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Abstract. We explore the effects of the illumination and collection
geometry on optical spectroscopic diagnosis of breast cancer. Fluores-
cence and diffuse reflectance spectroscopy in the UV-visible spectral
range are made with a multiseparation probe at three illumination-
collection separations of 735, 980, and 1225 um, respectively, from
13 malignant and 34 nonmalignant breast tissues. Statistical analysis
is carried out on two types of data inputs: (1) the fluorescence and
diffuse reflectance spectra recorded at each of the three illumination-
collection separations and (2) the integrated fluorescence (at each ex-
citation wavelength) or diffuse reflectance over the entire spectrum at
all three illumination-collection separations. The results show that us-
ing the integrated fluorescence intensities recorded at a single excita-
tion wavelength at all three illumination-collection separations can
discriminate malignant from nonmalignant breast tissues with similar
classification accuracy to that using spectral data measured at several
excitation wavelengths with a single illumination-collection separa-
tion. These findings have significant implications with respect to the
design of an optical system for breast cancer diagnosis. Examining the
intensity attenuation at a single wavelength rather than spectral inten-
sities at multiple wavelengths can significantly reduce the measure-
ment and data processing time in a clinical setting as well as the cost
and complexity of the optical system. © 2005 Society of Photo-Optical Instru-
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1 Introduction during a breast biopsy procedure. A positive reading from the

Surgical biopsy and core needle biopsy are commonly used©Ptical measurement will potentially increase the likelihood
for the diagnosis of breast lesions. Compared to surgical bi- thata biopsy is being sampled from a tumor site. If the optical -
opsy, core needle biopsy is less invasive, less expensive,éasurement reads negative, then the needle can be reposi-
faster, and requires a shorter time for recovery. However, its tioned(along the needle tragho a new tissue site. Currently
sampling accuracy is limited because only a few small pieces 6 t0 24 biopsies are taken during a core needle biopsy proce-
of tissue are sampled from random locations in the suspiciousdure. If the optical method can maximize sampling from tis-
mass. Consequently the needle biopsy procedureahtesse- sue sites that are most likely to be cancerous, and minimize
negative rate of 1 to 7% when verified with follow up mam- unnecessary removal of many normal tissues, it could make
mography, and repeat biopsies are required in 9 to 18% of the breast biopsy procedure more accurate, less traumatic to
patients?> the patient, and also reduce the number of biopsies that must
Optical spectroscopy has been increasingly investigated asbe processed to obtain a confirmatory diagnosis. Additionally,
a tool for breast cancer diagnoéit particular, several stud-  if optical spectroscopy proves to be an effective way of iden-
ies have demonstrated that there are significant differences intifying cancerous sites, it can be incorporated into much
the UV-visible (UV-VIS) fluorescence and diffuse reflectance smaller needles than the 11 gauge Mammotome neéaile
spectra of normal, benign, and malignant breast tis3té#n example, the 21 gauge needle used for fine needle aspiration
addition, this technique is fast, quantitative, and nondestruc- and thus make this procedure as minimally invasive as
tive. There are important benefits to be reaped by incorporat- possible.
ing optical spectroscopy as an adjunct diagnostic modality to  Gupta et at? and Majumder et al' analyzed different
core needle biopsy. This technology can be deployed throughspectral data sets collected from the same set of breast tissues
fiber optic probes to quickly and nondestructively identify the ex vivoand showed that the fluorescence emission spectra at
tissue type(normal, benign, and malignanat the needle tip  excitation wavelengths of 340 and 488 nm and excitation
spectra at emission wavelengths of 390 and 460 nm exhibit
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differences between normal, benign, and malignant tissues.The fluorescence/reflectance signal attenuates with increasing
Using integrated emission intensities at 340-nm excitation in a probing depth in tissuéue to the increased path length of the
binary classification scheme, they were able to differentiate photons. Thus, the multiseparation fiber optic probe can mea-
malignant from normal and benign tissues with a sensitivity sure the attenuation characteristics of the fluorescence and
and specificity of 98%. The fluorescence was attributed to the reflectance measured from the breast. Two different types of
endogenous fluorophores, reduced nicotinamide adenine di-data sets were collected in this study for statistical analysis:
nucleotide(NADH) and collagen. Yang et ai’® showed that (1) the fluorescence and diffuse reflectance spectra recorded at
fluorescence emission spectra at 300-nm excitation and exci-each of the three illumination-collection separatidas syn-
tation spectra at 340-nm emission could be used to discrimi- onymously, different optical sensing depttasd (2) the fluo-
nate between malignant and normal fibrous tissues, but notrescencéat each excitation wavelengtbr diffuse reflectance
between malignant and normal adipose tissues. They found,integrated over the entire spectrum as a function of
for example, that the ratio of normalized intensities at 268- illumination-collection separatiofwhich reflects the attenua-
and 289-nm emissiofof the 300-nm excitation specirdis- tion of light within the tissug The statistical analysis of both
criminated between malignant and normal fibrous tissues with types of data sets showed that the integrated fluorescence in-
a sensitivity of 93% and specificity of 95%. The primary en- tensities at a single excitation wavelength recorded at all three
dogenous fluorophore in tissue probed at these excitation andllumination-collection separations discriminates malignant
emission wavelengths is tryptophan. from nonmalignant breast tissues with a similar classification
Nonfluorescent absorbers and scatterers in breast tissuegiccuracy compared to spectral data measured at several exci-
also contribute in part to differences observed in the fluores- tation wavelengths with a single illumination-collection sepa-
cence spectra of normal, benign, and malignant tissues. Dif- ration. These findings have significant implications. Examin-
fuse reflectance provides a measure of tissue absorption andng the intensity attenuation at a single wavelength rather than
scattering. Several groups have explored the utility of diffuse spectral intensities at multiple wavelengtfise entire spec-
reflectance spectroscopy between 250 and 800 nm, for breastrum) could significantly reduce the acquisition time as well
cancer detectiorex vivd®®3andin vivo®* Bigio et al* as the cost and complexity of an optical system for breast
measured the diffuse reflectance spectra through a core biopsygancer diagnosis. This study, together with our previous
needle and during breast cancer surgery and showed that thistudy.® provides important information on the utility of opti-
technique can differentiate malignant from normal tissues cal spectroscopy for breast cancer diagnosis during core
with a sensitivity of 60 to 70% and a specificity of 85 to 95%. needle biopsy.
This collection of studies shows that diffuse reflectance spec-
tra can be used to differentiate malignant from normal tissues. 2 Methods
Changes in diffuse reflectance of malignant tissues are likely j . )
due to increased protein and hemoglobin absorption, in- 2-1 Ex Vivo Sample Collection and Handling
creased scattering and decreagecharotene absorption. The breast tissue optical spectroscopy study was approved by
In these previous studies, either fluorescence or diffuse re-the Institutional Review Boards at the University of
flectance was used for identification of malignancy. In the Wisconsin—Madison. Breast tissue samples were obtained
case of fluorescence, spectra were measured only at one ofrom patients undergoing either a lumpectomy, mastectomy,
several excitation wavelengths. Palmer et’aheasured the  or breast reduction surgery. Fluorescence and diffuse reflec-
fluorescence spectfat a total of nine excitation wavelengths tance spectra were measured on the freshly excised breast
in the UV-VIS spectrumand the UV-VIS diffuse reflectance tissues withim 2 h after surgical excision. A previous study
spectra of freshly excised breast tissues. Using a multivariatecarried out by our group showed thaex vivospectra mea-
statistical algorithm, they found that 4 out of the 10 measured sured withi 2 h after excision provide a relatively close ap-
spectra were sufficient to maximize the discrimination be- proximation ofin vivo spectra. During the tissue measure-
tween malignant and nonmalignant tissues. These includedment, the fiber optic probe was placed in direct contact with
fluorescence emission spectra at excitation wavelengths ofthe tissue surface. After each measurement, the exact site on
300, 400, 420, and 460 nm. each tissue sample where the probe was placed was inked,
The study described in this paper builds on the work by and transverse sections were cut and stained for histopathol-
Palmer et at° The primary goal of this study is to explore the ogy. Microscopic evaluation was performed on each histologi-
effects of the illumination and collection geometry on the op- cal section by a board-certified pathologiEX) and a diag-
tical spectroscopic diagnosis of breast cancer. The illumina- nosis was established. In addition, the thickness of each
tion and collection geometry is an important component of sample was measured from the taphere the ink spot was
tissue optical spectroscopy and currently, fiber optic probes located to the bottom of the hematoxylin and eosiH&E)
are most commonly used for this purpose. In previous studies, stained section. Based on the histological breakdown, each
fiber optic probes with only one fixed separation between the sample was broadly classified as normal, benign, or malig-
illumination and collection fibers were employed for optical nant. A total of 47 tissue samples, including 13 malignant, 32
spectroscopy of the breast® These probes provided a fixed normal, and 2 benign specimens, were collected from a total
optical sensing depth in tissue. In this study, fluorescence of 18 patients. Table 1 shows the histological breakdown of
spectra at a total of eight excitation wavelengths and UV-VIS the 47 samples examined in the breast tissue optical spectros-
diffuse reflectance spectra were measured from breast tissuesopy study. For samples obtained from lumpectomies and
with a multiseparation fiber optic probe. This probe has three mastectomies, the average tissue thickness wasB®Gmm.
illumination and collection separations, which enable optical Sixteen percent of the samples had a thickness4fmm, 8%
spectra to be measured from different depths within the tissue.had a thickness of-4.5 mm, and the rest had a thickness
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Table 1 The histological breakdown of the 47 samples examined in the breast tissue optical spectros-

