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Abstract. Visual search is a fundamental technology in the computer vision community. It is difficult to find an
object in complex scenes when there exist similar distracters in the background. We propose a target search
method in rough three-dimensional-modeling scenes based on a vision salience theory and camera imaging
model. We give the definition of salience of objects (or features) and explain the way that salience measure-
ments of objects are calculated. Also, we present one type of search path that guides to the target through
salience objects. Along the search path, when the previous objects are localized, the search region of each
subsequent object decreases, which is calculated through imaging model and an optimization method. The
experimental results indicate that the proposed method is capable of resolving the ambiguities resulting from
distracters containing similar visual features with the target, leading to an improvement of search speed by over
50%. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of
this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JEI.25.6.061622]
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1 Introduction
Visual search is one of the critical technologies in the field of
computer vision; it can support high-level applications such
as motion analysis, image understanding, and so on. It is
a common task to find specific objects in the scene that
have been roughly three-dimensional (3-D) modeled by
methods such as simultaneous localization and mapping
(SLAM)1 or structure from motion (SFM).2 In these scenar-
ios, location information can be supplied by sensors such as
global position system in the outdoors or RGB-D in the
indoors. Corresponding 3-D-coordinates of some image pix-
els can be calculated by triangulation methods.3 For this case,
we refer to rough 3-D-modeling scenes.

The specific target is usually hard to discover owing to
complex natural scenes that contain similar distracters. A
feasible way to find the specific target is through the posi-
tions of the salient objects in the same scene. Intuitively,
given a known point in the rough 3-D-modeling scenes,
the search region in the image of the target will be decreased.
In this paper, we build an optimization model for this issue
based on a camera imaging model. Through this optimiza-
tion method, we calculate the search regions of the other
points when a two-dimensional (2-D)–3-D point pair is
found. Brief reviews about camera imaging models are
depicted in Sec. 3.2.1.

The salience computation model was first proposed by
Itti et al.4 Until now, Itti’s model was still competitive with
current state-of-the-art methods.5 In Itti’s model, salience
measurements of visual features are computed according
to the local contrast principle. Then, the salience values are
sorted in descending order. Finally, a visual search path of
features is formed. Itti’s salience model and the subsequent
improved methods focus on salient object detection or fix-
ation prediction.6 In this type of search path formed by

these methods, features are independent from each other
and relations of features are not taken into account. By
those methods mentioned in Ref. 6, the nonsalience objects
cannot be found according to their salience estimation.
Actually, relations exist among visual features, which are
confirmed in Ref. 7. In this paper, our salience model is
designed so that the salience measurement is computed
with respect to the search region. Features can be analyzed
quantitatively in the specific search region. The search region
is decreased if a salient feature is found in rough 3-D-mod-
eling scenes. In the decreased search region, nonsalient
objects can become salience and be localized.

We propose a visual search method based on vision
salience theory and a camera imaging model, which per-
forms rapid and accurate object locating along a visual
search path. This search path takes account of the relations
of visual features. Consider the problem that we want to find
the coin in the dot line circle, as shown in Fig. 1, which con-
tains the colinear key and battery, the cluster of coins, and so
on. If we seek the coin in the whole image by the traversal
algorithm, it is inefficient and easily affected by clutter like
similar objects. However, we will carry out the visual search
along the path as follows: first, the key in the solid line circle;
second, the button cell in the dash line circle; and last, the
coin in the dot line circle. At each step, we actually detect the
salient object in the given region. More notably, the search
region of each object along the path is decreased gradually.
Owing to the operations of this model, we can (i) estimate the
saliency of features in the given search region; (ii) eliminate
the effect of similar distracters in the background; and
(iii) decrease the search region to improve the salience of
features.

