP-ADDM parameters

addpath(genpath(‘./denoisers/RF/’));

dim = size(F);

A = @(F,trans_flag) afun2(F,trans_flag,Phi);

method = ‘RF’;

lambda = 0.25;

opts.rho = 0.1;

opts.gamma = 1;

opts.max_itr = 2000;

opts.print = true;

%% Main routine

F_tilde = PlugPlayADMM_general(F,G,A,lambda,method,opts,dim);

aFunctions used in the above script can be downloaded from Ref. 92.
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Here, we review a representative CNN—the deep high-dimensional adaptive net
(D-HAN)104 that offers multifaceted supervision to CUP by optimizing the encoding mask, sens-
ing the shearing operation, and reconstructing the 3D datacubes. The main goal of the D-HAN is
to leverage the merits of both the ADMM and the network-based CS methods by mapping one
iteration of the ADMM steps to a deep network architecture. For these reasons, the D-HAN will
be used as a benchmark to explain how to link the CUP’s forward model with a CNN approach.

Originally designed to use only the time-sheared view, the D-HAN is composed of two
cascaded neural networks: a deep-unfolding-based network to embody the sensing model of the
time-sheared view in CUP and a U-Net architecture105 to further improve image reconstruction
(Fig. 4) by exploiting the spatiotemporal correlation of the transient scene. The deep-unfolding
net and the U-Net manifest the “divide-and-conquer” approach embedded in the ADMM. Then,
the time-unsheared view was incorporated to boost the reconstruction performance by using it as
an initialization for the deep-unfolding network and a prior restriction in the loss function. This
configuration leverages the original D-HAN’s mathematical advantages and the reduction of
unknowns via prior information. This design is memory efficient and thus essential for learning
to reconstruct high-dimensional datacubes.

In this regard, the ADMM-based inverse problem can be formulated using the ADMM’s
scaled form [i.e., Eqs. (19)–(21)]. Note that in Eq. (19), the analytical inverse model of f refers
to a quadratic problem with the closed-form that involves the inversion of a n × n size matrix
[see Eq. (22)]. Toward this goal, the Sherman–Woodbury–Morrison (SWM) matrix inversion
lemma106—a mathematical theorem allowing calculating a matrix’s inverse by converting it into
a full rank matrix—and the full-column rank properties are exploited to simplify the process to a
smaller-scale matrix inversion and obtain the closed-form solution of the first inverse model in
Eq. (22)

EQ-TARGET;temp:intralink-;e025;114;448f ¼ ρ̃−1½I −ΦT
ts½ρ̃IþΦtsΦT

ts�−1Φts�½ΦT
tsgts þ ρ̃ðz − wÞ�; (25)

whereΦtsΦT
ts ∈ Rmts×mts represents a matrix product resulting in a diagonal matrix, and ρ̃ ¼ ρ∕2.

To implement the D-HAN, the first step is to define the operators of dual-view CUP’s data
acquisition. First, the direct sensing operators of the time-sheared view and the time-unsheared
view, denoted by Gts and Gtu, are expressed as

EQ-TARGET;temp:intralink-;e026;114;376GtsðF;RÞ ¼
XL−1
l¼0

RðΓðlÞ;F∶;∶;l ∘ RÞ; (26)

EQ-TARGET;temp:intralink-;e027;114;322GtuðFÞ ¼
XL−1
l¼0

F∶;∶;l: (27)

Here, Gtsð·Þ∶RM×N×L → RM×½NþðL−1Þ� and Gtuð·Þ∶ RM×N×L → RM×N . They are shown as
the magenta and orange layers in Fig. 4. ∘ represents the Hadamard product. The operator
Rð·Þ∶ RM×N → RM×½NþðL−1Þ� introduces a right-zero-padding (i.e., ½F∶;∶;l; 0� with 0 ∈ RM×ðL−1Þ)

ts

tu

Training 
data

Fig. 4 Schematic of the D-HAN for dual-view CUP’s image reconstruction. BN, batch normaliza-
tion; ReLU, rectified linear activation unit. Adapted with permission from Ref. 104.
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followed by a right-horizontal circular shifting of ΓðlÞ pixels. A script of Python to construct
the sensing operators Gts and Gtu are presented in Algorithm 4.

Then, the transpose sensing operators of the time-sheared view and the time-unsheared view,
shown as the red and purple layers respectively in Fig. 4, are defined as

EQ-TARGET;temp:intralink-;e028;117;157F tsðGts;RÞ ¼ SðΓðlÞ;Gts ∘ RðΓðlÞ;RÞÞ; (28)

EQ-TARGET;temp:intralink-;e029;117;122F tuðGtuÞ ¼ ðGtuÞ∶;∶;l: (29)

Here, F tsð·Þ∶ RM×½NþðL−1Þ� → RM×N×L and F tuð·Þ∶ RM×N → RM×N×L. They return a data-
cube from a 2D compressed measurement. Sð·Þ is an operator that performs a left-horizontal
circular shifting of ΓðlÞ pixels, followed by the removal of the last ðL − 1Þ columns in the

Algorithm 4 Programming the direct sensing operators of the time-sheared view and the time-
unsheared view (i.e., Gts and Gtu) using TensorFlow.

## Direct sensing operator time-sheared view

class DirectSensing_ts(tf.keras.layers.Layer):

def __init__(self, L, M, N, **kwargs):

self.L = L

self.M = M

self.N = N

super(DirectSensing_ts, self).__init__(**kwargs)

def get_config(self):

config = super().get_config().copy()

config.update({

‘bands’: self.L})

return config

def call(self, F, R, **kwargs):

F = tf.multiply(R, F)

F = tf.pad(F, [[0, 0], [0, 0], [0, self.L - 1], [0, 0]],name = “padsensing”)

Gts = None

for i in range(0,self.L):

if Gts is not None:

Gts = Gts + tf.roll(F[:,:,:,i], shift=i, axis=2)

else:

Gts = F[:,:,:,i]

Gts = tf.expand_dims(Gts ,axis=-1)

Gts = tf.math.divide(Gts ,self.L)

return Gts

## → Output: Compressed measurement

## Direct sensing operator time-unsheared view

Gtu = tf.math.reduce_mean(F,axis=-1)
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resulting shifted matrix to preserve the spatial dimension of the datacube. Algorithm 5 presents a
Python script to construct F ts and F tu.

Finally, the inverse operator of the time-sheared view, shown as the brown layer in Fig. 4, is
defined as

EQ-TARGET;temp:intralink-;e030;114;141I tsðGts;RÞ ¼ Gts∘
�XL−1

l¼0

RðΓðlÞ;R°2Þ þ ρ̃I
�°−1

; (30)

where I tsð·Þ∶RM×½NþðL−1Þ� → RM×½NþðL−1Þ�. ð·Þ°2 and ð·Þ°−1 represent the Hadamard quadratic
power and the Hadamard inverse operation, respectively. An example script of Python to con-
struct the inverse operator of the time-sheared view I ts is summarized in Algorithm 6.

Algorithm 5 Programming the transpose sensing operators of the time-sheared view and the
time-unsheared view (i.e., F ts and F tu) using TensorFlow.