copy study.

Histological Breakdown Subcategory Number of Samples

Malignant tissues Invasive ductal carcinoma (IDC) 7 13
Invasive lobular carcinoma (ILC) 4
Ductal carcinoma in situ (DCIS) 2

Normal Fibrous 12 32
Adipose 20

Benign 2 2

Total 47

greater than 5 mm. All samples obtained from breast reduc- circles correspond to the illumination fibers, the gray circles

tion surgeries had a thickness of at least a centimeter.

2.2 Optical Spectrometer and Fiber Optic Probe

correspond to the collection fibers which form the three col-
lection rings, and the white circles correspond to dead fibers
for bundle packing The spectrometdFig. 1(a)] consists of a

Fluorescence and diffuse reflectance spectra were measure¢50-W xenon lamp(FL-1039, J.Y. Horiba a scanning
using a fiber optic probe coupled to a multiwavelength optical double-excitation monochromaté&emini 180, J.Y. Horibg

spectrometer. Figure(d) shows the schematic of the optical
spectrometer and Fig.(d) shows common end of the fiber
optic probe that comes in contact with the tisgtlee black

Light
Source @ CCD
I I
Monochromator &mh

(a)

(b)

Fig. 1 (a) Schematic of the optical spectrometer and (b) common end
of the fiber optic probe that comes in contact with the tissue (the black
circles correspond to the illumination fibers, the gray circles corre-
spond to the collections fibers that form the three collection rings, and
the white circles correspond to dead fibers for bundle packing).

a bifurcated fiber optic probémultimode fiberg a filter
wheel, an imaging spectrogragFriax 320, J.Y. Horibg and

a CCD camer&aCCD3000, J.Y. Horiba The common end of

the fiber optic prob¢Fig. 1(b)], which has an outer diameter

of 3 mm, consists of an 118@m-diam illumination core and
three concentric collection rings surrounding the core. The
illumination core is made up of 19 fibers, each of which has a
core/cladding diameter of 200/244m and a numerical aper-
ture(NA) of 0.22. Each collection ring has 12 live fibers, each
with a core/cladding diameter of 200/24Bn and an NA of
0.22. The remaining fibers are dead fibers of the same size for
bundle packing. The illumination diameter maximizes the
coupling efficiency from the light source, and the SNR for the
fluorescence measurements. The output signals from the three
concentric rings of collection fibers are spatially separated on
the CCD chip, thereby enabling fluorescence and diffuse re-
flectance spectra to be measured at three illumination-
collection separations simultaneously. The illumination-
collection separation is defined as the distance from the center
of illumination core to the center of collection fiber in each
ring. The three illumination-collection separations in this
fiber-optic probe are 735, 980, and 1226.