There are six sections in this paper. In Secs. 1 and 2, we
give the introduction and related works. In Sec. 3, first we
introduce the definitions of saliency and search path used in
this paper. The two concepts instruct how to find the specific
object. Second, we present the method of how to calculate*Address all correspondence to: Xiaopeng Hu, E-mail: xphu@dlut.edu.cn
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the search region of features along the search path. We illus-
trate how a feature that has been found affects the subsequent
features along the path according to the optimization model.
Third, we describe the whole algorithm process. Details of
the algorithm reveal the formulation of a search path that
arrives at the final target. In Sec. 4, we give the experiments
to demonstrate the effectiveness of our method. In Secs. 5
and 6, we propose some directions for future work and con-
clude our paper.

2 Related Works
Saliency is an important part of the overall process of lots of
applications. Recently, researchers attempted to learn and
utilize human visual search to guide salience computational
mechanism.8,9 In Itti’s model, saliency of visual features is
computed by means of center-surround mechanism, which is
an implementation of local contrast. Information theory,
Bayesian inference, graphical models, and so on are also
introduced to represent local contrast and calculate saliency
by other researchers. Bruce and Tsotsos10 presented a
salience model in which self-information of local image
patch is used to determine the salience measure. Hou and
Zhang11 utilized incremental coding length to select salient
features with the objective to maximize the entropy across
sample features. Li et al.12 defined the saliency as the mini-
mum conditional entropy given the surrounding area. The
minimum conditional entropy is further approximated
by the lossy coding length of Gaussian data. Butko and
Movellan13 built probabilistic models of the target, action,
and sensor uncertainty, and used information gain to direct
attention to a new location. Gao et al.14 considered the dis-
criminant saliency as a one-versus-all classification problem
in which kullback-leibler divergence is used to select salient
features. Zhang et al.15 presented a Bayesian model to incor-
porate contextual priors in which the overall saliency is com-
puted by the pointwise mutual information between the
features and the target. Harel et al.16 presented a fully con-
nected graph over all pixels, which is then treated as a
Markov chain to obtain the salience value. Chikkerur

et al.17 designed a Bayesian graph model that combines
the spatial attention and feature-based attention.

However, research on the salience computational model is
still in a fledging period. Most work, including the methods
aforementioned, concentrates on using or modifying the
salience model proposed by Itti et al.6 because all saliency
systems can be seen as a local contrast computation
model.5 Computing local contrast is an essential step for
saliency estimation.5 Whether objects are salience or not
is determined by their difference from the surrounding
area. Given the surrounding area, the methods aforemen-
tioned are only designed to produce static salience estima-
tion. Relations of features beyond the appointed local
scope cannot be taken into an account. As a result, the
salience estimation cannot provide evidence to locate nonsa-
lient objects. Our method is still based on local contrast;
however, we calculate the local contrast of features by mak-
ing use of the search region. The search region can be com-
puted dynamically to improve the salience of features.

3 Method Formulation
In this section, we describe the details of our method and
propose an algorithm that generates a search path guiding
to the target. In this paper, the following notations are
required to describe a 3-D scene.

3.1 Region-Based Salience Analysis
In this paper, we take advantage of the visual search mecha-
nism to find the salient objects preferentially, so we can
improve the search speed and accurate rate. First of all,
we give the definition of the salience of objects used in
our paper and the method how to calculate it.

Definition 1. Given scene image I, search region Ω, and
feature f , the salience measurement of object Ok ∈ Ω with
respect to I, Ω, and f is

EQ-TARGET;temp:intralink-;e001;326;344LðOkjI;Ω; fÞ ¼ min
Oj∈Ω;Oj≠Ok

�
PðfjOk; IÞ
PðfjOj; IÞ

�

¼ PðfjOk; IÞ
max

Oj∈Ω;Oj≠Ok

PðfjOj; IÞ
: (1)

Given scene image I, search region Ω, feature f, and thresh-
old η, Ok is a salience object, indicated by SðOkjI;Ω; f; ηÞ,
with respect to region Ω if and only if

EQ-TARGET;temp:intralink-;e002;326;221LðOkjI;Ω; fÞ ≥ η: (2)

Threshold η is determined by detection rate.
In Definition 1, we define the salience of objects with the

method of Bayesian maximum likelihood. For example, N
similar features are located in the same search region. The
salience measure of a specific feature f is L ¼ 1∕N

ðN−1Þ∕N ¼
1

N−1. If feature f is unique, i.e., N ¼ 1, the salience measure
of f is the defined max value. On the contrary, the salience
measure of f will become small. Compared with common
objects, salience objects are more discriminable and different
from their background. As a result, they can be detected with
a higher accuracy rate.

