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Abstract. We report the development and application of a knowledge-based coherent anti-Stokes Raman scat-
tering (CARS) microscopy system for label-free imaging, pattern recognition, and classification of cells and tissue
structures for differentiating lung cancer from non-neoplastic lung tissues and identifying lung cancer subtypes.
A total of 1014 CARS images were acquired from 92 fresh frozen lung tissue samples. The established patho-
logical workup and diagnostic cellular were used as prior knowledge for establishment of a knowledge-based
CARS system using a machine learning approach. This system functions to separate normal, non-neoplastic, and
subtypes of lung cancer tissues based on extracted quantitative features describing fibrils and cell morphology.
The knowledge-based CARS system showed the ability to distinguish lung cancer from normal and non-neoplastic
lung tissue with 91% sensitivity and 92% specificity. Small cell carcinomas were distinguished from nonsmall cell
carcinomas with 100% sensitivity and specificity. As an adjunct to submitting tissue samples to routine pathology,
our novel system recognizes the patterns of fibril and cell morphology, enabling medical practitioners to per-
form differential diagnosis of lung lesions in mere minutes. The demonstration of the strategy is also a necessary
step toward in vivo point-of-care diagnosis of precancerous and cancerous lung lesions with a fiber-based CARS
microendoscope. C©2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3619294]
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1 Introduction
Lung cancer among both sexes is the primary cause of can-
cer deaths in the United States with 222,500 new cases and
157,300 lung cancer related deaths projected for 2010.1 World-
wide, the five-year survival for lung cancer patients ranges from
6% to 14% for men and 7% to 18% for women, a very dis-
mal prognosis that has not substantially changed in decades.2, 3

Even though early detection of lung cancer has attracted major
research interest,4, 5 less than 1% of patients with early-stage
lung cancer can be diagnosed.6 Pulmonary examination us-
ing computed tomography (CT) and magnetic resonance imag-
ing does highlight abnormalities. However, these technologies
are not often able to distinguish lung carcinoma from benign
lesions, such as organizing pneumonia. As a result, a tissue
biopsy is still needed as a follow-up test after the detection of a
nodule.

Traditional open lung biopsy requires general anesthesia and
an invasive surgical procedure. CT-guided percutaneous core
biopsy or fine-needle aspiration reduces the amount of tissue
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taken and complications, though pneumothorax and hemorrhage
remain significant concerns. In addition, because of the respi-
ratory motion of patients, it remains difficult to obtain samples
precisely at the site of small lesions.6 Therefore, some patients
will need to undergo re-biopsy, resulting in increased costs and
delay in diagnosis and treatment. Given the risks and cost of lung
biopsy, it would be beneficial to develop techniques that limit
damage to lung tissue, diagnose lung cancer in real time, and
provide equal or greater diagnostic yield than existing biopsy
methods. Consequently, several new technologies have been de-
veloped in the past few decades.

Bronchoscopy, for example, has been widely explored for
early lung cancer detection. While conventional white light
bronchoscopy is based on the detection of alterations in tissue
surface structure, autofluorescence bronchoscopy aims at ex-
ploiting the spectral difference between normal and pre-/early
cancerous tissues.7, 8 Size and specificity are the major limit-
ing factors of this technique since a small fiber optic probe
(<1 mm) is needed for diagnosis of peripheral lesions.6, 9 Optical
coherence tomography (OCT) is another imaging modality that
is compatible with the design of a conventional bronchoscope.10

Micrometer-level resolution allows in vivo investigation and
screening for possible lung lesions using light reflected from
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within the tissue to generate cross-sectional images.11 However,
OCT only generates contrast using changes of refraction indexes
between tissue layers, limiting its specificity and accuracy.

In view of the collective limitations of the techniques dis-
cussed above, there is a great demand to develop a real-time
imaging tool to increase the biopsy yield and potentially pro-
vide diagnostic information to facilitate definitive treatment.
This tool would need to offer cellular resolution, fast imaging
rate, and molecular specificity, but without the use of exogenous
contrast agents or probes, such as fluorescent dyes, since few
of these agents or probes have been approved for human use.
Current techniques cannot meet one or more of these criteria
and thus fall short of their full potential as effective diagnostic
tools.