Next, Monte Carlo simulatiod8 of diffuse reflectance
were carried out to verify that the average thickness of tissue
samples collected from patients undergoing lumpectomies and
mastectomies provides a semi-infinite geometry for diffuse
reflectance spectroscopy measurements with the multisepara-
tion probe. Simulations were carried out on a homogeneous
tissue model with absorption coefficients of 1 to 10 ¢m
scattering coefficients of 108 to 176 chand an anisotropy
factor of 0.926. The range of optical properties used is within
that representative of breast tissues in the UV-VIS spectfum.
The simulated medium was cylindrically shaped with a thick-
ness of 4 mm, which represented the minimum thickness of
the tissue samples. In each simulation, the photons were
launched at random, uniformly distributed locations over a
range of angles defined by an NA of 0.22 and over a circular
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Table 2 The 80% probing depth and the percent fluorescence detected with the three illumination-collection pairs of the multiseparation probe
from a homogeneous fluorescent medium, with (a) variable absorption coefficients (x,) and a fixed scattering coefficient (u,), and (b) variable
scattering coefficients and a fixed absorption coefficient. The anisotropy factor (g) of the medium was set to 0.926.

(a)

Optical Properties

Nexc Nemm 80% Probing Depth Percent Fluorescence Detected
12,=110.4 cm™’ 12,=104.3 cm™’ (um) (x1074)

Lo lecm™) QY folem™h) Inner Middle Outer Inner Middle Outer
1.312 0.762 0.994 1200 1400 1500 14.7 10.1 7.62
2.025 0.494 1.596 1100 1300 1400 17.7 11.6 8.46
5.286 0.189 4.352 900 1000 1100 21.6 11.7 7.16

10.316 0.097 8.580 700 800 900 18.5 7.92 4.00

14.427 0.069 12.012 650 700 800 154 5.28 2.30

19.191 0.052 16.043 550 600 700 11.9 3.54 1.26

21.236 0.047 17.754 550 550 550 10.6 2.72 1.03

31.812 0.031 26.517 400 500 500 6.38 1.23 0.292
(b)

Optical Properties

Nexc Nemm 80% Probing Depth Percent Fluorescence Detected
1,=10.82 cm™" 1£,=9.0 cm™! (um) (x104)

s (cm™) QY s (em™) Inner Middle Outer Inner Middle Outer
50.0 1 47.2 800 1000 1050 12.3 4.60 2.34
75.0 1 70.8 800 900 1000 15.7 5.90 2.80

100.0 1 94.4 700 750 900 17.0 6.72 3.50
125.0 1 118.0 650 700 800 19.7 8.06 4.00
150.0 1 141.6 600 650 800 214 8.70 4.14
175.0 1 165.3 600 600 700 22.2 9.66 4.62
200.0 1 188.9 500 550 600 24.4 9.94 5.02
225.0 1 212.5 500 550 550 25.2 10.3 4.90

Note: QY is quantum yield, N, is the excitation wavelength, and ¢y, is the emission wavelength.

illumination area defined by the fiber bundle diameter. The and scattering coefficients were 1 and 108 ¢mmespectively.
diffuse reflectance escaping the medium was collected over aThese results indicate that the average tissue thickness re-
circular area defined by the fiber diameter and over a range ofported in this paper provides a semi-infinite geometry for dif-
exit angles defined by an NA of 0.22. The refractive index fuse reflectance spectroscopy over the UV-VIS range. The
above the medium was set to 1.452 to simulate an optical fiberfluorescence emission spectra measured in this study occur
and that below the medium was set to 1.0. The refractive within the same wavelength range.

index of the medium was set to 1.37. The simulation results  To assess the probing depth and attenuation of the fluores-
showed that the light transmittance through the 4-mm-thick cence measured with the multiseparation probe, Monte Carlo
sample was less than 5% for the range of optical properties simulations® of fluorescence were carried out on a homoge-
used. Specifically, the light transmittance through the sample neous tissue model with a wide range of optical properties in
was 0.2% when the absorption and scattering coefficient werethe UV-VIS spectrum(see Table 2 an anisotropy factor of