Fig. 1 An example of search path. The target is the coin in the dot line
circle. The search path is composed as follows: first, the key in the
solid line circle; second, the button cell in the dash line circle; and
last, the coin in the dot line circle.

Journal of Electronic Imaging 061622-2 Nov∕Dec 2016 • Vol. 25(6)

Wang and Hu: Scene analysis for effective visual search in rough three-dimensional-modeling scenes



Definition 2. Given scene image I, a target O is search-
able if and only if

a. there exists a search region and feature so that O is a
salience object;

b. there exists a search path so that O is reachable.

According to Definition 2, the search process proceeds
along a path composed of salient object → salient object
→⋯→ target. The search path performs the target search
through locating salient objects step by step. In this search
path, the closer to the target, the smaller the search regions of
the salient objects become. Areas of search regions are deter-
mined by the previous found features, which are depicted in
Sec. 3.2. Through such operations, we can make use of rela-
tions among features.

Proposition 1. Given scene image I, search region Ω1

and Ω2, feature f , and object O, we have

EQ-TARGET;temp:intralink-;e003;63;551SðOjI;Ω1; f; ηÞ ∧ Ω2 ⊆ Ω1 ∧ O ∈ Ω2 ⇒ SðOjI;Ω2; f; ηÞ:
(3)

Proposition 1 shows that in a shrunken region salient object
is still salience. This proposition guarantees that we can
determine a salient object in a large region. As a result,
the effect from the previous features, which makes the region
shrink, can be utilized correctly. Each node of this path con-
firms the position of one salient object and then reduces cer-
tain degrees of freedom of the object search. Then search
regions of subsequent nodes of the search path decrease
as they get close to the specific target gradually. Based on
Definition 1, the smaller the search area, the more salience
the object is. With the forward of a search path, the target
becomes easier detect.

3.2 Search Region
3.2.1 Pinhole camera model

Camera imaging model is used to project points in a 3-D
world coordinate system to points in a 2-D image coordinate
system.18–20 The pinhole camera model is used in this paper.
This model can be described as
EQ-TARGET;temp:intralink-;e004;63;289

Zc

2
4 u

v

1

3
5 ¼

2
64
fx
fy
fz

3
75 ¼ KM

2
6664
Xw

Yw

Zw

1

3
7775; (4)

where ½Xw; Yw; Zw� is the coordinate of a point in the world
coordinate system, ½u; v� is the corresponding coordinate in
the image coordinate system, K is the intrinsic parameter
matrix, and M is the extrinsic parameter matrix. Matrix K
can be denoted as
EQ-TARGET;temp:intralink-;e005;63;157

K ¼

2
64
lx 0 u0 0

0 ly v0 0

0 0 1 0

3
75; (5)

which is calibrated in advance and fixed during processing.
Matrix M can be denoted as

EQ-TARGET;temp:intralink-;e006;326;752M ¼ RxðαÞRyðβÞRzðγÞTðtx; ty; tzÞ; (6)

where
EQ-TARGET;temp:intralink-;sec3.2.1;326;720

RxðαÞ ¼

2
6664
1 0 0 0

0 cosðαÞ sinðαÞ 0

0 − sinðαÞ cosðαÞ 0

0 0 0 1

3
7775;

EQ-TARGET;temp:intralink-;sec3.2.1;326;649

RyðβÞ ¼

2
6664
cosðβÞ 0 − sinðβÞ 0

0 1 0 0

sinðβÞ 0 cosðβÞ 0

0 0 0 1

3
7775;