## Transpose sensing operator of the time-sheared view

class Transposesensing_ts(tf.keras.layers.Layer):

def __init__(self, L, M, N, **kwargs):

self.L = L

self.M = M

self.N = N

super(Transposesensing_ts, self).__init__(**kwargs)

def get_config(self):

config = super().get_config().copy()

config.update({

‘bands’: self.L})

return config

def call(self, Gts, R, **kwargs):

F = None

R = R[0,:,:,0]

Gts = Gts[:,:,:,0]

for i in range(0,self.L):

if F is not None:

Ab = tf.roll(Gts, shift=-i, axis=2)

Ax = tf.expand_dims(tf.multiply(R, Ab[:,:,0:self.N]), -1)

F = tf.concat([F, Ax], axis=-1)

else:

Ab = tf.roll(Gts, shift=0, axis=2)

F = tf.expand_dims(tf.multiply(R,Ab[:,:,0:self.N]), -1)

F = self.L*F

return F

## Transpose sensing operator of the time-unsheared view

Gtu = tf.expand_dims(Gtu,axis=-1)

F_tu = tf.broadcast_to(Gtu, [Gtu.shape[0], M, N, L])
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Algorithm 6 Programming the inverse operator of the time-sheared view (i.e., I ts) using
TensorFlow.

class InverseOperator_ts(tf.keras.layers.Layer):

def __init__(self, L, M, N, **kwargs):

self.L = L

self.M = M

self.N = N

super(InverseOperator_ts, self).__init__(**kwargs)

def get_config(self):

config = super().get_config().copy()

config.update({

‘bands’: self.L})

return config

def build(self, input_shape):

Lambda = tf.constant_initializer(1)

Tau = tf.constant_initializer(1)

Psi = np.zeros([self.M,self.N+self.L-1])

Psi = tf.constant_initializer(Psi)

self.Lambda = self.add_weight(name=“Lbd,” initializer=Lambda,
shape=(1),trainable=True)

self.Tau = self.add_weight(name=“Tau,” initializer=Tau, shape=(1),
trainable=True,constraint=tf.keras.constraints. MaxNorm(max_value=1, axis=0))

self.Psi = self.add_weight(name=“Psi,” initializer=Psi, shape=(self.M,self.N
+self.L-1),trainable=True)

super(InverseOperator_ts, self).build(input_shape)

def call(self, Gts, R, **kwargs):

Gts = Gts[:,:,:,0]

R1 = tf.broadcast_to(R,[1,self.M,self.N,self.L])

Gp = DirectSensing_ts(L=self.L, M=self.M, N=self.N,
name=‘DirectPr_InitInv’)(R, R1)

Gp = Gp[:,:,:,0]

Gp = Gp/(self.Lambda) + tf.ones(Gp.shape)

Inv = tf.math.reciprocal(Gp, name=None)

Gts = tf.multiply((self.Tau**2)*Inv+(1-self.Tau**2)*self.Psi,Gts)

Gts = tf.expand_dims(Gts,axis=-1)

F = TransposeSensing_ts(L=self.L, M=self.M,N=self.N,
name=‘TransPr_InitInv’)(Gts,R)

#

F = F/(self.Lambda**2)

return F
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Following the definition of these five operators, the next step is to model the SWM matrix
approach. Toward this goal, Eq. (25) is split into two main equations ΦT

tsgts þ ρ̃ðz − wÞ and
ρ̃−1I − ρ̃−1ΦT

ts½ρ̃IþΦtsΦT
ts�−1Φts. In the D-HAN, the first equation is reflected as F ts coupled

to two 2D convolutional layers, each of which with a batch normalization operation (referred to
hereafter as a 2D convolutional + batch normalization (BN) layer and shown in cyan in Fig. 4).
The output from the 2D convolutional + BN layer is added with an estimate from the time-
unsheared view generated by Gtu and F tu. Subsequently, the second equation is represented
by two parallel arms. The upper arm, corresponding to ρ̃−1ΦT

ts½ρ̃IþΦtsΦT
ts�−1Φts, is composed

of Gtu as a first layer followed by I ts and F ts along with four 2D convolutional + BN layers. The
bottom arm, which corresponds to ρ̃−1I, has three 2D convolutional + BN layers. The outputs of
both arms are subtracted and given as the input to the U-Net in the D-HAN that reflects Eq. (24).
In the U-Net, the datacube passes through an encoding pathway comprised of max-pooling layers
that simultaneously reduce the spatial dimension and increase the channels. This down step
returns a smaller-size datacube with the more meaningful high-level details of the image
(e.g., edges, textures, or shapes) linked to the scene’s sparsity. Then, in the decoding step, com-
prised of upsampling layers, the U-Net reconstructs the full-size datacube (denoted by F̃) using
these learned high-level details.

The loss function Lð·Þ, used to learn the D-HAN’s weights, is established as

EQ-TARGET;temp:intralink-;e031;114;517LðFÞ ¼ l1ðF; F̃Þ þ l1ðGts; G̃tsÞ þ l1ðGtu; G̃tuÞ þ lSSIMðF; F̃Þ; (31)

where F̃ is the D-HAN’s output, G̃ts and G̃tu are estimations of the compressed measurement
from F̃ using Eqs. (26) and (27), respectively. l1ð·Þ is the l1-norm operator, and lSSIMð·Þ represents
the structural similarity (SSIM) index.107

2.2.3 Simulation

CUP’s image reconstruction of the “cell-division” scene is simulated using both the analytical-
modeling-based algorithm (in Matlab) and deep-learning algorithm (in Python). The dimensions
of the datacube were set as M × N × L ¼ 256 × 256 × 25 pixels, and the binary mask holds the
structure proposed in Ref. 104. Four popular databases—“SumMe,”108 “Need for Speed,”109

“Sports Videos in the Wild,”110 and “Mouse Embryo Tracking”67—were used to train the D-
HAN. The PnP-ADMM algorithm and a pretrained version of the D-HAN can be downloaded
from Ref. 92 (Matlab 2022b) and Ref. 111 (Python, TensorFlow). In addition, a more beginner-
friendly Python version is available in Ref. 112, which was trained on the Google Colaboratory
(CoLab) application—a free Jupyter Notebook interactive development environment for Python
hosted in Google’s cloud.

Six exemplary frames of the scene (as the ground truth) and their corresponding frames
reconstructed by single-view and dual-view CUP using the PnP-ADMM and the D-HAN are
shown in Fig. 5(a). The movie is shown in Video 1. As shown in Figs. 5(b) and 5(c), results
show that implementing the dual-view approach exceeds the reconstruction performance of

a single-view CUP in terms of the average peak signal-to-noise ratio (PSNR) defined as PSNR ¼
1
L

P
L−1
l¼0

h
10 log10

	 ½maxðF∶;∶;lÞ�2
m−1

tu kvecðF∶;∶;lÞ−vecðF̂∶;∶;lÞk22


i
and the average SSIM index113 defined as

SSIM ¼ 1
L

P
L−1
l¼0 ½½LumðF∶;∶;l; F̂∶;∶;lÞ�α½ContðF∶;∶;l; F̂∶;∶;lÞ�β½StrucðF∶;∶;l; F̂∶;∶;lÞ�γ�. Here, vecð·Þ is

a vectorization operator, and F̂ is the reconstructed result. The operators Lumð·Þ ¼ 2μx·μyþC1