10 and 176 cm?, respectively, and 4.8% when the absorption 0.926 at both the excitation and emission wavelengths, and a
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quantum vyield of unity. The simulated medium was cylindri- The slit width of the imaging spectrograph was set to provide
cally shaped with a thickness of 5 mm. Note that in real a spectral resolution of 7.9 nm. Each intensity-wavelength
tissue, the absorbers and fluorophores have distinct absorptiorpoint in the emission spectrum was binned over 18 pixels on
coefficients and the fluorescence efficiency is solely related to the CCD chip, resulting in a wavelength increment of 4.7 nm.
the product of the absorption coefficient and quantum yield of The integration time for each fluorescence spectrum ranged
the fluorophore. However, in the Monte Carlo simulations, from 0.12 to 2 s, depending on the excitation wavelength
these two absorption coefficients are combined into a single used. The diffuse reflectance spectra were recorded from 350
absorption coefficient and the fluorescence efficiency is ato 600 nm. The slit widths of the excitation monochromator
function of the overall absorption coefficiet@ontributed by and imaging spectrograph were chosen to provide bandpasses
both absorbers and fluorophoyre$hus, in our Monte Carlo  of 3.5 and 7.9 nm, respectively. Each intensity-wavelength
simulations, when the absorption coefficient was varied at the point in the diffuse reflectance was binned over 18 pixels on
excitation wavelength, the quantum yield was appropriately the CCD chip, resulting in a wavelength increment of 4.7 nm.
scaled to account for the mismatch in fluorescence efficiency The integration time for each diffuse reflectance spectrum was
between real tissue and the simulated meditim. 0.05 s. The overall acquisition time was approximately 1 min
Table 2 shows the 80% probing depth and the percent fluo- for a single scan of eight fluorescence spectra and one diffuse
rescence detected with the three illumination-collection pairs reflectance spectrum.
of the multiseparation probe from a homogeneous fluorescent All fluorescence and diffuse reflectance spectra were cali-
medium, with(a) variable absorption coefficienfg.,) and a brated in order to correct for th&) background spectrun(?)
fixed scattering coefficienfus), and (b) variable scattering  wavelength dependence, a@) throughput of the system.
coefficients and a fixed absorption coefficient. The 80% prob- The background spectrum, which was measured with the
ing depth is defined as the depth above which 80% of the probe immersed in distilled water using the same experimen-
detected fluorescent photons originate. The percent fluores-tal setup for optical spectroscopy of tissue, was first sub-
cence detected, which is a measure of the collection effi- tracted point-by-point from each spectrum prior to further
ciency, is the number of fluorescent photons collected with a calibration. The fluorescence emission spectral intensities at
single fiber in each collection ring, divided by the total num- each excitation wavelength were normalized to the output ex-
ber of incident photon&s million). In Table 2, the 80% prob-  citation power, to account for the wavelength-dependent
ing depth varies from 400 to 150@m. For a medium with variation of the excitation light intensity. The fluorescence
fixed optical properties, the probing depth increases, while the spectrum was then corrected for the wavelength-dependent
percent fluorescence detected decreases with increasingesponse of the collection fibers, imaging spectrograph and
illumination-collection separation. For a fixed illumination- CCD camera, by multiplying it point-by-point by the correc-
collection separation, the probing depth decreases with in-tion factors measured using a National Institute of Standards
creasing absorption or scattering, while the percent fluores-and TechnologyNIST) tungsten calibration lamp. This pro-
cence detected decreases with increasing absorption andtedure also corrected for differences in the collection effi-
increases with increasing scattering, respectively. ciency of each collection ring. Finally, each fluorescence
In summary, for a given set of optical properties, the prob- spectrum was divided by the peak fluorescence intensity
ing depth increases only modestly with increasing (excitation-emission wavelength of 460 to 580 )nmeasured
illumination-collection separation, while the percentage of with the probe placed on the face of a quartz cuvette contain-
fluorescence detected decreases significantly with increasingng a solution of Rhodamine B.14 uM) dissolved in ethyl-
illumination-collection separation, particularly for higher ab- ene glycol(115H3423, Sigma Chemical Co., MissQuuising
sorption and scattering coefficients. Thus, the multiseparationthe same integration time, to account for the time-dependent
probe geometry can be used to measure the attenuation charehanges in the throughput of the instrument. The diffuse re-
acteristics of the fluorescence from breast tissues. It is ex-flectance spectrum was calibrated for the wavelength-
pected that this probe geometry will measure similar trends in dependent response and the throughput of the system by nor-
diffuse reflectance of the breast. One of the objectives in this malizing it to the diffuse reflectance spectrum measured with
paper is to explore whether the fluorescence/reflectance at-the common end of the fiber optic probe inserted into an in-
tenuation with increasing probing depth can be utilized for tegration spher€DRA-CA-30I, Labsphere, Inc., New Hamp-
discriminating malignant from nonmalignant breast tissues.  shire.

2.3 Optical Spectroscopy of Breast Tissues

Fluorescence emission spectra were recorded at eight excita- ]

tion wavelengths ranging from 300 to 440 nm, in 20-nm in- 2.4 Data Analysis

crements. The slit width of the excitation monochromator Statistical analysis was carried out on two types of data in-
(Gemini 180 was set to provide an excitation band pass of puts: (1) the fluorescence and diffuse reflectance spectra re-
6.2 nm. The output power at the common end of the fiber corded at each of the three illumination-collection separations
optic probe was measured using a low power detedtem- and (2) the fluorescencéat each excitation wavelengtlor

port 818-UV, Newporntconnected to a handheld optical power diffuse reflectance intensity integrated over the entire spec-
meter (Newport 840-C, Newpoytand ranged from 10 to 20 trum as a function of illumination-collection separation. A
uW over the 300- to 440-nm excitation wavelength range. At multivariate statistical algorithm similar to the one developed
each excitation wavelength, fluorescence emission spectrapreviously by our groufy was used for input 1. All data
were measured over a 260-nm wavelength range, with the firstanalyses were carried out using a self-programmed Matlab
wavelength shifted by 20 nm from the excitation wavelength. code.

Journal of Biomedical Optics 024032-5 March/April 2005 + Vol. 10(2)



Zhu et al.

2.4.1 Spectral analysis at each of the three
illumination-collection separations

Briefly, the multivariate statistical algorithm consists of four
steps'® First, the spectral data are preprocessed to minimize
interpatient variations and variations due to probe-tissue con-
tact, by normalizing each spectrum to a specific intensity-
wavelength point in the spectra or the integrated spectral in-
tensity. Particularly, the fluorescence spectra were each
normalized to their peak intensity and the diffuse reflectance
spectra were normalized to their integrated intensity. Second,
the spectral data are dimensionally reduced using a multivari-
ate analysis technique, such as principal component
analysist® The third step is to perform feature extraction, i.e.,
identify the principal component$Csg that show the statis-
tically most significant differences between malignant and
nonmalignant breast tissues using a Wilcoxon rank-sunttest.
The fourth step is to use a support vector macHi8¥M)
algorithnt® to classify each sample as malignant or nonmalig-
nant based on their PC scores.

Data obtained in the clinical study can be divided into
“independent” and “dependent” variables. The “indepen-
dent” variables are in the spectral data matixwhere each

that were not accounted for by the previously extracted PCs.

The use of dependent variabl@sstological diagnosgsn
PLS gives rise to the difference between PCA and PLS. PCA
provides PCs that account for most of the spectral variance;
however, some of these components may not necessarily be
relevant to the diagnoses of the tissue samples. PLS looks for
PCs that not only account for a large amount of the variance,
but also those that are most relevant to the known histology of
the samples.

In this study, PCA and PLS were performed on all fluores-
cence spectra, one excitation wavelength at a time and sepa-
rately on the diffuse reflectance spectra to generate a set of
PCs for each spectral data set. Rather than retaining all of the
PCs, only a subset of PCs was retained for further data pro-
cessing. In the case of PCA, the PCs that account for 95% of
the total spectral variance were retained for further analysis.
In the case of PLS, the first five PCs of each spectrum were
retained, which account for 95 to 99% variance in the spectral
data. In both cases, the original spectrum could be faithfully
approximated using the linear combination of the selected
subset of PCs.