EQ-TARGET;temp:intralink-;sec3.2.1;326;576

RzðγÞ ¼

2
6664

cosðγÞ sinðγÞ 0 0

− sinðγÞ cosðγÞ 0 0

0 0 1 0

0 0 0 1

3
7775;

and
EQ-TARGET;temp:intralink-;sec3.2.1;326;493

T ¼

2
6664
1 0 0 −tx
0 1 0 −ty
0 0 1 −tz
0 0 0 1

3
7775:

3.2.2 Search region

Given a search path ðf0; f1; : : : ; fN−1; fNÞ, which comprises a
serial of features, the search region of fN is determined by
these factors including position and pose parameters from
sensor measurements and the found features. We denote
position and pose parameters with G ¼ ðα; β; γ; tx; ty; tzÞ and
measuring errors with E ¼ ðEα; Eβ; Eγ; Ex; Ey; EzÞ. Features
that have been found are denoted as ðf0; f1; : : : ; fN−1Þ, with
corresponding 2-D image coordinates ðW0;W1; : : : ;WN−1Þ
and corresponding 3-D coordinates ðP0;P1; : : : ;PN−1Þ.

The search region of fN with world coordinate
PNðXw; Yw; ZwÞ is generated by the equation
EQ-TARGET;temp:intralink-;e007;326;277

Range ~fðPjG;E;∪ hfi;Wi; PiiÞ ¼ KM

2
6664
Xw

Yw

Zw

1

3
7775;

i ¼ 0; : : : ; N − 1; (7)

where the operator Range is defined as Range¼def
minimize ⋀ maximize. Operator Range depicts the imaging
range of P. Obviously, the search region of f0 is only deter-
mined by the position and pose parameters as well as the
errors of sensor measurements.

In Eq. (7), matrix M is expressed as M ¼ Rxðα þ
ΔαÞRyðβ þ ΔβÞRzðγ þ ΔγÞTðtx þ Δx; ty þ Δy; tz þ ΔzÞ.
The incremental quantity Δ ¼ ðΔα;Δβ;Δγ;Δx;Δy;ΔzÞT
varies in the range E. When an object is localized, how
does the search region of the next object change? This ques-
tion can be formalized as
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EQ-TARGET;temp:intralink-;e008;63;752

(
Range ~fðPjG;E;∪ hfi;Wi; PiiÞ
s:t: − E ≼ Δ ≼ E
Wi ¼ KMPi; i ¼ 0; : : : ; N − 1

: (8)

In Eq. (8), the optimized objective function contains a non-
convex function such as a trigonometric function. It is intrac-
table to solve this type of issue. One way to solve Eqs. (7)
and (8) is the brute force method in which way values of
independent variables are substituted into the objective func-
tion iteratively in a specific step size. However, according
to Weierstrass’ theorem,21 for any continuous function f
defined on a bounded closed interval Ibc, there exists a poly-
nomial function p such that jfðxÞ − pðxÞj ≤ ϵ for all x ∈ Ibc
and every ϵ > 0. For Eq. (4), it is composed by elementary
functions only, so it can be approximated by a certain poly-
nomial function. We expand Eq. (4) using first-order Taylor
polynomial at the point PðX; Y; Zjα; β; γ; tx; ty; tzÞ, and then
we have
EQ-TARGET;temp:intralink-;e009;63;549

~fðPjEÞ ¼

2
64
fx
fy
fz

3
75þ J · ΔþOðkΔk2Þ; (9)

where J is Jacobi matrix
EQ-TARGET;temp:intralink-;sec3.2.2;63;475

J ¼

2
64
∇fx
∇fy
∇fz

3
75:

According to Eq. (9), Eq. (8) turns into the linear equation
with linear constraint condition after omitting the high-order
term OðkΔk2Þ. This equation can be solved efficiently
because its extreme value is achieved on the endpoints of
the bounded closed interval of the feasible region. In this
paper, we adopt a simplex method to solve this problem.