Coherent anti-Stokes Raman scattering (CARS) imaging
technique,12 on the other hand, satisfies all the above param-
eters and therefore holds great promise for this diagnostic ap-
plication. It captures intrinsic biomolecular vibrations to create
optical contrast with submicrometer level spatial resolution, as
well as video-speed imaging rate.13 In the CARS process, a
pump field (ωp), a Stokes field (ωs) and a probe field (ωp′ ) in-
teract with the samples through a four-wave mixing process.14

When the frequency difference, ωp − ωs (beating frequency),
is in resonance with a molecular eigenvibration, an enhanced
signal at the anti-Stokes frequency, ωas = ωp − ωs + ωp′ ,
is generated.15 The major advantage of CARS is that the signal
yield is much higher, typically several orders of magnitude, than
the signal yield obtained through the conventional spontaneous
Raman scattering process.16

Because of these advantages, CARS microscopy has been
used to visualize various tissue structures, such as skin,16 lung,
and kidney.13 In the field of cancer imaging, a recent study
showed the use of multiplex CARS for interferometric imaging
of breast cancer for identification of cancer boundaries.17 How-
ever, differential diagnosis of cancer using CARS microscopy
has, to the best of our knowledge, not been attempted. Currently,
in order to accurately delineate the type of lesions for definitive
treatment, pathologists routinely stain lung biopsy tissue to ex-
amine changes in such cellular and histologic features as cell
size, cell-cell distance, and formation of fibrous structures.18

However, while this method is subject to interobserver vari-
ations, the CARS technique already provides high-resolution
images which can clearly detect these features, without tissue
staining with exogenous agents. Therefore, we hypothesize that
the development of a label-free imaging and pattern recognition
method, whereby such images could be used as a basis for the
quantitative classification of these cellular features in a way that
would lead to a differential analysis of lung cancer. This hypoth-
esis was supported by our recent publication19 that studied the
differentiation of cancer from normal prostatic glands in order
to aid surgical decision on margin status using calculated cellu-
lar features from CARS images. One of the cellular parameters
(average cell neighbor distance) was determined to be a good
candidate for cancer differentiation using principle components
analysis. Inspired by the research findings in Ref. 19, this study
aims to perform in-depth classification analysis and calculate
the accuracy of the classifier using a leave-one-out training and
testing design. In other words, potential cellular parameters are
not only selected, but also tested, for constructing a classifier
to separate different types of lung lesions. The current study

will provide comprehensive and robust results with regard to
cancer differential diagnosis using the CARS-based technology
ex vivo, and will bring the proposed approach of coupling label-
free imaging with pattern recognition for cancer diagnosis closer
to clinical applications. Accordingly, the established patholog-
ical workup and diagnostic features were used as prior knowl-
edge for establishment of a knowledge-based CARS classifica-
tion module using a machine learning approach. This module
was integrated with the CARS microscopy system to provide
real-time differential diagnosis of lung lesions using quantita-
tive measurements taken from the visualized cellular features
and patterns. To the best of our knowledge, this is the first
label-free and knowledge-based differential diagnostic platform
to discriminate cancer from normal tissue or benign lesions, as
well as cancer subtypes.

2 Materials and Methods
2.1 Tissue Preparation and Imaging
Lung tissues were obtained from patients undergoing surgical
biopsy and surgery at The Methodist Hospital (TMH), Houston,
Texas. Upon removal, the samples were snap-frozen in liquid
nitrogen for storage. They were passively thawed at room tem-
perature and kept moist with phosphate buffered saline before
imaging. A total of 75 cases were acquired from TMH, includ-
ing 19 normal cases, 20 adenocarcinoma cases, 25 squamous
cell carcinoma cases, 3 small cell carcinoma cases, 6 organiz-
ing pneumonia cases, and 2 interstitial fibrosis cases. Seventeen
additional frozen samples were purchased from the Cooperative
Human Tissue Network, including 2 small cell carcinoma cases
and 15 interstitial fibrosis cases. Because resection is usually
not clinically indicated, small cell carcinoma cases are only in-
frequently made available for scientific research, resulting in a
lower number of this type of lesion. Tissue samples were imaged
on a glass slide using the CARS microscope, ex vivo.