μ2xþμ2yþC1
,

Contð·Þ ¼ 2σx·σyþC2

σ2xþσ2yþC2
, and Strucð·Þ ¼ σxyþC3

σxσyþC3
measure the similarities in luminance, contrast, and

structure, respectively, where μx; μy; σx; σy, and σxy are the local means, standard deviation, and
cross-covariance for the images. fα; β; γg > 0 are parameters used to adjust the relative impor-
tance of the three components. C1; C2, and C3 are constants to stabilize the division with weak
denominator. For the results shown in Fig. 5, SSIM’s parameters were set as α ¼ β ¼ γ ¼ 1,
C1 ¼ 0.012, C2 ¼ 0.032, and C3 ¼ C2∕2. The D-HAN obtains a better average PSNR and a
comparable average SSIM to the PnP-ADMM approach in both single-view and dual-view CUP.
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CUP’s performance decreases with higher noise and stronger compression. Table 1 illus-
trates this general trend from an ablation analysis of the “cell-division” dynamic scene using the
PnP-ADMM algorithm. Higher noise levels reduce spatial resolution. Higher compression ratios
result in stronger blurring in the temporal shearing direction, which further decreases the spatial
resolution in that direction.59,91,114 Both factors hamper the reconstruction algorithm’s ability to
accurately place the correct amount of intensity from the compressed snapshot to the appropriate
spatiotemporal position in the reconstructed datacube.

3 System
The construction of a CUP system involves a careful selection of three crucial components. First,
a spatial encoder modulates the dynamic event. Second, a temporal shearing unit deflects the
spatially encoded frames to different spatial positions according to their time of arrival.
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Fig. 5 Simulation of CUP’s image reconstruction of the “cell-division” dynamic scene using the
PnP-ADMM algorithm and the D-HAN. (a) Six selected frames of the ground truth and the
single-view and dual-view reconstructions using the PnP-ADMM and D-HAN algorithms.
(b) PSNR of each reconstructed frame. (c) As (b), but showing the SSIM index (Video 1, MP4,
408 KB [URL: https://doi.org/10.1117/1.JBO.29.S1.S11524.s1]).
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Finally, a 2D sensor integrates the spatially encoded and temporally sheared datacube into the
time-sheared view. For dual-view CUP, another 2D sensor integrates the dynamic scene into the
time-unsheared view. To date, many approaches have been implemented to devise each compo-
nent. A comprehensive survey of these implementations, their advantages, and limitations will be
presented in this section, followed by a discussion on important steps to calibrate a CUP system.

3.1 Spatial Encoder
The selection of a suitable spatial encoder in a CUP system includes encoding pattern design
and the encoder’s implementation. Because CUP relies on CS principles, its sensing matrix can
be designed based on the restricted isometry property (RIP) to ensure its incoherence to the
representation matrix of the scene. Notably, the sensing matrix based on a random pattern has
been verified to meet the RIP criterion for a wide range of representation bases.115 Therefore,
pseudorandom masks [Fig. 6(a)] are dominantly implemented as spatial encoders in reported
CUP systems.

The RIP also provides a valuable metric for evaluating the encoder’s quality. The general
strategy is to reduce the coherence between the sensing matrix and the representation matrices to
ensure that the projection of high-dimensional data onto a lower-dimensional space preserves the
essential data features.116,117 It guarantees that the compressed measurements retain sufficient
information to accurately reconstruct the original signal. To date, several works have improved
the mask via deep learning.104,118,119 As an example, an encoding mask designed via the D-HAN
is shown in Fig. 6(b), where the shearing operation in CUP’s forward model and the training data
produce horizontal stripe-like structures.104

As summarized in Table 2, four approaches have been used to implement CUP’s spatial
encoders: digital micromirror devices (DMDs),17,66,102,120,121 liquid-crystal spatial light modula-
tors (LC-SLMs),134 high-definition printing,97,135 and photolithography.91 Among them, the
DMD, as a reflective binary-amplitude spatial light modulator,136 can provide reconfigurable,
stable, and broadband encoding [Fig. 7(a)]. However, due to the micromirror’s tilt angle, the

Table 1 Average PSNRs in reconstructed datacubes with different compression ratios and signal-
to-noise ratios (SNRs).

Compression ratio

SNR (dB)

15 20 25 30 Infinity

10.1× 26.3 ± 0.8 27.9 ± 0.5 29.5 ± 0.7 30.0 ± 0.8 30.4 ± 0.9

11.9× 26.2 ± 0.6 27.7 ± 0.5 29.2 ± 0.6 29.9 ± 0.7 30.2 ± 0.8

16.4× 26.1 ± 0.5 27.5 ± 0.5 28.7 ± 0.5 29.7 ± 0.7 29.9 ± 0.7

22.9× 25.8 ± 0.8 27.4 ± 0.4 28.2 ± 0.6 28.8 ± 0.7 28.9 ± 0.8

45.6× 25.6 ± 0.9 27.1 ± 0.8 28.1 ± 0.9 28.6 ± 1.0 28.8 ± 1.1

(a) (b)

Fig. 6 Representative encoding patterns for CUP. (a) Pseudorandom pattern. (b) Deep-learning-
optimized pattern. Insets: Zoomed-in views of local regions.
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DMD is often required to be placed in the Littrow configuration in CUP systems17,37,59 to retro-
reflect the incident light. Since the DMD is not parallel to the object plane, this design limits the
field of view (FOV). Moreover, the DMD’s structure limits light efficiency in three main aspects.
First, since the DMD has a ∼94% fill factor, a part of incident light is lost in the gaps between
neighboring micromirrors. Second, as a 2D diffraction grating,136 the DMD has an overall dif-
fraction efficiency of ∼86%,137 which indicates energy loss in high-diffraction orders. Finally, the
aluminum coating of the micromirrors has a reflectivity of 89% in the visible spectrum with a dip
at around 800 nm corresponding to the absorption of inter-band transitions in aluminum.
Consequently, the constructed CUP system may not have an optimal spectral response for the
dynamic scenes under investigation.

Another choice of reconfigurable spatial encoding is LC-SLMs. They have been widely
implemented in coded optical imaging.18,138–141 LC-SLMs can simultaneously modulate ampli-
tude and phase in grayscale.134 In the context of CUP, they can provide both reflective and
transmissive spatial encoding [Fig. 7(b)]. Nonetheless, LC-SLMs could also bring in some lim-
itations in spatial encoding. Its modulation is sensitive to both the wavelength and polarization.

Table 2 Representative approaches for CUP’s spatial encoders.

Approach Advantage Limitation References

DMD — Programmable encoding — Restricted FOV due to the
Littrow configuration

17, 55, 57,
58, 60–62,
64–66, 96,

99, 102, 104,
114, 116,
120–133

— Broad operating spectrum
— Energy loss due to the limited fill

factor and diffraction

— Nonoptimal spectral response
to the micromirror’s coating

LC-SLM — Programmable encoding — Wavelength and polarization
sensitive modulation

134

— Phase and amplitude
modulation in grayscale

— Relatively low fill factor for the
transmissive type

— Reflective and transmissive
encoding ability

— Flicker noise

High-definition
printing

— Transmissive encoding — Unreconfigurable encoding 97, 135

— Low cost

— Broad operating spectrum

Photolithography — Transmissive encoding — Unreconfigurable encoding 91

— High resolution

— Broad operating spectrum — High cost

(c) (d)

2 mm2 mm

(a)

2 mm

(b)

2 mm

Fig. 7 Pseudorandom binary masks displayed on representative spatial encoders. (a) DMD.
(b) LC-SLM. (c) Plastic mask fabricated by high-definition printing. (d) Chromium mask made
by photolithography. Inset: Zoom-in view of a local region.