3.2.3 Remainder analysis

In Eq. (9), there also exists a remainder term OðkΔk2Þ that
needs to be considered further. Functions fx, fy, and fz have
the similar expression form that they all comprise a trigono-
metric function with respect to α, β, and γ, and a linear func-
tion with respect to tx, ty, and tz. Without loss of generality,
we only analyze the remainder term of fx. The Taylor expan-
sion of fx on interval E is

EQ-TARGET;temp:intralink-;e010;63;246fxðPjG;EÞ ¼ fxðPÞ þ gTðPÞ · Δþ 1

2
ΔT · HxðξÞ · Δ;

(10)

where g is the gradient function of fx, Hx is the Hessian
matrix of fx, and ξ locates in the interval G� E.

Further on we have k 1
2
ΔT · HxðξÞ · Δk ≤ 1

2
kΔTkkHxðξÞk

kΔk. Operator k · k involved in this paper is two-norm.
According to the property of two-norm, we have kHxðξÞk ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λmaxðHT
xHxÞ

p
. The value kHxðξÞk depends on ξ because of

ξ ∈ ½G − E;Gþ E�. In this paper, we approximate kHxðξÞk
with kHxðGÞk. The maximum eigenvalue of a matrix can
be calculated by the power method that is shown in
Appendix A.1. Details of the difference between kHxðξÞk
and kHxðGÞk is shown in Appendix A.2. So the remainder
can be expressed as

EQ-TARGET;temp:intralink-;e011;326;752

RemainderðPjG;EÞ ¼ 1

2
kΔTkkΔk

2
64
kHxðGÞk
kHyðGÞk
kHzðGÞk

3
75: (11)

Actually, the difference between kHxðξÞk and kHxðGÞk can
be neglected to provide concise computation while preserv-
ing sufficient precision.

Algorithm 1 Search path generation.

Input: the scene image I; positions of pixels in the world coordinates
P; position and pose of camera in the world coordinates G; position
of the target in the world coordinates t ; and errors of sensor
measurements E.

Output: position of the target in the image coordinates.

(Step 1) Extract features ff j ; j ¼ 1; : : : ; Ng from the input image and
obtain their 3-D coordinates fPj ; j ¼ 1; : : : ; Ng.

1 Extract feature(I, {f j : 2-D location Wj });

2 for each j : j ¼ 1; : : : ; N {

3 Pj ¼ P½f j∶Wj �;}

(Step 2) Generate initial search region Ωj of each feature according to
Pj , j ¼ 1; : : : ; N , G, and E .

4 for each j : j ¼ 1; : : : ; N

5 Ωj ¼ Range~fðPj jG;EÞ þ RemainderðPj jG;EÞ;

(Step 3) Evaluate salience of each feature and generate salience
feature set F .

6 F ¼ ∅;

7 for each j : j ¼ 1; : : : ; N{

8 if (LðOj jI;Ωj ; f j Þ ≥ η)

9 F ¼ F ∪ ff jg}

(Step 4) Form the search path.

10 Sort (ff kg in F, {Lk }, descending);

11 W 1 ¼ Searchðf 1;Ω1Þ;

12 if(W 1 ¼ null)

13 return null;

14 for each i∶i ¼ 2; : : : ;NumðFÞ{

15 Ωi ¼ Range~fðPi jG;E;∪ hf k ;Wk ; Pk iÞ þ RemainderðPi jG;EÞ,
k ¼ 1; : : : ; i − 1;

16 Wi ¼ Searchðf i ;Ωi Þ;

17 if (Wi ¼ null)

18 break;} /*end for*/

19 Ω ¼ Range~fðt jG;E;∪ hf k ;Wk ; Pk iÞ þ Remainderðt jG;EÞ,
k ¼ 1; : : : ; i ;

20 W ¼ Search (target, Ω);

21 return W ;
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3.3 Algorithm for Search Path
In this section, we present the algorithm that generates the
search path based on the discussion above. The following
pseudo code in Algorithm 1 is the procedure to perform
the target search. By this algorithm, we will obtain the evalu-
ation result whether we can find the specific target or not.
Because the algorithm is somewhat complicated, we give
the corresponding graphical illustration in Fig. 2. Figure 2
shows the main procedure of Algorithm 1.