The scores of the selected PCs extracted from either fluo-
rescence or diffuse reflectance spectra, were then pooled to-

row corresponds to the preprocessed fluorescence or reflecyether for a Wilcoxon rank-sum test. The Wilcoxon rank-sum
tance spectrum of a tissue sample and each column corretest was used to determine which PCs showed the statistically
sponding to preprocessed spectral intensity at a specific wavemost significant differences between malignant and nonmalig-
length. The “dependent” variabl¥ is a binary variable that  nant preast tissues. The scores of three statistically most sig-
represents the histological diagnosis of each sample, with 1 pificant PCs obtained using either PCA or PLS were retained
for malignant tissues and 0 for nonmalignéménign and nor-  as inputs for classification. SVMs, including the linear SVM
mal) tissues. Two multivariate statistical analysis techniques, and the nonlinear SVMe.g., polynomial SVM and a radial
principal component analysfs (PCA) and partial least-  basis functiofRBF) SVM (Ref. 20] were employed as clas-
squares(PLS) regressiofi were employed for spectral data  sification schemes to specify a particular sample as malignant
reduction. Both methods project the set of spectra onto a sub-or nonmalignant. Finally, the unbiased performance of the
space expanded by the principal components to represent theeCA-SVM and PLS-SVM algorithms was evaluated using a
spectral data with a few variables, which account for most of “leave-one-out” schemé?
the variance in the original spectral data set.
In PCA, the set of independent variable§ were used for 9 4.2 Integrated spectral intensity analysis
extraction of the PCs, that is, spectra measured from all tissueI . " ) . .
ntegrated spectral intensities were first obtained by integrat-

samples regardless of histological diagnoses were pooled to- : i ; i
gether to extract the PCs. The PCs were calculated such tha{ng the intensities over the entire spectrum for each fluores

the first principal componerPC1) accounts for the largest cence spectrum and the diffuse reflectance spectrum at a spe-
) . cific collection ring. Then intensity ratios were calculated b
amount of the total variance of the input data. The second PC 9 Y y

(PC2 accounts for the second largest amount of the variance normaliz_ing the integrated intc_ansity recoro!ed fr_om each col-
while being orthogonal to PC1, and so on lection ring to that from the inner collection ringhortest

; . . illumination-collection separationThereby two intensity ra-
PLS is a regression methétywhere both the independent P 9 y y

X dd derty iabl tlized | lculating th tios were obtained for each spectrum, i.e., the intensity ratio
ED(; ar]l’h elffg eritr) variables a(;e utilize Ihn C"’} cula m;g fe of the middle and inner ringmiddle-to-inner intensity ratjo

s. 1he régression procedure searcnes for a et ot comz e intensity ratio of the outer and inner rif@yter-to-
ponents that performs a simultaneous decompositiot arfid

Y with th traint that th i lai hinner intensity ratip. The middle-to-inner and the outer-to-
wi € constraint that these components explain as much,qq intensity ratios of each spectruftwo variable$ were
of the covariance betweeX and Y. This amounts to deter-

- f weidh d i bi then input to the SVM classifier for discriminating between
mining t}N?] setsl 0 We'gx tsvdan ¢ tﬁ cr:eatﬁ alinear combl-  3jignant and nonmalignant tissues. An unbiased evaluation
nation of the columns ok andY such that their covariance is 4, the aigorithm's performance was obtained using the leave-
maximal. Specifically, a pair of vectots=Xw andu=Yc are

; | , ! / one-out schem&.
obtained with the constraint thatu is maximal (where the
superscripfl denotes the matrix transpgs&/hent has con-
verged, it is used to compute the principal componprfor
X, wherep= X"t (again the superscrigt denotes the matrix
transpose When the first PGPCY) is found, the spectral data (EEMs) of malignant (n=13), normal/benign fibrous(n
explained by this PC is subtracted from b&ttandY, and the =14), and normal adiposén=20) tissues. Figures(3d) to
procedure is repeated. That is, additional PCs are calculated2(c) correspond to the average EEMs of malignant tissues
from residuals, which account for the portion of input data measured with the inndiFig. 2(@)], middle [Fig. 2(b)], and

3 Results
Figure 2 shows the average excitation emission matrices
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Fig. 2 Average EEMs of malignant (n=13), normal/benign fibrous (n=14), and normal adipose (n=20) tissues, where (a) to (c) correspond to the
average EEMs of malignant tissues measured with the (a) inner, (b) middle, and (c) outer collection rings, respectively, and (d) and (e) correspond
respectively to average EEMs of normal/benign fibrous and normal adipose tissues measured with the inner collection ring. All figures are plotted
on a log scale.

outer[Fig. 2(c)] collection rings, respectively, and Figsd2 scale. Average EEMs of malignant tissué&sggs. 2a) to 2(c)]
and Ze) correspond, respectively, to average EEMs of show that four peaks are visible and appear at similar loca-
normal/benign fibrous and normal adipose tissues measuredions in all three EEMs, i.e., at excitation-emission wave-
with the inner collection ring. All figures are plotted on a log length pairs of 306340, 3406-390, 360/386-460, and
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Fig. 3 (a) Average diffuse reflectance spectra of (a) malignant breast
tissues (n=13) measured with the inner, middle, and outer rings and
(b) malignant (n=13), normal/benign fibrous (n=14), and normal
adipose tissues (n=20) measured with the inner ring.

with a weak presence of the 34390-nm peak and a red shift
in the peak at 366460 nm to approximately 366500 nm.

Figure 3a) displays the average diffuse reflectance spectra
of malignant breast tissu€si=13) measured with the inner,
middle, and outer rings, and Fig(l8 shows the average dif-
fuse reflectance spectra of malignént= 13), normal/benign
fibrous (n=14), and normal adipose tissués=20) mea-
sured with the inner ring. In each spectrum, five valleys are
notable at 350, 420, 470, 540, and 570 nm. The valleys at 420,
540, and 570 nm correspond to hemoglobin absorption, the
one at 350 nm corresponds to NADH, and the one at 470 nm
can be assigned t{6-carotene. In Fig. @), the diffuse reflec-
tance intensity measured from malignant breast tissues de-
creases from the inner collection ring to the outer collection
ring, particularly in the wavelength range above 450 nm. Such
a decrease is also observed in diffuse reflectance spectra of
normal/benign fibrous and normal adipose tissues measured
with the three collection ring&ot shown herg A comparison
of spectral intensities for the three tissue types, measured with
the inner ring[Fig. 3(b)] shows that fibrous tissues have the
highest average diffuse reflectance intensity, while adipose
tissues have the lowest average diffuse reflectance intensity.