The schematic of the setup was previously described.20 The
optical source system is composed of an optical parametric os-
cillator (OPO) and an Nd:YVO4 laser. The Nd:YVO4 laser
delivers 7 ps, 76-MHz pulse trains at both 532 and 1064 nm
wavelengths. The Stokes wave is 1064 nm, while 532 nm is
used to pump the OPO, which generates a tunable 5 ps output
from 670 to 980 nm. A pump wavelength of 816.8 was used. A
bandpass filter (hq660/40m-2P, 25 mm diameter, Chroma, Inc.)
is placed before the detectors to collect CARS signals and block
unwanted backgrounds. Three to four sampling points were im-
aged for each specimen, and a total of 338 sampling points were
examined. At each sampling point, three images were acquired
from different imaging depths, resulting in a total of 1014 im-
ages. The beating frequency was tuned to 2845 cm− 1 to probe
the CARS signals that originated from symmetric CH2 stretch-
ing bonds. After CARS imaging, all specimens were marked to
indicate the sampled locations, sectioned through marked loca-
tions, and finally stained with hematoxylin and eosin (H&E).
Bright-field images of these H&E slides were captured and ex-
amined to determine the type of lesion as a standard control.

2.2 Data Analysis
While the front-end CARS microscopy system acquires the
initial images, the back-end knowledge-based classification
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Fig. 1 Overview of the three-step differential process.

module, consisting of nuclei segmentation, feature extraction,
and classification analysis functions, is built on identifying cel-
lular and fibril structural features in order to separate different
kinds of lesions. The goal is to classify tissue samples into in-
dividual subtypes through a three-level process (Fig. 1), which
simulates clinical diagnostic workup. In the first level, a lesion
is identified as cancerous or noncancerous (normal and benign).
The cancerous group includes all three subtypes of lung can-
cers (adenocarcinoma, squamous cell carcinoma, and small cell
carcinoma), while the benign group includes organizing pneu-
monia and interstitial fibrosis. A total of 145 cell/fibril features
are calculated directly without segmentation from the CARS
images. The same features were further used for the separa-
tion of normal and benign cases in part of the second level. In
a clinical setting, the practitioner must initially characterize a
lung nodule lesion as normal, cancerous, or benign, and these
two steps mimic this diagnostic process. The other part of the
second level and the entire third level of our scheme focuses
on separation of subtypes of cancers, which includes segmen-
tation of the cell nucleus and measurement of pathologically
related features. Specifically, after segmentation, we use param-
eters, such as cell volume, nuclear size, and cell-cell distance,
to measure a total of 35 features, and thereby separate cancer
subtypes.

2.2.1 Separation of cancerous, benign,
and normal samples

Fibril and cell structures can be used to separate cancerous from
benign and normal samples because changes in these structures
are closely related to different types of lung lesions, including
cancer, pneumonia, and interstitial fibrosis.18 Therefore, in the
first step of the differential design, we extracted a set of 145
informative features and built a classifier to characterize fibril
and cell features in order to separate fibril-dominant normal and
benign lesions from cell-dominant cancerous lesions. Although

both normal and benign lesions are fibril-dominant, they ap-
pear differently with regard to the orientation and/or distortion
of the fibrils in our CARS images (Fig. 2). The same set of
quantitative features was further used to train a classifier for
separation of normal tissue from benign lesions. This set of
145 features consists of three feature categories widely used in
image-based retrieval and pattern recognition: 85 wavelet fea-
tures, 13 Haralick co-occurrence features,21, 22 and 47 Zernike
moment features (the first and second out of 49 Zernike mo-
ment features are discarded due to they have the same val-
ues for all the images).23 The wavelet features come from
two important wavelet techniques: 70 Gabor wavelet features24