4 Results and Discussions
In Sec. 4.1, we demonstrate the superior performance of our
salience model qualitatively by comparing it with two classic
salience models, Itti’s model4 and Cheng’s model.22,23 In
Sec. 4.2, we show how the proposed algorithm proceeds
to form the search path. During this procedure, we also illus-
trate that the search regions of objects can be computed
quantitatively and the target can be judged whether it is
salience or not.

4.1 Saliency-Based Scene Analysis
In this section, we compare our salience model to Itti’s model
and Cheng’s model for the aim of scene analysis. Itti’s model
is based on local contrast with the objective to calculate the

salience measure of image pixels or patches. Cheng’s model
is based on global contrast with the objective to segment the
salient object from the image. Although Itti’s model4 was
published early, this model is still competitive with current
state-of-the-art methods.5 Cheng’s model,22 published more
recently,23 proves that it outperforms other methods of the
same type.

All the image patches of this experiment are acquired
from Affine Covariant Features Database.24 The feature is
constructed with the values inside a 5 × 5 rectangle centered
at the location of the local maximum response of difference
of Gaussian. We compute the salience measurements of the
image patches for the three methods. The results are shown
in Fig. 3, in which the higher level of saliency, the brighter
the objects are in the image and the more discriminative
power they have.

In the scene that contains similar objects, the feature of
these objects appears more frequent than that in the scene
that only contains unique objects. As a result, the term
maxOj∈Ω;Oj≠Ok

PðfjOj; IÞ is greater for the scene that con-
tains similar objects than that for the scene that only contains
unique objects. For the first row of Fig. 3, because of the
existence of windows with similar appearance, our model
gives a lower level of saliency than Itti’s. This result is intui-
tive because this image patch can hardly be used for visual
search. For the second row, our model gives a higher level of
saliency for the image patch because this patch contains the
unique object like the tower. For Cheng’s model, it outputs a
different kind of result because a different mechanism, global
contrast, is adopted. For the first row, Cheng’s model cap-
tures two windows successfully. But for the second row,
this model fails. According to the results, our salience
model can provide more valuable evidence for visual search
in these scenes.

4.2 Visual Search
In this section, we leverage the real environment to test the
validity of our method. The images are acquired from New

Fig. 2 The main procedure of search path. Through the input image
and sensor measures, the target can be determined whether it could
be found or not by Algorithm 1.

Fig. 3 The comparison of salience models: (a) original image patch, (b) Itti’s saliency model and (c) our
saliency model, and (d) Cheng’s model. The higher level of saliency, the brighter the objects are and the
more discriminative power they have.
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York University (NYU) Depth Dataset V2 Dataset.25 The
experiment scene is shown in Fig. 4. The size of images
is 640 × 480, and the depth images provide the 3-D coordi-
nates. We utilize Harris corner as the feature to represent
objects. The unit of distance is meter, and the unit of
angle is degree. The coordinate of the camera is (0, 0, 0),
and the pose parameter is (0, 0, 0). The target, a bottle, is
indicated by a cross with coordinates (−0.3128, 0.1873,
1.323). Because of the synchronization of RGB frames
and depth frames and other measure noises, the error E is
derived as (0.5, 0.5, 0.5, 0.1, 0.1, 0.1).

In the first step, Harris corners of the image are extracted
as features, which are presented by circles in Fig. 4. Owing to
the corresponding 3-D coordinates, the search region can be
obtained according to Eq. (7) and indicated by a rectangle.
From the result, the target cannot be found because there are
objects that have a similar appearance, whichs lead to a low
level of saliency. In the next step, the search path is generated
to locate the target. During this processing, we need to select
the salient features and judge whether the target can be found
or not.