Lai, Marquez, and Liang: Tutorial on compressed ultrafast photography

Journal of Biomedical Optics S11524-19 Vol. 29(S1)



Moreover, a relatively low fill factor of transmissive LC-SLMs (e.g., 58%)142 and the flicker
noise could limit pattern quality and encoding stability.143

Besides using the programmable devices, an encoded mask can be directly fabricated on a
substrate. As a representative approach, high-definition printing can manufacture encoding
masks at up to 50,800 dots per in. resolutions, with up to ∼30 in: × 30 in: in size, at $16.7 per
in:2 (Ref. 144) [Fig. 7(c)]. In one printing task, users can pack multiple masks with different
encoding pixel sizes down to 7 μm and different pattern types as well as calibration patterns,
such as single pinholes, pinhole arrays, and slits. As another approach, photolithography can
produce spatial encoders with nanometer-level encoding pixel sizes over inches [Fig. 7(d)].
As an example, a 3-in. × 3-in. mask with 125-nm resolution can be fabricated at ∼$6,000.
As a well-established fabrication technique, photolithography can be used with various materials
to target different spectral bands.145 These fabricated coded masks can be directly inserted in
CUP systems, which conserves space for a more compact system design. Although capable
of providing broadband and transmissive encoding, these two approaches can only prepare fixed
spatial encoders. In addition, the almost unavoidable defect pixels in the fabricated encoder
request careful calibration to build an accurate sensing matrix.

3.2 Temporal Shearing Unit
Depending on the necessity of external power, temporal shearing units can be classified into
passive units and active units (Table 3). The former deflects the temporal information transferred
to certain photon tags (e.g., wavelengths) by exploiting the properties in these tags (e.g., color
dispersion). Being jitter-free, these compact units bring in stable operation without increasing
the control complexity.59 The active units are driven by time-varying electric signals to trigger
deflection. Usually integrated into the detection side of the imaging systems, they enable receive-
only detection, which is specifically suited for capturing self-luminescent and color-selective
events.16,18,66

Figure 8 shows two examples of passive temporal shearing units. Both need to team up with
a chirped ultrashort probe pulse, which maps the temporal information of the event to its spectral
band. As shown in Fig. 8(a), the modulated chirped pulse is spatially dispersed by a grating.59 In
recent years, the development of metamaterials has made metalenses a potential passive temporal
shearing unit. They consist of an array of waveguide structures with a subwavelength size, with
resonant metamaterial elements etched into the surface [Fig. 8(b)].152,153 Metalenses can strongly
disperse light while manipulating its phase, amplitude, and polarization.154 This property has
been exploited in hyperspectral imaging.155 Grafting this sensing paradigm in CUP, a metalens
integrates imaging and temporal shearing, which greatly reduces the system’s size and
complexity.146 Besides the aforementioned two units, other dispersive optical elements such
as kinoforms,156 zone plates,157 and diffractive optical elements (DOEs)158 could also be used
for passive temporal shearing of chirped pulses.

Active temporal shearing units have also been featured in many CUP systems. As an exam-
ple, the image-converter streak tube is shown in Fig. 9(a). Such a device works by directing the
dynamic scene onto a photocathode, where the incident photons are converted to photoelectrons.
After being accelerated by a pulling voltage added on a metal mesh, these photoelectrons are
temporally sheared by a varying electric field produced by applying a voltage to a pair of sweep
electrodes. Then, the photoelectric signal is amplified by a microchannel plate. Finally, the pho-
toelectrons bombard a phosphor screen and are converted back to photons.59,91 The configuration
of the image-converter streak tube takes advantage of the movement of electrons under high-
voltage electric fields, enabling ultrafast shearing for the CUP system to provide up to femto-
second-level temporal resolution.58,59 However, this operation is inevitably affected by the elec-
tronic jitter. Moreover, due to the space-charge effect in electronic imaging,160 a trade-off needs
to be made between the incident light intensity and the signal gain, which limits the imaging
quality of the streak tube-based CUP systems.37,151 The efficiency of image-converter streak
tubes is also inherently limited by the photon–electron–photon conversion. The quantum yield
of the photocathode is moderate for the visible light and decreases dramatically for near-infrared
light.161,162 The phosphor screen also has a relatively low conversion efficiency, especially for the
fast-responding types.163 The limited overall efficiency makes the image-converter streak tubes
less suitable for imaging faint transient events.
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Rotating mirrors are another popular choice of active temporal shearing units for CUP. The
mirror rotation continuously alters the angle of incidence, hence shearing the reflected light
[Fig. 9(b)]. Rotating mirrors are preferred to be placed at the Fourier plane of a 4f-system
so that after the second lens, the chief rays of all temporal frames can propagate and enter the

Table 3 Representative methods for CUP’s temporal shearing units.

Category Approach Advantage Limitation References

Passive Grating — Compact — Requirement of chirped
pulse illumination

29, 59, 121

— Low cost

— Jitter-free — Fixed shearing rate

— Ultrafast shearing

Metalens — Compact, lightweight,
and less complex
optomechanically

— Requirement of chirped
pulse illumination

146

— Joint temporal shearing
and imaging

— Fixed shearing rate

— Jitter-free — Limited aperture size

— Ultrafast shearing — High cost

Active Image-converter
streak tube

— Receive-only detection — High cost 17, 55, 57, 58,
60–62, 64–66,
91, 96, 99, 102,

104, 114, 116, 120,
121, 123–131, 147

— Tunable shearing speeds — Space-charge effect

— Ultrafast shearing — Electronic jitter

— Low overall efficiency

— Spectra limited by the
photocathode

Rotating mirror — Receive-only detection

— Tunable shearing speeds

— Relative slow shearing
speed

37, 97, 148, 149

— All-optical operation

— Broad operating spectrum

— Low cost

TDI technique — Receive-only detection — Fixed shearing speed 134, 150

— Joint temporal shearing
and spatiotemporal
integration

— Relative slow shearing
speed

Electro-optical
deflector

— Receive-only detection — Small numerical aperture 122
— All-optical operation — High operating voltage

— Ultrafast shearing — Limited deflection angle

Molecular
deflector

— Receive-only detection — Requirement of an
ultrafast, high-intensity
pump laser pulse

151

— All-optical operation

— Small size

— Ultrafast shearing
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sensor perpendicularly, which avoids aberrations introduced by the field curvature.164 Producing
tunable temporal resolutions typically from hundreds of nanoseconds to microseconds, they are
much slower than the image-converter streak tube. However, the all-optical operation avoids the
space-charge effect, which enables optics-limited spatial resolution and high dynamic ranges.37

Moreover, by circumventing the photon-to-photoelectron conversion in a photocathode, rotating-
mirror-based CUP systems can employ sensors in matching responsive bands to sense photons
with relatively low energy (e.g., in the infrared range). Leveraging high reflectivity coatings (e.g.,
>95% at 0.4 to 20.0 μm),165 these CUP systems are attractive candidates for high-sensitivity
transient imaging at broad spectral bands.