and 15 Cohen–Daubechies–Feauveau wavelet (CDF9/7)
features.25

2.2.2 Separation of subtypes of cancers

Segmentation of cancer cells. In contrast with noncancerous
groups, cancerous samples show a high density of cancer cells
whose nuclei can be identified by CARS because of their low
CH2 level (Fig. 2). Moreover, cellular details evident in CARS
images enable us to measure additional morphological charac-
teristics utilized by pathologists to identify different subtypes
of cancer, including nuclear size, cell volume, and cell-cell dis-
tance, which correspond to such pathological criteria as pleo-
morphism and nucleus-to-cytoplasm (N/C) ratio. To perform
measurements of these features, segmentation of cell nucleus
is an essential step. Since CARS images bear a low level of
contrast and a high level of noise, it is often not compatible
with fully automatic detection approaches in identifying nu-
clear boundaries with a high degree of accuracy. As a result, a
semi-automatic segmentation algorithm, which was fast enough
to obtain segmentation results within minutes, was employed to
precisely delineate the boundaries of cell nuclei. The algorithm
consists of one manual step and four automatic steps to obtain an
accurate nuclear boundary, as described in Ref. 19. In addition,
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Fig. 2 Ex vivo images of human lung lesions. CARS and H&E images of (a) and (b) normal lung, (c) and (d) squamous cell carcinoma, (e) and (f)
adenocarcinoma, (g) and (h) small cell carcinoma, (i) and (j) organizing pneumonia, and (k) and (l) organizing pneumonia derived from the same
patient, respectively. Scale bars: 50 μm.

a manual ellipse fitting algorithm was developed to segment a
rare fraction of cell nuclei that could not be well processed using
the semi-automatic approach. In this algorithm, the user needs
to select four points on the boundaries of the cell nucleus in
order to generate accurate cell fitting.

Design of informative cellular features. Following nuclear
segmentation, seven cellular features were designed and calcu-
lated to capture cellular signatures of cancer subtypes. These
features include size of the nucleus, length of major and minor
axes of the nucleus, area of Voronoi Tessellations26–28 [Fig. 3(a)],
as well as the maximum, minimum, and average neighbor dis-
tance of a cell based on the Delaunay Triangulation graph29

[Fig. 3(b)]. These features describe both the attributes of indi-
vidual cells and their relative spatial distribution. However, be-
cause of the diversity among different cells within each CARS
image, the measurement of each feature resulted in producing a
unique distribution.19 Therefore, we made use of five additional
parameters to describe each distribution type (i.e., mean value,
standard deviation, skewness, kurtosis, and entropy), resulting
in a grand total of 35 features.

2.2.3 Differential diagnostic analysis

Having extracted two sets of quantitative features (145/35), we
could finally perform differential diagnostic analysis. There

are two classification algorithms used in this paper. Partial
least square regression (PLSR)30, 31 and support vector ma-
chine (SVM) with recursive feature elimination (RFE) (SVM-
RFE).32–34 Specifically, PLSR analysis30 provides a global view
of the distribution of different types of lesions by mapping the
original feature space into a new space in which the predicted
and investigated variables are maximally correlated.30, 31 This
results in an optimal visual separation of samples in a three-
dimensional (3D) space. Since the main advantage of PLSR
lies in regression analysis, rather than classification analysis,30

we further employed the SVM-RFE approach32–34 for differ-
ential analysis and the investigation on changes of classifica-
tion accuracy with different number of features through a fea-
ture selection process in order to overcome possible overfitting
problems.

To validate the classification algorithm, a leave-one (patient)-
out cross-validation analysis was used. In this step, experimen-
tal data from one of the patients were used for testing, while
the remaining patient data were used to train the SVM classi-
fier. The training and testing datasets were randomly selected
and repeated 100 times to test the accuracies of classification.
Since three images were acquired for each sampling point, the
voting strategy, which determines the patient’s lesion type ac-
cording to the classification results of the majority of the three
images, was used to adjust conflicting results among individual
images.
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Fig. 3 Representative results of (a) Voronoi Tessellation and (b) Delaunay Triangulation on a small cell carcinoma image.