PCA and PLS were carried out on the fluorescence and
diffuse reflectance spectra measured with each of the three
collection rings to obtain a set of PCs that faithfully represent
the spectral data. Table 3 shows the three statistically most
significant PCs for each collection ring, identified by a Wil-
coxon rank-sum test from the two sets of PCs obtained from
the PCA and PLS analyses. All the PCs here display statisti-
cally significant differences between malignant and nonmalig-
nant tissues below a significance levelpsf 0.005.The three
most significant PCs obtained from PLS analysis were ex-
tracted from fluorescence spectra at 320- and 420-nm excita-
tions and from the diffuse reflectance spectra. The three most
significant PCs obtained from PCA analysis were extracted
from fluorescence spectra at 320-, 420-, 300-, and 340-nm
excitation and from the diffuse reflectance spectra.

Table 4 shows the overall classification rate, sensitivity,

440-520 nm. As expected, the fluorescence intensity at eachand specificity achieved with the linear SVM for discriminat-
peak location decreases from the inner ring to the outer ring. ing between malignant and nonmalignant breast tissues using
Such a decrease in fluorescence intensity is also observed irthe three statistically most significant P@sbtained from

the EEMs of normal/benign fibrous and normal adipose tis- PCA and PLS analysisor each collection ring. Note that in

sues measured with three collection ringst shown herg

several cases, particularly in the case where PLS analysis was

The average EEM of normal/benign fibrous tissues measuredused, the three most significant PCs included those obtained
with the inner ring[Fig. 2(d)] has the same four peaks as the from both diffuse reflectance and fluorescence spectra. The

malignant tissue EEM measured with the inner rirgg.

classification accuracy achieved with PCA-SVM or PLS-

2(a)]. However, the average adipose tissue EEM measuredSVM did not differ significantly between the three collection

with the inner ring[Fig. 2(e)] displays distinct differences,

rings. However, for spectral data acquired by a given collec-

Table 3 The three statistically most significant PCs for each collection ring, identified by a Wilcoxon rank-sum test from the two sets of PCs

obtained from the PCA and PLS analyses.

PCA —lIncreasing Significance PLS —Increasing Significance

Inner 420 nm, PC1 320 nm, PC1 reflectance, PC4 Inner 420 nm, PC1 reflectance, PC1 320 nm, PC1
Middle 320 nm, PC1 420 nm, PC1 340 nm, PC1 Middle 420 nm, PC1 reflectance, PC1 320 nm, PC1
Outer 320 nm, PC1 300 nm, PC3 420 nm, PC1 Outer 420 nm, PC1 reflectance, PC1 320 nm, PC1

All the PCs here display statistically significant differences between malignant and nonmalignant tissues below a significance level of p<0.005.

Journal of Biomedical Optics

024032-8

March/April 2005 + Vol. 10(2)



Use of a multiseparation fiber optic probe . . .

Table 4 The overall classification rate, sensitivity and specificity
achieved with linear SVM for discriminating between malignant and
nonmalignant breast tissues using the three statistically most signifi-
cant PCs (obtained from PCA and PLS analysis) for each collection
ring.

PCA+Linear SVM PLS+Linear SVM

Inner Middle Outer Inner Middle Outer

Classification  78.72 65.96 57.45 82.98 82.98 80.85
rate (%)

Sensitivity (%) 38.46 30.77 1538 61.54 69.23 69.23

Specificity (%) 94.12 79.41 73.53 91.18 88.24 85.29

tion ring, the PLS-SVM algorithm achieved consistently
higher classification accuracy than the PCA-SVM algorithm.
It was also found that the overall classification rate, sensitiv-
ity, and specificity obtained using nonlinear SVM classifica-
tion (polynomial SVM and RBF SVNIdid not differ signifi-
cantly from that obtained using linear SVM classificatioot
shown herg

Table 5 shows the overall classification rate, sensitivity,
and specificity achieved with linear SVM for discriminating

between malignant and nonmalignant breast tissues using the

three statistically most significant PCs extracted from PLS
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analysis of the diffuse reflectance spectra measured with each

collection ring. The three PCs show statistically significant

differences between malignant and nonmalignant tissues be-

low a significance level op<<0.05.0nly the results from the
PLS-SVM algorithm are shown, since this approach yields
superior results compared to the PCA-SVM algorithm. The
overall classification rate did not differ significantly between
the different collection rings. In addition, the specificity was
higher than the sensitivity for all three collection rings. A
comparison of the classification accuracy achieved uélng
combined fluorescence and reflectance spddiale 4 ver-
sus (2) reflectance spectra oniffable 9 indicates that the
overall classification rates do not differ significantly for these
two cases. However, the sensitivity is consistently higher for
the former, while the specificity is consistently higher for the
latter.

Middix Ouim

Cellection Ring
(§=H

Fig. 4 Average integrated spectral intensity ratios and standard devia-
tions for (a) fluorescence spectra at 300-nm excitation, and (b) diffuse
reflectance spectra of malignant (n=13), normal/benign fibrous (n
=14), and normal adipose tissues (n=20).

ratios and standard deviations for fluorescence spectra at
300-nm excitatio{Fig. 4(@)] and diffuse reflectance spectra
[Fig. 4(b)] of malignant(n=13), normal/benign fibrougn
=14), and normal adipose tissués=20). For fluorescence

at 300-nm excitation, the average values of middle-to-inner
ratio and outer-to-inner ratio were 0.29.12 and 0.2%0.06,

Figure 4 shows the average integrated spectral intensity respectively, for malignant tissues; 0-86.08 and 0.250.04

Table 5 The overall classification rate, sensitivity, and specificity
achieved with linear SVM for discriminating between malignant and
nonmalignant breast tissues using the three statistically most signifi-
cant PCs extracted from PLS analysis of the diffuse reflectance spectra
measured with each collection ring.