Besides these two popular approaches, other specialized optical and/or electronic devices have
been implemented as CUP’s temporal shearing units. As an example, Fig. 9(c) shows the operation
principle of the time-delay-integration (TDI) mode of a CCD camera. Initially developed to visu-
alize moving objects under extremely low light levels, the TDI configuration employs a long
exposure during which the generated photoelectrons shift down row by row before eventually
reading out.166 In this way, the read-out data are the integration of information from different rows
at different time points. Such a mechanism enables TDI cameras to combine the operations of
temporal shearing and spatiotemporal integration, which considerably reduces the system’s
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pulse
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Diffraction 
grating

(a) (b) Metalens

Chirped 
pulse

1
1

…
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Fig. 8 Representative passive temporal shearing units for CUP. The temporal information is
mapped to the spectrum and deflected to different spatial positions by (a) a diffraction grating and
(b) a metalens. t1 to t n , temporal information.
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Fig. 9 Representative active temporal shearing units for CUP. (a) Image-converter streak tube.
(b) Rotating mirror. (c) TDI mode of a CCD camera. (d) Electro-optical deflector. (e) Ultrashort-
pulse-induced CO2 molecule deflector. α, Deflection angle. (b) Reprinted with permission from
Ref. 135. (d) Adapted with permission from Ref. 159. (e) Adapted with permission from Ref. 151.
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complexity.134,150 Recently, electron-transfer-based temporal shearing has also been implemented
in a streak-camera sensor.167,168 Hundreds of sampling and storage cells are placed underneath a
line of photodiodes. During the sensor’s exposure, the 1D signal is sampled and sequentially stored
at a temporal resolution of 500 ps. Although its 1D FOV excludes its implementation with CUP,
this highly integrated device marks its potential to be further developed for future CUP systems.

Electro-optic crystals can also be used as the temporal shearing unit of CUP systems. As
shown in Fig. 9(d), a time-varying electric field is applied to modulate the gradient of the refrac-
tive index of an electro-optic crystal. In this way, this electro-optic deflector (EOD) can direct the
incident light to different propagation directions according to its time of arrival.159,169 The EOD is
currently the only all-optical shearing unit capable of achieving 50 × 109 frames per second (fps)
in a CUP system.122 However, the shortcomings of small numerical aperture, high operating
voltage, and limited deflection angle still hinder EODs for further applications in CUP.

Finally, transient materials’ behaviors have been proposed as CUP’s temporal deflectors.
Figure 9(e) depicts how the transient alignment of CO2 molecules excited by an ultrashort laser
pulse can induce a time-varying refractive-index gradient, resulting in different deflection angles
to temporally shear the dynamic scene.151 Although having not been experimentally demon-
strated, this mechanism could open a new avenue of transient-event-assisted ultrafast imaging.
The fast responses of properly selected materials could push CUP’s imaging speed to the quad-
rillion fps level.170

3.3 2D Sensor
After being spatially encoded and temporally sheared, the dynamic scene is spatiotemporally
integrated over each pixel by a 2D sensor. Most of the current commercial cameras (e.g., CCD,
CMOS, scientific CMOS, and electron-multiplying CCD cameras) have been implemented
to construct a CUP system. Nonetheless, used as the last component in a CUP system, the
2D sensor needs to be carefully selected to accommodate the characteristics of the dynamic
scenes, the spatial encoders, and the temporal shearing units. In terms of spectral responsive-
ness, the 2D sensors are desired to have the highest sensitivity at the corresponding spectra
of the dynamic scene. However, it might be restricted by the device. For example, for the
image-converter streak tube, the quantum yield of the deployed camera should be peaked
at the wavelength of the phosphor screen (e.g., 540 nm of a P43 phosphor screen). The pixel
size of these sensors is required to sufficiently sample each encoding pixel for the given sys-
tem’s magnification.

The shutter type is another important factor in the sensor selection. Overall, the global shut-
ter is much preferred for CUP operation compared with the rolling shutter. Figure 10(a) shows a
simulated dynamic scene of a rotating spinner with constant intensity. For a rolling-shutter sen-
sor, the exposure of each row starts sequentially from the top to the bottom for the same period
and ends at a different time point. The induced rolling-shutter effect distorts the image of fast-
moving objects.171 CUP can overcome this distortion by putting the information back in the
correct spatiotemporal position. However, due to the different starting times of exposure, only
a part of FOV can be reconstructed for images at the beginning and the end of the movie, as
shown in Fig. 10(b). This issue can be bypassed by limiting the occurrence of the dynamic event
when all rows are under exposure. In contrast, the global shutter, which can be implemented in
both CCD and CMOS sensors, allows capturing the dynamic scene over the full FOV [Fig. 10(c)]
and thus avoid the time-windowing effect of the rolling shutter.

3.4 Calibrations
In this section, we outline a few important calibration steps in CUP’s operation. They are nec-
essary for both physical data acquisition and computational reconstruction of the dynamic scene.

3.4.1 Co-registration of multiple views

Due to the difference among individual imaging arms, the acquired snapshots may have different
aberrations. It is thus indispensable to accurately co-register all the views for accurate image
reconstruction. Toward this goal, a static image of the time-sheared view is acquired by turning
off the shearing unit (Fig. 11). In Matlab, the co-registration can be carried out using “control
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point registration” in the “Image Processing Toolbox.”172 The function “cpselect” opens a win-
dow for the user to select at least four pairs of control points in both views. Then, the function
“fitgeotform2d” estimates the transformation matrix that best aligns the control points. Finally,
the function “imwarp” applies the transformation matrix to complete the co-registration. The
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Fig. 10 Comparison between the rolling shutter and the global shutter in CUP’s data acquisition.
(a) 10 representative frames of a simulated rotating-spinner scene. (b) Rolling shutter’s operating
principle (top-left panel), the produced 2D snapshots (top-middle and top-right panels), and
the illustration of CUP’s reconstructed frames (bottom panel). (c) As (b), but showing the results
produced by the global shutter. F1 to F10, frame indices.
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co-registered time-unsheared view and the time-sheared view are then fed into the reconstruction
algorithms.

3.4.2 Acquisition of the encoding mask

The experimentally captured encoding mask image produces better reconstruction than the
design file of the used pattern because it takes into consideration various practical imperfec-
tions. For example, the DMD’s micromirrors may have a different orientation than those of the
sensors. The fixed encoders fabricated by high-definition printing or photolithography also
have defective pixels or membrane curving. These cases cannot be eliminated even if the im-
aging system is tuned with a proper magnification that matches the size of the encoding pixels
to that of the sensor’s pixels. Thus, a mask image is captured by tuning off the shearing unit and
then binarized for CUP’s image reconstruction (Fig. 12). Besides background subtraction and
white-field correction, threshold selection and edge detection are combined to optimize
binarization.57 This calibration can also reduce aberrations and field curvature.123 In practice,
the FOVand the maximum shearing distance are also limited to ensure high quality in captured
images.