3 Results and Discussion
3.1 Label-Free Molecular Vibrational Imaging

of Different Types of Lung Lesions
Figure 2 shows our representative CARS images and corre-
sponding H&E results of normal, cancer and noncancer lesions.
Tissue structures were clearly identified on the cellular level.
The normal lung is predominantly composed of well-organized
fibrous structures, consisting of the bronchi and supporting ma-
trix for alveoli [Figs. 2(a) and 2(b)]. Cancer regions showed
much denser cellularity compared with normal regions, and the
size and configuration of the cells corresponded with these pa-
rameters, as shown by H&E stain [Figs. 2(c)–2(h)]. Commonly
used pathological features were also identified for individual
subtypes of cancers, including large polygonal malignant cells
in sheets with abundant dense cytoplasm for squamous cell car-
cinoma, nested large round cells with abundant inhomogeneous
cytoplasm for adenocarcinoma, and round or oval cells with
minimal cytoplasm (high N/C ratio), and nuclear molding for
small cell carcinoma. Meanwhile, organizing pneumonia and
interstitial fibrosis [Fig. 2(i)–2(l)], two types of noncancerous
lesions served as controls, showed dense fibrous structures with
distortion of the normal lung architecture similar to those shown
by the corresponding H&E stains. The lack of cellularity in the
images of benign cases, as compared to both normal and cancer-
ous cases, could be explained by the predominant signals from
the fibrous tissue, as well as extracellular matrix.

3.2 Differential Diagnostic Analysis
3.2.1 Separation of cancer from noncancer

As indicated in Figure 2, normal and benign tissues possess clear
fibrous structures, while cancer tissues possess high-density cel-
lular features without obvious fibril formation. Using the 145
features, these fibrous and cellular signatures were numerically

characterized, enabling the separation of normal, cancer and
benign cases. Figure 4(a) illustrates the 3D spatial distribution
of normal, benign, and cancer samples using PLSR analysis, in
which all three groups are visually separated. The SVM-RFE ap-
proach was further employed to optimize classification accuracy
and identify optimal feature combinations. Figure 4(b) shows
the classification accuracy when different feature combinations
(using 1 up to all 145 features) are used to separate cancer from
noncancer cases. The results indicate that the accuracy reaches
a stable peak level with 11 to 16 features. Figure 5(a) illustrates
the classification accuracy with an optimal 11-feature set. Over
92% and 91% of samples from cancer and non-cancer tissues
are correctly classified. Again, Haralick co-occurrence texture
features show their importance in this separation step because
all members (sum variance, sum of squares, contrast, difference
variance, and sum average) from the top 5-feature subset after
SVM-RFE belong to this category, which again demonstrates its
superior ability to describe fibrils and cell structures for building
a classifier.

Although all cancer samples can be visually well separated
from non-cancer samples using their distinctive cellular features,
the developed semi-automated strategy still shows difficulties
in precisely extracting fibrous and cellular features to reach
100% accuracy. In our 145 features-based classification strategy,
membranes around cell nuclei in cancer lesions were sometimes
considered as fibers, while the dark holes between the fibers in
the noncancer cases were confused with cell nuclei. Still, as an
ancillary tool for clinical diagnosis, current accuracies are good
enough to produce reliable results.

3.2.2 Separation of normal from benign tissues

As shown in Figure 2, normal tissues possess moderate fibrous
structures with clear orientation while benign cases have pre-
dominant fibrous structures with distortions. Figure 4(c) shows
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Fig. 4 (a) Spatial distributions of cancer, normal and benign groups using PLSR analysis. The top three-scored vectors were first calculated through
PLSR analysis on all lung samples such that each sample could be represented by this three-dimensional vector with a scale normalized from 0 to 1.
All lung samples were then plotted in a 3D space of these three vectors for separation. To enhance visualization, three ellipsoids were further fitted
to the three subgroups with the ellipsoids projected onto the first and second components (in the PLSR analysis). (b) and (c) Classification analyses
through SVM-RFE of cancer versus noncancer samples and normal versus benign samples on the 145 feature set, respectively.