PLS+Linear SYM

Inner Middle Outer
Classification rate (%) 80.85 78.72 85.11
Sensitivity (%) 53.85 30.77 46.15
Specificity (%) 91.18 97.06 100

Journal of Biomedical Optics
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for normal/benign fibrous tissues; and 04®09 and 0.35
+0.06 for normal adipose tissues. For the diffuse reflectance,
the average values of middle-to-inner ratio and outer-to-inner
ratio were 0.52:0.08 and 0.480.07, respectively, for malig-
nant tissues; 0.480.07 and 0.43:0.05 for normal/benign fi-
brous tissues; and 0.62.08 and 0.520.12 for normal adi-
pose tissues. As expected, the spectral intensity ratios of both
fluorescence and diffuse reflectance decrease with increasing
illumination-collection separation. Furthermore the decrease
(attenuation in spectral intensity is greater from inner ring to
middle ring than from middle ring to outer ring. Also, the
attenuation in spectral intensity is different for different tissue
types. In particular, normal adipose tissues undergo less at-
tenuation relative to normal/benign fibrous and malignant tis-
sues. Spectral intensity ratios at the other seven excitation
wavelengths are not shown here, but display a similar pattern

March/April 2005 + Vol. 10(2)
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Table 6 The overall classification rate, sensitivity, and specificity achieved with linear SVM for discriminating between malignant and nonmalig-
nant tissues using the middle-to-inner and outer-to-inner intensity ratios for fluorescence collected at different excitation wavelengths and for the
diffuse reflectance.

300 nm 320 nm 340 nm 360 nm 380 nm 400 nm 420 nm 440 nm Refl.
Classification rate (%) 82.98 78.72 78.72 78.72 68.09 68.09 65.96 61.70 72.34
Sensitivity (%) 69.23 61.54 53.85 61.54 23.08 23.08 0 0 0
Specificity (%) 88.24 85.29 88.24 85.29 85.29 85.29 91.18 85.29 100

to that observed at an excitation wavelength of 300 nm. Wil- breast tissues. A previous study by our grffugshowed that

coxon rank-sum tests showed that the middle-to-inner and fluorescence spectra at excitation wavelengths of 300, 320,

outer-to-inner intensity ratios of fluorescence at 300-nm exci- 400, 420, 440, and 460 nm showed the statistically most sig-

tation displayed statistically significant differences between nificant differences between malignant and nonmalignant

malignant and nonmalignant tissues below a significance level breast tissueép<<0.005. The excitation wavelengths identi-

of p<0.005.The same test indicated that the middle-to-inner fied in this study are a subset of the wavelengths identified

and outer-to-inner intensity ratios of diffuse reflectance did previously, except for the excitation wavelength of 340 nm.

not display statistically significant differences between malig- Another difference is that in the previous study, the diffuse

nant and nonmalignant tissugs<<0.5). reflectance spectrum was not found to show statistically sig-
Table 6 shows the overall classification rate, sensitivity, nificant differences between malignant and nonmalignant

and specificity achieved with linear SVM for discriminating breast tissues.

between malignant and nonmalignant tissues using the

middle-to-inner and outer-to-inner intensity ratios for fluores-

cence collected at different excitation wavelengths and for the = ' ' ' T

diffuse reflectance. The results show that classification using o mendnalignant

. . . . | — wapoation bowndany ||

fluorescence spectral intensity ratios at 300-nm excitation pro-
vides the highest classification accuracy, which is comparable 0df c 1
to that obtained using the entire spectral input for a given ﬁm- s ]
collection ring (Table 4. Using fluorescence at 320- to 5 B 4
360-nm excitation provides slightly lower classification accu- E 0 S 1
racy, which is still comparable to that obtained using the en- & e
tire spectral input for a given collection ring. When spectral Ew B0 g - 1
intensity ratios of either fluorescence at excitation wave- o2 N 1
lengths of 380 to 440 nm, or diffuse reflectance were used, the il
classification yields high specificity, but very low sensitivity. e » 1

Figure 5 shows the scatter plots of the middle-to-inner and My 0 e o e o ay
outer-to-inner ratios for(a) fluorescence spectra at 300-nm Rildidlata s Futis

excitation [Fig. 5@a)] and (b) diffuse reflectance spectra
[Fig. 5(b)] of malignant and nonmalignant breast tissues and

the corresponding hyperplanes obtained from linear SVM. In e T
the case of fluorescence at 300-nm excitafibiy. 5(a)], the o aenasafignant
clusters of the spectral intensity ratios for the two tissue types AtealaRen RoNna
are separable. However, in the case of diffuse reflectdfige
5(b)], the clusters of spectral intensity ratios for the two tissue
types are nonseparable. Similar observations were made from
scatter plots of spectral intensity ratios for fluorescence spec-
tra at excitation wavelengths of 380 to 440 rinot shown
here.
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4 Discussion ~
Optical spectroscopy in the UV-VIS spectral range shows dis-
tinct differences between malignant and nonmalignant breast BT od5 04 045 65 055 06 085 07 475 18
tissues, and thus this technique has the potential to be used as Middle-to-inner ratio

a diagnostic tool for breast cancer. Statistical analysis of the (b

spectra indicated that the fluorescence spectra at excitationF. ) ) . ) )