In this experiment, the first salient feature is selected with
coordinates (0.1363, 0.1131, 1.487), which is shown in
Fig. 5 using circle. The critical step for generating the search
path is the computation of the search region when a feature is
located. When the feature at the starting point of the search
path has been found, the search regions of other features
are calculated by Eq. (8). When more features are found,
the search regions of other features are calculated in the
same way. The second feature is selected with coordinate
(0.8518, −0.2673, 2.5), which is shown in Fig. 6 using circle
as well. The salient objects are found preferentially, and then
the target can be searched in the new search region.

When two salient objects join the search path, the target
can be found in the new search region. According to the algo-
rithm proposed in our paper, a search path is generated as is
shown in Fig. 6 using arrows. Quantitative results are shown
in Table 1. We can see that as the number of salient objects
increases, the search region of the target decreases and the
target becomes easier to be found.

In Table 2, we list the performance comparisons of the
computation involved in Eqs. (7) and (8). The speed of

the target search can be improved by 56.7% using the opti-
mization method compared with the Brute Force method.
The results are obtained on a PC with Intel I5 CPU and
8G RAM. Brute force is executed such that position param-
eters are substituted iteratively in a step size of 0.05 and pose
parameters in a step size of 0.1. The unit of error is subpixel,
which is the max error value in width and height. We can see
that approximation, and optimization has excellent running
time while keeping an acceptable error. Note that we
consider that brute force has the most accurate result

Fig. 4 The experimental scene. The target is indicated by a cross and
the search region is indicated by a rectangle.

Fig. 5 The intermediate generated search path. Through locating one
salience object, the search region of the target decreases.

Fig. 6 The final generated search path. Through the salience objects,
the target can be found in the new search region.

Table 1 Generation of search path.

Number
of node

The target’s search
region (width, height)

Number of bottles in
the target’s search region

1 (109, 101) 5

2 (60, 43) 3

3 (29, 14) 1
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subjectively. If we want to improve the accuracy of brute
force further, a smaller step size is needed and the running
time grows exponentially. More results can be found in
Fig. 7. The targets are the can, the cup, and the book.
The search paths that lead to the targets are shown in the
second row of Fig. 7.

5 Future Developments
This paper applies key point features for salience estimation.
In the future, we will use more features such as color
and texture to improve salience estimation. The known
knowledge of objects is also a benefit of salience estimation
as a top–down tune. We will attempt to model the prior
knowledge and integrate them into our salience estimation
method. In Sec. 3.2.2, a simplex method is applied to deter-
mine search regions. However, this method is time-consum-
ing, especially when a nonlinear imaging model is used to
reduce the distortion effect. As a result, we will investigate
other approaches to provide a more efficient solution for real-
time applications.

6 Conclusion
In this paper, we propose a target search method based on
salience mechanism and imaging model. This method gen-
erates a search path in which each node is a salient object
with respect to its search region. When a salient object of

the search path is located, search regions of the subsequent
objects will decrease. The target could be found in a region
that is getting smaller. The relation between salience objects
and the target is used to find the target. Through these oper-
ations, target search becomes more accurate and quicker.

We want to apply our method in a real application such as
visual SLAM robot. We think that this method will reduce
the cost of point matching for SLAM and other similar appli-
cations. At the same time, this method is also useful for scene
modeling. We will continue to explore these applications.

Appendix: Power Method and Hx(ξ)

A.1 Power Method
Power method is a numerical computation method that com-
putes the maximum eigenvalue of a matrix. The pseudo code
listed in Algorithm 2 gives an implementation of power
method.