Fig. 5 Classification accuracies of separating (a) cancers from noncancers using the top 11 features through SVM-RFE on the 145 feature set; (b)
benign from normal cases using the top 110 features through SVM-RFE on the 145 feature set. (c) small cell from nonsmall cell carcinoma using
the top 1 feature obtained through SVM-RFE on the 35 feature set. (d) Squamous cell carcinoma from adenocarcinoma using the top 25 features
obtained through SVM-RFE on the 35 feature set.
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Fig. 6 Distributions of the seven features of three cancer subgroups: small cell carcinoma (red), adenocarcinoma (green), and squamous cell
carcinoma (blue). We randomly chose 5000 cells from each subtype and investigated the distribution of their 7 features with respect to different
subtypes. (Color online only.)

classification accuracies using different subsets of feature com-
binations through a SVM-RFE feature selection process, in
which the accuracy reaches a stable level with the use of around
110 features. Using a 110-feature subset, over 92% and 89%
accuracies were achieved for benign and normal samples, re-
spectively [Fig. 5(b)]. To account for the percentage shortfall,
we know that pathological changes in benign lesions are such
that certain sampled locations possessed a lower level of abnor-
mality, thus showing tissue structures similar to those of normal
cases. However, in a real differential diagnostic process, cur-
rent results are more than sufficient to achieve the main goal:
delineating benign samples (over 92%) from the normal.

3.2.3 Separation of subtypes of lung cancers

Using the semi-automatic segmentation algorithm, we were able
to delineate boundaries of an individual cell nucleus, enabling
the measurements of 35 numerical features (Fig. 6). The spa-
tial distribution of the three subtypes of cancers is illustrated in
Fig. 7(a). All small cell cancer cases are well separated from non-
small cell subtypes, while the latters overlap in a certain extent in

distribution. SVM-RFE analysis showed that the classification
accuracy between small cell and non-small cell cancers reaches
100%, even with only one feature [Fig. 5(c)], i.e., Voronoi
Tessellation.

For separation of adenocarcinoma from squamous cell car-
cinoma, a subset of 25 features was chosen through feature
selection. Classification based on these features showed mixed
results with lower (75.5% and 71.5%) classification accuracies
[Fig. 5(d)]. This overlap is not surprising and is in accordance
with the clinical difficulty in differentiating these two subtypes
using morphology alone.35 Although separation of nonsmall
cell carcinoma from small cell carcinoma has been tradition-
ally adequate for clinical decision-making, this is no longer the
case. Increasingly, definitive diagnosis of histologic subtype, of-
ten in conjunction with molecular tumor profiling, is needed.36

In this regard, CARS has the potential to allow for real-time
identification of nonsmall cell carcinomas, but tissue excision
for additional work-up may still be necessary. Particularly, we
have evaluated the time taken to classify each sample through
the three-step process. We concluded that CARS imaging, to-
gether with computerized pattern recognition and classification,
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Fig. 7 (a) Spatial distribution of cancer subtypes using PLSR analysis. Similar to Fig. 4, the top three-scored vectors were calculated through PLSR
analysis on all cancer samples to represent each cancer sample with a three-dimensional vector and a scale normalized from 0 to 1. Three ellipsoids
were fitted in the same way for better visualization. (b) and (c) Classification analyses through SVM-RFE of small cell versus nonsmall cell carcinoma
and squamous cell carcinoma versus adenocarcinoma on the 35 feature set, respectively.

only takes a mere few minutes to reach a final diagnosis in our
study.