3.4.3 Linearity test of shearing operation

Linear temporal shearing is used in CUP’s forward model (see Sec. 2.1). However, various exper-
imental factors could deviate the linear temporal shearing operation, including misalignment,
jitter, and imperfect instrument responses.173 Therefore, a linearity test is required to assess the
system’s performance and to compensate for these factors. An example of a rotating-mirror-
based CUP system is shown in Fig. 13(a). About 100 frames containing number indices and
short lines were displayed on a DMD at 20 kHz. From the recorded snapshot, the displacements
between the centroids of the consecutive short lines were calculated to determine the rotating

Time-unsheared view Time-sheared view

0 1
Normalized intensity

0 1
Normalized intensity

Co-registered two views

Fig. 11 Co-registration for dual-view CUP.

Raw calibration image Corrected calibration image Binarized calibration 
image using threshold

Binarized calibration 
image using both 
threshold and edge 
detection

Binarized calibration
image using edge detection

OR

(a) (b) (c) (e)

(d)

Fig. 12 Binarization of the captured encoding mask image. (a) Section cropped from the acquired
mask image. (b) Cropped section after background subtraction and white-field correction.
(c) Image binarization by applying a threshold to (b). (d) Image binarization by detecting edges
in panel (b). (e) Combining (c) and (d) using OR operation. Adapted with permission from Ref. 57.
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mirror’s shearing operation. In this example, the shearing deviates from a linear function by
2 pixels over 100 frames.104

As another example, Fig. 13(b) shows the linearity test of a diffraction-grating-based CUP
system.59 A tunable bandpass filter was built based on a rotating grating [top-left panel in
Fig. 13(b)] to produce pulses with a selected wavelength [bottom-left panel in Fig. 13(b)].
The generated narrowband pulses illuminated a small square pattern, whose positions in the
streak images were measured to obtain the relationship with wavelengths [right panel in
Fig. 13(b)]. Finally, an example of the linearity test of an image-converter streak tube is shown
in Fig. 13(c). Following a calibration protocol similar to that of the diffraction grating-based CUP
system, a pulse train with a known interval was generated by an etalon. The linearity was com-
puted by measuring the deflected pulses’ positions.174

(a)

(b)

(c)

Fig. 13 Linearity test of the temporal shearing operation. (a) Test of a rotating-mirror-based tem-
poral shearing. Left panel: composite of the 100 frames with consecutive short lines and frame
indices. Right panel: analysis of displacement in the time-sheared view. (b) Test of a diffrac-
tion-grating-based temporal shearing. Left panel: setup (top) of generating pulses with selected
wavelengths (bottom). Right panel: result of the linearity test by illuminating a square pattern with
the narrow-band pulses. (c) Test of a streak-tube-based temporal shearing. Left panel: setup of the
test. Right panel: cross-section in the streak measurement of the pulse train generated by the
etalon. (a) Adapted with permission from Ref. 104. (b) Adapted with permission from Ref. 59.
(c) Adapted with permission from Ref. 174.
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4 Biomedical Applications
Many biological processes, such as blood flow, brain activities, or cellular dynamics, are not
repeatable. Single-shot CUP provides an innovative and complementary tool to probe these
events, which generates valuable insights for the fundamental understanding of their underlying
mechanisms. In this section, we will focus on four representative biomedical applications of CUP.

4.1 Neuroimaging
Monitoring the spatiotemporal dynamics of neuron signaling is essential to the understanding of
the brain’s structure and function. Direct visualization can aid researchers and clinicians in study-
ing neurological disorders, cognitive processes, and brain development. Frame rates at the level
of one billion fps are demanded to image the propagation of action potentials (APs) in myelinated
axons (∼100 m∕s) with high spatial resolution and in real time. Unreachable by conventional
electronic sensors, this requirement poses a considerable technical challenge to neuroimaging
research.

Overcoming this challenge, CUP imaged phase and lifetime dynamics evoked by neuronal
activities. As an example, by combining Mach–Zehnder interferometry and utilizing its ultrafast
imaging speed and large sequence depth, differentially enhanced CUP (Diff-CUP) imaged inter-
nodal current flow in myelinated axons from the sciatic nerves of Xenopus laevis frog at
200 × 109 fps65 [Fig. 14(a)]. The high phase sensitivity of Diff-CUP enables simultaneously cap-
turing the substantial cellular deformations and consequent phase alterations induced by passive
current flows (i.e., without the amplification of the electrical current)175,176 resulting from a 10-V
and 1-μs pulse injected into the axon [Fig. 14(b)]. The reconstructed correlation curves of each
segment of the FOV (labeled with numbers 1 to 8) reveal the microsecond-level phase changes
induced by the propagating internodal current flow [Fig. 14(c)], whose conduction speeds in
myelinated axons were calculated to be 100� 26 m∕s. To date, Diff-CUP is the fastest imag-
ing-based approach for assessing AP-related conduction.

CUP is also implemented as a CS-based fluorescence lifetime imaging microscopy
(FLIM)60 to record high-resolution 2D lifetime images of immunofluorescently stained neu-
rons [Fig. 14(d)]. With an imaging speed of ∼10 × 109 fps, this CUP-based FLIM system
captured the fluorescence intensity decay in real time, which produced a 2D lifetime map.
Leveraging the intrinsic frame rate of the internal CMOS camera, lifetime maps were gen-
erated at 100 fps. This technique visualized neural spike dynamics via the fluorescence inten-
sity and donor lifetime decrease during Förster resonance energy transfer.177 Figure 14(e)
illustrates six representative lifetime images of a cultured hippocampal neuron at 100 fps.
The time courses of the averaged fluorescence intensity variation and lifetime of this sample
over 1 s are plotted in Fig. 14(f). Finally, the hippocampal neuron’s fluorescence intensity and
lifetime waveforms of single AP and their means [black lines and green line in Fig. 14(g),
respectively] were acquired experimentally. This analysis revealed that a single spiking event
led to an average relative fluorescence intensity change (ΔF∕F) of −2.9% and a lifetime
change of −0.7 ns.

4.2 Temperature Sensing
Temperature, as an important biomarker, is linked to many biological processes (e.g.,
metabolism178) and medical procedures (e.g., photothermal therapy179). Accurate and real-time
temperature sensing is important to pathology diagnostics, physiology monitoring, and therapeu-
tical efficiency. Photoluminescence thermometry presents an emerging method by utilizing the
temperature-sensitive optical emissions of photoluminescent materials as well as optical detec-
tions at high spatial resolution. Its merits include noncontactness, high adaptability to a broad
temperature range, high accuracy, flexibility in sample selection, and suitability for diverse
environments.180 Thus, photoluminescence thermometry is increasingly featured in recent
advances in optical temperature measurements.

