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Abstract. We explore the effects of the illumination and collection
geometry on optical spectroscopic diagnosis of breast cancer. Fluores-
cence and diffuse reflectance spectroscopy in the UV-visible spectral
range are made with a multiseparation probe at three illumination-
collection separations of 735, 980, and 1225 mm, respectively, from
13 malignant and 34 nonmalignant breast tissues. Statistical analysis
is carried out on two types of data inputs: (1) the fluorescence and
diffuse reflectance spectra recorded at each of the three illumination-
collection separations and (2) the integrated fluorescence (at each ex-
citation wavelength) or diffuse reflectance over the entire spectrum at
all three illumination-collection separations. The results show that us-
ing the integrated fluorescence intensities recorded at a single excita-
tion wavelength at all three illumination-collection separations can
discriminate malignant from nonmalignant breast tissues with similar
classification accuracy to that using spectral data measured at several
excitation wavelengths with a single illumination-collection separa-
tion. These findings have significant implications with respect to the
design of an optical system for breast cancer diagnosis. Examining the
intensity attenuation at a single wavelength rather than spectral inten-
sities at multiple wavelengths can significantly reduce the measure-
ment and data processing time in a clinical setting as well as the cost
and complexity of the optical system. © 2005 Society of Photo-Optical Instru-
mentation Engineers. [DOI: 10.1117/1.1897398]
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1 Introduction
Surgical biopsy and core needle biopsy are commonly use
for the diagnosis of breast lesions. Compared to surgical bi
opsy, core needle biopsy is less invasive, less expensiv
faster, and requires a shorter time for recovery. However, it
sampling accuracy is limited because only a few small piece
of tissue are sampled from random locations in the suspiciou
mass. Consequently the needle biopsy procedure has1 a false-
negative rate of 1 to 7% when verified with follow up mam-
mography, and repeat biopsies are required in 9 to 18% o
patients.2,3

Optical spectroscopy has been increasingly investigated a
a tool for breast cancer diagnosis.4 In particular, several stud-
ies have demonstrated that there are significant differences
the UV-visible~UV-VIS! fluorescence and diffuse reflectance
spectra of normal, benign, and malignant breast tissues.5–14 In
addition, this technique is fast, quantitative, and nondestruc
tive. There are important benefits to be reaped by incorpora
ing optical spectroscopy as an adjunct diagnostic modality to
core needle biopsy. This technology can be deployed throug
fiber optic probes to quickly and nondestructively identify the
tissue type~normal, benign, and malignant! at the needle tip
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during a breast biopsy procedure. A positive reading from
optical measurement will potentially increase the likeliho
that a biopsy is being sampled from a tumor site. If the opti
measurement reads negative, then the needle can be re
tioned~along the needle track! to a new tissue site. Currentl
6 to 24 biopsies are taken during a core needle biopsy pr
dure. If the optical method can maximize sampling from t
sue sites that are most likely to be cancerous, and minim
unnecessary removal of many normal tissues, it could m
the breast biopsy procedure more accurate, less traumat
the patient, and also reduce the number of biopsies that m
be processed to obtain a confirmatory diagnosis. Additiona
if optical spectroscopy proves to be an effective way of ide
tifying cancerous sites, it can be incorporated into mu
smaller needles than the 11 gauge Mammotome needle~for
example, the 21 gauge needle used for fine needle aspira!
and thus make this procedure as minimally invasive
possible.