By looking at the five parameters used to describe the distri-
bution of each feature, we found that mean and skewness play
major roles in this 25-feature subset. In comparison, the kurtosis
parameters, which measure “peakedness” of these distributions,
are excluded, falling into the last 10 VIPs. Since all pictures were
acquired on a two-dimensional scale through optical sectioning,
a normally distributed background noise could be introduced to
weaken any significant peak in a given distribution. For exam-
ple, the same cell nucleus would be measured as different sizes
(potentially from zero to the real size) from different imaging
depths. As a result, the peak of cell nuclei will be less significant,
even if the real size is quite uniform. Therefore, the difference
in kurtosis will be reduced between different cancer subtypes,
lowering the importance of this parameter. For the same reason,
standard deviation and entropy may be weakened as well, while
the mean and skewness are less likely to be affected in reflecting
the difference between subtypes. One possible solution to avoid
these artificial effects is to conduct measurements on 3D recon-
structed data, which will better reflect the real size and distance
between cells and lead to potential improvement of the accuracy
in separating non-small cell subtypes.

3.3 Future Work
Screening for early cancer has attracted much attention since it
could potentially increase survival rate. After initial screening,
our novel CARS technique combines real-time and label-free
imaging with cell feature classification to potentially facilitate

biopsy yield, differential diagnosis, and subsequent treatment in
a manner suggested by this report. Ongoing screening studies
are using high-resolution CT to detect early stage lung cancers,
but have not caused a decreased incidence of advanced lung
cancers and the results on lung cancer mortality have not yet
been finalized.37–41 Though it is not yet clear whether screening
can improve survival, we believe the increased biopsy yield can
definitely reduce medical costs and patients suffering in addition
to facilitating on-the-spot diagnosis.

An additional benefit of the CARS system involves the strong
association between histologic cell type and subtypes and spe-
cific predictive biomarkers in terms of response to targeted
molecular therapies for advanced stage lung cancer. Specifi-
cally, it has long been known that most lung cancers are histo-
logically heterogeneous and that over 90% of adenocarcinomas
have more than one histologic subtype. When treatment options
were limited, this heterogeneity was not important, and it was
only necessary to differentiate small cell from nonsmall cell
carcinoma to select an appropriate treatment regimen. However,
the advent of molecular targeted therapies makes identification
of the various histologic types and subtypes within a given lung
cancer more important. Therefore, another potential benefit of
our strategy lies in its ability to differentiate cell types and sub-
types within a heterogeneous lung cancer at the time of biopsy
such that each of the different histologic types can be sampled
sent for molecular analysis.

Although the current CARS-based diagnostic system has
shown substantial efficacy, we acknowledge that the retro-
spective study pattern on patient selection, together with un-
equal sample sizes may have brought bias to the classification
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accuracy, as reported in this study. To fully demonstrate this di-
agnostic strategy for clinical applications, a much larger patient
group and a prospective study pattern is still needed for unbiased
evaluation and further improvement of the platform.

4 Conclusions
In this paper, we introduced a new approach that integrates label-
free, chemistry-sensitive CARS microscopy with advanced pat-
tern recognition techniques to enable quantitative differentiation
of human lung lesions and classification of lung cancer subtypes.
We demonstrated the utility of the approach in differentiating
among normal, benign, and malignant lung tissues, as well as
different subtypes of cancerous tissue, in a manner that can be
both visualized and quantified. Diagnostic features were chosen
according to established pathological standards, enabling direct
interpretation of the results. These excellent ex vivo results in-
dicate the potential of the reported diagnostic system for the
evaluation of fresh tumor specimens during intraoperative pro-
cedure or image-guided biopsy without waiting for pathological
staining, this would result in accelerated diagnosis or improved
clinical decision making. In addition, the demonstration of the
strategy is a necessary step toward in vivo diagnosis of pre-
cancerous and cancerous lung lesions. The clinical potential is
further strengthened by the efforts aimed at miniaturizing the
CARS technique for fiber-based in vivo imaging.42, 43 In sum-
mary, the reported computerized and label-free imaging strategy
could potentially improve and fundamentally change diagnostic
approaches to early-stage lung cancer by offering an efficient
way to characterize different types of lesions, enabling medical
practitioners to obtain essential information in real time and,
when coupled with fiber-based imaging when available, would
reduce the need for excisional tissue biopsies while facilitating
definitive treatment.
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