The success of photoluminescence thermometry depends on two essential constituents: tem-
perature indicators and optical imaging instruments. Recent advances in biochemistry, materials
science, and molecular biology have unveiled numerous labeling indicators for photolumines-
cence thermometry.162,181,182 From semiconductor quantum dots183 and organic fluorophores184
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to rare-earth-doped phosphors,185 the diversity of these agents allows for tailored temperature
sensing across different thermal sensitivities, optical properties, and response times for biomedi-
cal applications.186–189 For example, lanthanide-doped upconverting nanoparticles (UCNPs),
which can sequentially absorb two (or more) low-energy near-infrared photons and convert them
to one higher-energy photon, enable biocompatible temperature sensing with low excitation
power densities and high sensitivity.190,191

CUP has enabled wide-field temperature mapping using photoluminescence lifetimes of
UCNPs.135 In the schematic shown in Fig. 15(a), near-infrared pulses, generated by a 980-
nm continuous-wave (CW) laser and an optical chopper, are focused on the back focal plane
of an objective lens to form wide-field illumination. The excited UCNPs on the sample emit
visible upconversion luminescence. After passing the filter, the dynamic photoluminescence
of a selected emission band is imaged by a rotating mirror-based dual-view CUP system at
33,000 fps. The reconstructed lifetime images in the UCNPs’ two upconversion emission bands
at different temperatures are shown in Fig. 15(b). The averaged intensity decays [Fig. 15(c)]
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Fig. 14 CUP of neuronal activities. (a) Schematic of Diff-CUP. Inset: Adhesion microscope slide
for Diff-CUP imaging. BS, beam splitter; DG, delay generator; EðtÞ, transient field stimulation;
HWP, half-wave plate; LN, lithium niobate; OB, objective lens; PBS, polarizing beam splitter;
PG, pulse generator; SC, streak camera. (b) Spatiotemporal interferogram of a propagating inter-
nodal current flow in a myelinated axon captured by Diff-CUP. (c) Reconstruction of the current
flow signals based on the stimulus interferogram. Black dashed lines indicate the signal region of
the internodal current flow. T, the propagation time of the internodal current flow within the FOV.
(d) Schematic of compressed FLIM. (e) Six representative frames from the reconstruction of a
cultured hippocampal neuron upon potassium stimulation at 100 fps. (f) Time-lapsed lifetime and
intensity curves of a cultured hippocampal neuron. (g) Intensity (top panel) and lifetime (bottom
panel) waveforms of neural spikes (black lines) and their means (green lines) for a cultured hippo-
campal neuron under stimulation. (a)–(c) Adapted with permission from Ref. 65. (d)–(g) Adapted
with permission from Ref. 60.
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enable the establishment of the temperature-lifetime relationship [Fig. 15(d)]. Furthermore, the
system tracked the 2D temperature of a moving onion epidermis sample labeled by UCNPs at a
rate of 20 lifetime-maps per second [Fig. 15(e)]. The intensity decays of four selected areas
[labeled in the top-left panel in Fig. 15(e)] are shown in Fig. 15(f). It is worth noting that the
fluences of the four selected areas are different but the measured photoluminescence lifetimes
remain stable, showing the lifetime-based approach contributed by CUP is more reliable in accu-
rate temperature sensing.

4.3 Microfluidics
A rotating-mirror CUP system has been applied to the video recording of complex fluid dynam-
ics and interactions at the microscale.148 A schematic of rotating-mirror-based CUP is shown in
Fig. 16(a). This system observed flow droplet samples within a microfluidic chip.149 Two immis-
cible liquids of transparent oil and chemical dye, injected through a motorized dispenser, flowed
in the chip channels at 0.9 m∕s. Three separate measurements are recorded at 3000 fps,
50,000 fps, and 120,000 fps [Fig. 16(b)]. These experimental results show a high reconstruction
quality with well-preserved edge features in the frames, showing clear and distinguishable drop-
lets flowing in the microfluidic chip. These results show CUP’s potential to visualize cell-shape
changes in response to rapid external stimuli or internal dynamics in microfluidics,192–194 which
will provide new insights into cellular biomechanical properties that are closely linked to cellular
function and disease development.

4.4 Photoacoustic Imaging
CUP can also contribute to photoacoustic (PA) imaging. Figure 17 shows a simulation study on
implementing CUP with optical interferometric detection of PA waves.195,196 In the proposed
system schematically shown in Fig. 17(a), a pulsed laser illuminates a biological sample.

Fig. 15 CUP of temperature sensing. (a) Schematic of wide-field photoluminescence lifetime ther-
mometry based on a dual-view rotating-mirror CUP system. L1 to L5, lenses. (b) Lifetime maps of
the two emission bands (i.e., 4S3∕2 → 4I15∕2 and 4F9∕2 → 4I15∕2) of the used UCNPs under different
temperatures. (c) Normalized photoluminescence decays of the two emission bands after aver-
aging over the FOV. (d) Temperature-lifetime relationship of both emission bands. (e) Selected
time-unsheared views (top row) and reconstructed lifetime maps (bottom row) of a moving onion
epidermis cell sample labeled by UCNPs. (f) Intensity decays at four selected areas with different
intensities marked in (e). Adapted with permission from Ref. 135.
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The induced PA effect generates thermoelastic initial pressure, which is detected at the surface of
the sample with a Fabry–Pérot etalon (FPE). This interaction of the ultrasonic waves with the
surface of the FPE results in the modulation of the reflected CW laser beam on the opposite side
of the FPE.197 The modulated CW laser beam is then imaged by a CUP system based on a DMD
and a galvanometer scanner. Figure 17(b) shows a simulation of this method to image the initial
pressure distribution of 12 vessel-like structures.

5 Prospect
CUP has largely advanced ultrafast imaging instrumentation. Its generic sensing model indicates
that deployed components, rather than the theory, limit the system’s performance. Therefore,
CUP has vast potential to be further improved in its imaging capability. In this section, we outline
seven aspects of CUP’s future technical development.

(a)

(b)
(i)

(ii)

(iii)

(iv)

Fig. 16 CUP of microfluidics. (a) Schematic of a rotating-mirror-based CUP system. (b) Snapshot
of flowing immiscible liquids (i) and representative frames from the reconstructed videos at (ii)
3000, (iii) 50,000, and (iv) 120,000 fps. Adapted with permission from Ref. 148 and Ref. 149.
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5.1 Faster
As currently the world’s fastest optical imaging technology, CUP naturally carries a mission to
explore even higher speeds in optical imaging. Since CUP’s invention, innovation in temporal
shearing units has been a focus of its technical improvement. From 100 × 109 fps of the original
CUP system,17 various image-converter streak tubes have been deployed to increase its imaging
speed to 10 × 1012 fps,114 which currently holds the world record for single-shot receive-only ultra-
fast imaging. However, at this speed, the image quality is considerably affected by the space-charge
effect,160 posing challenges in further improvement of frame rates. In the future, transient pertur-
bation in reflective index induced by a temporally modulated ultrashort laser pulse or molecular
orientation could bring higher imaging speeds and circumvent image degradation.151,170

Leveraging the advance in chirped pulse illumination, CUP systems using passive temporal
shearing units have boosted the imaging speed to 3.85 × 1012 fps,121 70 × 1012 fps,57 219 ×
1012 fps,198 and 256 × 1012 fps.63 The last value marks the fastest speed in single-shot optical
imaging. In the future, by synergizing the ultra-broadband ultrashort pulses199 and photonic
streaking in gas,170,200 CUP’s imaging speed could top quadrillion fps, entering the attosecond-
level imaging regime.