Gupta et al.12 and Majumder et al.11 analyzed different
spectral data sets collected from the same set of breast tis
ex vivoand showed that the fluorescence emission spectr
excitation wavelengths of 340 and 488 nm and excitat
spectra at emission wavelengths of 390 and 460 nm exh
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Zhu et al.
differences between normal, benign, and malignant tissue
Using integrated emission intensities at 340-nm excitation in a
binary classification scheme, they were able to differentiate
malignant from normal and benign tissues with a sensitivity
and specificity of 98%. The fluorescence was attributed to th
endogenous fluorophores, reduced nicotinamide adenine d
nucleotide~NADH! and collagen. Yang et al.5,7,8 showed that
fluorescence emission spectra at 300-nm excitation and exc
tation spectra at 340-nm emission could be used to discrim
nate between malignant and normal fibrous tissues, but no
between malignant and normal adipose tissues. They foun
for example, that the ratio of normalized intensities at 268-
and 289-nm emission~of the 300-nm excitation spectra! dis-
criminated between malignant and normal fibrous tissues wit
a sensitivity of 93% and specificity of 95%. The primary en-
dogenous fluorophore in tissue probed at these excitation an
emission wavelengths is tryptophan.

Nonfluorescent absorbers and scatterers in breast tissu
also contribute in part to differences observed in the fluores
cence spectra of normal, benign, and malignant tissues. Di
fuse reflectance provides a measure of tissue absorption a
scattering. Several groups have explored the utility of diffuse
reflectance spectroscopy between 250 and 800 nm, for brea
cancer detectionex vivo6,8,9,13 and in vivo.9,14 Bigio et al.14

measured the diffuse reflectance spectra through a core biop
needle and during breast cancer surgery and showed that th
technique can differentiate malignant from normal tissues
with a sensitivity of 60 to 70% and a specificity of 85 to 95%.
This collection of studies shows that diffuse reflectance spec
tra can be used to differentiate malignant from normal tissues
Changes in diffuse reflectance of malignant tissues are likel
due to increased protein and hemoglobin absorption, in
creased scattering and decreasedb-carotene absorption.

In these previous studies, either fluorescence or diffuse re
flectance was used for identification of malignancy. In the
case of fluorescence, spectra were measured only at one
several excitation wavelengths. Palmer et al.10 measured the
fluorescence spectra~at a total of nine excitation wavelengths
in the UV-VIS spectrum! and the UV-VIS diffuse reflectance
spectra of freshly excised breast tissues. Using a multivariat
statistical algorithm, they found that 4 out of the 10 measured
spectra were sufficient to maximize the discrimination be-
tween malignant and nonmalignant tissues. These include
fluorescence emission spectra at excitation wavelengths o
300, 400, 420, and 460 nm.

The study described in this paper builds on the work by
Palmer et al.10 The primary goal of this study is to explore the
effects of the illumination and collection geometry on the op-
tical spectroscopic diagnosis of breast cancer. The illumina
tion and collection geometry is an important component of
tissue optical spectroscopy and currently, fiber optic probe
are most commonly used for this purpose. In previous studies
fiber optic probes with only one fixed separation between the
illumination and collection fibers were employed for optical
spectroscopy of the breast.5–14 These probes provided a fixed
optical sensing depth in tissue. In this study, fluorescenc
spectra at a total of eight excitation wavelengths and UV-VIS
diffuse reflectance spectra were measured from breast tissu
with a multiseparation fiber optic probe. This probe has three
illumination and collection separations, which enable optica
spectra to be measured from different depths within the tissue
024032Journal of Biomedical Optics
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The fluorescence/reflectance signal attenuates with increa
probing depth in tissue~due to the increased path length of th
photons!. Thus, the multiseparation fiber optic probe can me
sure the attenuation characteristics of the fluorescence
reflectance measured from the breast. Two different type
data sets were collected in this study for statistical analy
~1! the fluorescence and diffuse reflectance spectra record
each of the three illumination-collection separations~or syn-
onymously, different optical sensing depths! and~2! the fluo-
rescence~at each excitation wavelength! or diffuse reflectance
integrated over the entire spectrum as a function
illumination-collection separation~which reflects the attenua
tion of light within the tissue!. The statistical analysis of both
types of data sets showed that the integrated fluorescenc
tensities at a single excitation wavelength recorded at all th
illumination-collection separations discriminates maligna
from nonmalignant breast tissues with a similar classificat
accuracy compared to spectral data measured at several
tation wavelengths with a single illumination-collection sep
ration. These findings have significant implications. Exam
ing the intensity attenuation at a single wavelength rather t
spectral intensities at multiple wavelengths~the entire spec-
trum! could significantly reduce the acquisition time as w
as the cost and complexity of an optical system for bre
cancer diagnosis. This study, together with our previo
study,10 provides important information on the utility of opti
cal spectroscopy for breast cancer diagnosis during c
needle biopsy.