. ig. 5 Scatter plots of middle-to-inner and outer-to-inner intensity ra-
wavelengths of 300, 320, 340, and 420 nm and th? dllflfuse tios for (a) fluorescence spectra at 300-nm excitation and (b) diffuse
reflectance spectrum showed the statistically most significant reflectance spectra of malignant and nonmalignant breast tissues and
differences(p<<0.005 between malignant and nonmalignant the corresponding hyperplanes obtained from the linear SVM.
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Two statistical methods, PCA and PLS, were used in this  The fluorescence/reflectance signal attenuates with increas-
study for spectral data reduction. One of the differences be-ing probing depth in tissuédue to the increased path length
tween PCA and PLS is that in PCA, the components are cho- of the photonsand the multiseparation fiber optic probe can
sen so that maximal data variance is explained, while PLS be used to measure the attenuation characteristics of these
looks for not only components that describe as much of the signals in the breast. The results from the data analysis show
data variance as possible, but those that are also most relevanthat using the integrated fluorescence intensities recorded at a
to the known group association of each sample. A linear SVM single excitation wavelength at all three illumination-
algorithm based on PCs obtained from PLS outperformed that collection separation@ measure of attenuatipoan discrimi-
based on PCs obtained from PCA for spectra collected at all nate malignant from nonmalignant breast tissues with similar
three illumination-collection separatiori$able 4. To deter- classification accuracy to that using spectral data measured at
mine how different the PCs obtained from PCA and PLS are several excitation wavelengths at a single illumination-
for a given spectrum measured at a particular illumination- collection separation. The use of integrated fluorescence in-
collection separation, those extracted from fluorescence spec+tensities at a single excitation wavelength is expecte(lto
tra at 320- and 420-nm excitation and from the diffuse reflec- significantly reduce the measurement time &g require
tance spectra measured with the inner collection ring of the much less data processing. This finding has significant impli-
fiber optic probe(see first row of Table Bwere compared.  cations in clinical applications, where both speed and low cost
Although the line shapes of the PLS and PCA components are desirable. Although each spectrum takes only a few sec-
extracted from the fluorescence and diffuse reflectance spectreonds to measure, hardware changes between measurements
were found to be generally similar, the PLS components had increases the time for a single scan of eight fluorescence spec-
additional structural features that were not present in the PCAtra and one diffuse reflectance spectrum to a minute. If the
components. However, it is difficult to directly assign these system can be streamlined to include a subset of the wave-
features to particular fluorophores and chromophores in thelengths evaluated in this studguch as the integrated inten-
tissue. This is due to the fact that these linear models do notsity at a single excitation wavelengttthe measurement and
accurately describe the nonlinear relationship between fluo- data processing time can be significantly reduced to enable
rescence, absorption, and scattering in turbid media such ashear-real-time implementation of this technology during a
tissue. Moreover, a component can be multipliedHdy with- clinical procedure.
out affecting the decomposition model. Thus, peaks in the  Note that the number of nonmalignant samgles- 34) is
PCA/PLS components could correspond to peaks or valleys inmuch greater than that of malignant samp(las- 13) in this
a given spectrum, making it difficult to assign the spectral study. The principal idea of an SVM is to determine an opti-
features to particular fluorophores or chromophores in the tis- mal hyperplane that maximizes the margin between two
sue. classes, and equalize the distances of the misclassified

Typically, the optical spectral features of different tissue samples in each class from the separation boundary. For a
types are not completely separable, and a nonlinear SVM is poorly separable cagas in Fig. %b)] and when the numbers
expected to be superior to a linear SVM classification in deal- of elements in the two classes are unbalanced, a large number
ing with such nonseparable cases. However, using the sameof samples from each class become support ve¢ters mar-
data reduction technique, PCA or PLS, the classification rates,ginal samples and it is likely that most samples from the
sensitivities, and specificities provided by linear and nonlinear class that has much fewer elemefits this case, the malig-
SVMs did not differ significantly. On the other hand, linear nant tissueswill be misclassified. This would result in a high
SVM classification associated with PLS data reducti®hS- specificity, but very low sensitivity. However, for the case
SVM) provided higher classification accuracy than linear where sample clusters are separdbig. 5a)], it is less likely
SVM associated with PCA data reductiG@CA-SVM) (Table that the sensitivity and specificity are sensitive to the number
4). This suggests that the improvement in the classification of samples in each class. This also likely explains the high
accuracy is more heavily dependent on the data reductionspecificity and low sensitivity achieved when diffuse reflec-
technique. An alternative approach to improving the classifi- tance spectra alon@able 5 rather than the combination of
cation accuracy could be to employ physical models to extract fluorescence and diffuse reflectance spe€fi@ble 4 were
tissue optical and fluorescence properties that are diagnosti-used for discriminating between malignant and nonmalignant
cally useful?® This will be explored in future studies. breast tissues. The three PCs extracted from diffuse reflec-

In this study, fluorescence and diffuse reflectance spectratance spectra showed statistically smaller differences between
were measured from breast tissues with a multiseparation fi- malignant and nonmalignant tissugs<0.05 compared to
ber optic probe. This probe has three illumination-collection the three PCs extracted from fluorescence and diffuse reflec-
separations, which enable optical spectra to be measured frontance spectrgp<<0.0095. To verify this explanation, data
different depths within the tissue. The classification accuracy analysegusing spectral intensity ratios onlwere carried out
achieved with PCA-SVM or PLS-SVM did not differ signifi-  on a subset of spectral data, which included balanced malig-
cantly between the three illumination-collection separations. nant and nonmalignant samples. In this data set, only half of
This is likely due to the facts thdtl) the probing depth is  the normal/benign fibrous sampl€d and half of normal adi-
expected to increase only modestly with increasing pose samplegl0) were retained, and the number of malignant
illumination-collection separatiotbased on the Monte Carlo  samples versus nonmalignant samples was 13:17. The classi-
simulation results in Table)2and (2) there is no apparent fication results indicated that for the separable c¢ase fluo-
structural change in breast tissue with increasing depth thatrescence at an excitation wavelength of 300 ritme sensitiv-
could be captured with different illumination-collection sepa- ity and specificity achieved with the balanced data(6&t54
rations. and 82.35%, respectivelyare comparable to that achieved
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with the unbalanced data s€69.23 and 88.24%, respec-
tively). However, for the nonseparable case, there was a sig-
nificant disparity in the sensitivities and specificities achieved
with the balanced and unbalanced data s&3.85 and
68.75% for the balanced data set versus 0 and 100% for un-
balanced data setln summary, when sample clusters are
separable, the sensitivity and specificity do not appear to be
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highly sensitive to the number of samples in each class. How- References

ever, when samples are poorly separable, it is likely that the 1
specificity overwhelms the sensitivity when there are too
many nonmalignant versus malignant samples. This suggests
that in the poorly separable case, a balanced data set for each
class would be desirable to avoid a bias toward the classifica- 2.
tion of one tissue type.

The statistical data analyses described in this paper dem- 5
onstrates that malignant and nonmalignant breast tissues can
be discriminated using either a subset of fluorescence and
diffuse reflectance spectra measured with a single
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