A.2 kHx (ξ)k and kHx (G)k
Because ξ locates in the intervalG� E, we make ξ ¼ Gþ δ
where δ ¼ ðδα; δβ; δγ; δx; δy; δzÞT. We denote extrinsic
parameter matrix
EQ-TARGET;temp:intralink-;sec8;326;479

M ¼

2
6664
r11 r12 r13 0

r21 r22 r23 0

r31 r32 r33 0

0 0 0 1

3
7775:

We have Hx ¼
hA3×3 B3×3
BT
3×3 03×3

i
. The element of matrix B

has the form bij ¼ T1T2fx, T1 ∈ f ∂
∂α ;

∂
∂β ;

∂
∂γg, T2 ∈

Table 2 Performance comparisons of brute force, approximation,
and optimization.

Performance Brute force Approximation Optimization

Time (ms) 104 16 45

Error (subpixel) 0 1.6 2.8

Fig. 7 More results of search path: (a) the can, (b) the cup, and (c) the book. The first row is the search
region and initial features. The second row is the search path.
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f ∂
∂tx

; ∂
∂ty

; ∂
∂tz
g. So bij is a function of fα; β; γg. The element

of matrix A has the form aij ¼ T1T1fx, T1 ∈ f ∂
∂α ;

∂
∂β ;

∂
∂γg.

So aij is a function of fα; β; γ; tx; ty; tzg. When ðδα; δβ; δγÞ
are all small increments, we have sinðαþ δαÞ ≈
sin α, cosðαþ δαÞ ≈ cos α.

According to triangle inequality principal, we have
jkHxðGÞk − kHxðξÞkj ≤ kHxðGÞ −HxðξÞk. From the dis-
cussion above, we have

EQ-TARGET;temp:intralink-;e012;63;472HxðGÞ −HxðξÞ ≈
�
Ã 0
0 0

�
: (12)

EQ-TARGET;temp:intralink-;sec8;63;429

∵a11 ¼
�
lx

∂2

∂α2
r11 þ u0

∂2

∂α2
r31

�
ðx − txÞ

þ
�
lx

∂2

∂α2
r12 þ u0

∂2

∂α2
r32

�
ðy − tyÞ

þ
�
lx

∂2

∂α2
r13 þ u0

∂2

∂α2
r33

�
ðz − tzÞ

EQ-TARGET;temp:intralink-;sec8;63;331

∴ã11 ¼ a11ðGÞ − a11ðξÞ ≈
�
lx

∂2

∂α2
r11 þ u0

∂2

∂α2
r31

�
δx

þ
�
lx

∂2

∂α2
r12 þ u0

∂2

∂α2
r32

�
δy

þ
�
lx

∂2

∂α2
r13 þ u0

∂2

∂α2
r33

�
δz:

ãij has the same functional form as a11.
∵nonzero eigenvalues of matrix M are equal to nonzero

eigenvalues of
hM 0
0 0

i

EQ-TARGET;temp:intralink-;sec8;63;176∴λmaxðÃTÃÞ ¼ λmax

�
ÃTÃ 0
0 0

�

¼ λmax

��
ÃT 0
0 0

��
Ã 0
0 0

��

EQ-TARGET;temp:intralink-;sec8;63;102∴
����
�
Ã 0
0 0

����� ¼ kÃk

EQ-TARGET;temp:intralink-;sec8;326;741∵kÃk ≤ min max λ1∕2½ÃTÃ�:
We will find δ� ¼ ½δx�; δy�; δz��T that minimizes the two-

norm of AðδÞ. As a result, we need to get δ� to solve

EQ-TARGET;temp:intralink-;sec8;326;705

�
minimize

δ
max λ1∕2½ÃTðδÞÃðδÞ�

subject to∶ − E ≼ δ ≼ E
:

This equation can be converted into a semidefinite pro-
graming problem

EQ-TARGET;temp:intralink-;e013;326;634

8>><
>>:

minimize t

subject to∶
�

tI ÃðδÞ
ÃTðδÞ tI

�
≽ 0

−E ≼ δ ≼ E

: (13)

The output result t is the value that we want to obtain.
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