5.2 Clearer
A higher spatial resolution allows CUP to visualize fine details. In biomedicine, this ability can
transfer to informative depiction of cellular and tissue morphology, accurate diagnostics, and pre-
cise treatment. Nonetheless, in CUP’s operation, both spatial encoding in data acquisition and
denoising in image reconstruction could reduce the effective system bandwidth. To visualize
the targeted spatial details, a common practice is to magnify the scene, which unavoidably reduces
the FOV. Thus, how to regain the lost bandwidth to achieve a diffraction-limited spatial resolution
is an important research direction of CUP. One potential approach is subpixel shifting.201 In par-
ticular, a DOE could be used to duplicate the dynamic scene to multiple bands, each would be
encoded with the same encoding mask but with a different subpixel shift. A joint image recon-
struction using all the captured snapshots could recover the original optical bandwidth.

Another interesting research direction is super-resolution CUP. As many ultrafast phenom-
ena also occur at the nanoscale, overcoming the diffraction limit in the CUP system will likely
open avenues for new studies not possible before, including temperature dynamics in mitochon-
dria,202 conformational transitions of protein,203 evolutions of membrane fragments produced by

z

x

y

x

y

(a) (b)

Fig. 17 CUP of photoacoustic imaging. (a) Proposed system schematic. CAM, camera; COL, col-
limator; CW, continuous-wave; DMD, digital micromirror device; FPE, Fabry–Pérot etalon; L, lens;
λ∕4, quarter wave plate; LP, linear polarizer; OI, optical isolator; PBS, polarizing beam splitter;
SMF, single-mode fiber. (b) Simulation of image reconstruction of initial pressure distribution.
Adapted with permission from Ref. 195.
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cellular lysis.204 Toward this goal, CUP can be incorporated into existing super-resolution
microscopy techniques (e.g., structured illumination microscopy205) or bypass the optical dif-
fraction limit by electron imaging (e.g., transmission electron microscopy117).

5.3 Broader Spectrum
Although CUP has been experimentally demonstrated in the ultraviolet, visible, and near-
infrared spectral ranges, extending its imaging capability to a broader spectrum will likely con-
tinue in future application-driven development. Toward this goal, the spatial encoder should have
high contrast in the desired spectrum. Besides the popular broadband metallic masks made from
aluminum, silver, or chromium,17,91,147 photonic crystals with broad tunable bandgaps can selec-
tively block specific wavelengths,206 giving them the potential to be used as a spatial encoder in
certain spectra. For temporal shearing units, the photocathode in the image-converter streak tube
excludes high-sensitivity imaging for wavelengths of >950 nm. Contrarily, leveraging its all-
optical functionality, rotating mirrors can fill out this gap, which will likely lead to the develop-
ment of CUP for deep ultraviolet, mid-infrared, and far-infrared spectra. Moreover, advanced
design and fabrication of metasurfaces and metalenses could potentially extend CUP to a spec-
trum from extreme ultraviolet to terahertz.207,208

5.4 Smarter
Many deep learning-based approaches have been used in CUP’s image reconstruction.94–104

Harnessing the power of artificial intelligence, they have unlocked new capabilities for analyzing
ultrafast events, such as real-time data processing, on-device analysis, and on-time feedback. It is
expected that these deep-learning algorithms will provide multifacet supervision to CUP systems
in the future. For example, the next-generation systems could autonomously adjust the patterns
loaded on the spatial encoder according to the initial classification of the dynamic scene. These
systems could also monitor the nonlinear shearing operation and adaptively compensate for it in
image reconstruction or system alignment.104

5.5 Higher Dimensions
Recent developments in CUP have explored high-dimensional ultrafast imaging. To date, several
advanced systems—such as multispectral CUP,120 stereo-polarimetric CUP,57 and spectral-
volumetric CUP62—have pushed the overall sensing capability to four dimensions and even five
dimensions. In the future, by extending the configuration used in stereo-polarimetric CUP57 to
generate multiple perspectives of the dynamic scene, light-field imaging could be incorporated
into CUP. Ultimately, single-shot imaging of seven-dimensional plenoptic function would be
within reach. Using CUP to sense other photon tags that are not included in the conventionally
defined plenoptic function is also a future direction. CUP has already enabled amplitude and
phase imaging of a femtosecond laser pulse.63 CUP could also be combined with other existing
technologies, such as the transport-of-intensity equation 209 and coherent modulation,210 for ultra-
fast quantitative phase imaging. Finally, recent advancements in on-chip polarization imaging
and metasurface-based angular moment separation could incorporate these parameters into
CUP’s measurement scope.211,212

5.6 Smaller
CUP systems with a compact size are important to studies that require restricted weight and
space. For biomedicine, it will offer the ability to mount the system the same way as conventional
cameras on microscopes and hand-held systems as well as in operating rooms. An innovative
optical design that folds the optical path could reduce the system size.213 Selecting a multifunc-
tional component (e.g., a metalens and a TDI sensor) provides another approach to reducing the
number of optical elements in CUP systems. Advances in sensor design and nanofabrication
could provide the streak imaging sensor167,168 with a 2D FOV. All efforts will contribute to engi-
neering compact and even miniature CUP systems in the future.

5.7 Cheaper
Besides reducing the size of a CUP system, making an economical CUP system carries consid-
erable value from both research and commercialization perspectives. To manufacture a fixed
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spatial encoder, high-resolution printing offers the lowest cost (i.e., <$20 per in:2). For recon-
figurable spatial encoders, a 0.47″ DMD chip (1920 × 1080 micromirrors; 5.4-μm pitch) costs
∼$120.214 Future development could develop a DMD controller specifically tailored for CUP
with much-reduced functionality compared with existing ones to decrease the cost. For the tem-
poral shearing unit, the first approach to reduce the cost is to find a replacement for expensive
image-converter streak tubes. Electro-optic modulators have made their debut in this direction,122

which produced an imaging speed of 50 × 109 fps. For a rotating-mirror CUP system, a viable
strategy is to add the spatial encoder and an affordable rotating mirror (e.g., galvanometer scan-
ners and polygonal mirrors) in front of the CCD/CMOS cameras existing in the system. It is
envisaged that a minor addition in cost could endow ultrahigh-speed imaging to existing cameras
while retaining their inherent advantages (e.g., in sensitivity and sensing spectrum).

6 Conclusions
In this tutorial, we have elucidated the fundamentals of CUP. We have provided Matlab codes
that create CUP’s sensing matrices and simulate the acquired snapshots based on the forward
model. Matlab/Python codes and examples are also included for two respective reconstruction
algorithms—one based on analytical modeling using the ADMM and the other on deep learning
using the D-HAN. To facilitate comprehension, a “cell-division” scene is simulated step by step
alongside the provided codes. A fully operational CUP system relies on three essential hardware
components: a spatial encoder, a temporal shearing unit, and a 2D sensor. We have surveyed
representative implementations of each component as well as calibration steps in both data
acquisition and image reconstruction.

Ever since its invention, CUP has stayed under the spotlight in research as an emerging and
innovative imaging platform. Its evolution has been shaped by the innovation of imaging strat-
egies and the adaptive optimization of its key components, leading to its widespread implemen-
tation in various biomedical applications. CUP—as currently the world’s fastest single-shot
optical imaging modality—is positioned for future advancements in imaging speed, spatial res-
olution, sensing spectrum, artificial intelligence, imaging dimensionality, system size, and manu-
facturing cost. CUP is highly anticipated to make more remarkable progress in biomedicine.
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