2 Methods
2.1 Ex Vivo Sample Collection and Handling
The breast tissue optical spectroscopy study was approve
the Institutional Review Boards at the University o
Wisconsin–Madison. Breast tissue samples were obta
from patients undergoing either a lumpectomy, mastecto
or breast reduction surgery. Fluorescence and diffuse re
tance spectra were measured on the freshly excised b
tissues within 2 h after surgical excision. A previous stud
carried out by our group15 showed thatex vivospectra mea-
sured within 2 h after excision provide a relatively close a
proximation of in vivo spectra. During the tissue measur
ment, the fiber optic probe was placed in direct contact w
the tissue surface. After each measurement, the exact sit
each tissue sample where the probe was placed was in
and transverse sections were cut and stained for histopa
ogy. Microscopic evaluation was performed on each histolo
cal section by a board-certified pathologist~FX! and a diag-
nosis was established. In addition, the thickness of e
sample was measured from the top~where the ink spot was
located! to the bottom of the hematoxylin and eosin~H&E!
stained section. Based on the histological breakdown, e
sample was broadly classified as normal, benign, or ma
nant. A total of 47 tissue samples, including 13 malignant,
normal, and 2 benign specimens, were collected from a t
of 18 patients. Table 1 shows the histological breakdown
the 47 samples examined in the breast tissue optical spec
copy study. For samples obtained from lumpectomies
mastectomies, the average tissue thickness was 5.662.0 mm.
Sixteen percent of the samples had a thickness of;4 mm, 8%
had a thickness of;4.5 mm, and the rest had a thickne
-2 March/April 2005 d Vol. 10(2)
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Table 1 The histological breakdown of the 47 samples examined in the breast tissue optical spectros-
copy study.

Histological Breakdown Subcategory Number of Samples

Malignant tissues Invasive ductal carcinoma (IDC) 7 13

Invasive lobular carcinoma (ILC) 4

Ductal carcinoma in situ (DCIS) 2

Normal Fibrous 12 32

Adipose 20

Benign 2 2

Total 47
-

e
l
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ol-
ers
greater than 5 mm. All samples obtained from breast reduc
tion surgeries had a thickness of at least a centimeter.

2.2 Optical Spectrometer and Fiber Optic Probe
Fluorescence and diffuse reflectance spectra were measur
using a fiber optic probe coupled to a multiwavelength optica
spectrometer. Figure 1~a! shows the schematic of the optical
spectrometer and Fig. 1~b! shows common end of the fiber
optic probe that comes in contact with the tissue~the black
r
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circles correspond to the illumination fibers, the gray circ
correspond to the collection fibers which form the three c
lection rings, and the white circles correspond to dead fib
for bundle packing!. The spectrometer@Fig. 1~a!# consists of a
450-W xenon lamp~FL-1039, J.Y. Horiba!, a scanning
double-excitation monochromator~Gemini 180, J.Y. Horiba!,
a bifurcated fiber optic probe~multimode fibers!, a filter
wheel, an imaging spectrograph~Triax 320, J.Y. Horiba!, and
a CCD camera~CCD3000, J.Y. Horiba!. The common end of
the fiber optic probe@Fig. 1~b!#, which has an outer diamete
of 3 mm, consists of an 1180-mm-diam illumination core and
three concentric collection rings surrounding the core. T
illumination core is made up of 19 fibers, each of which ha
core/cladding diameter of 200/245mm and a numerical aper
ture~NA! of 0.22. Each collection ring has 12 live fibers, ea
with a core/cladding diameter of 200/245mm and an NA of
0.22. The remaining fibers are dead fibers of the same size
bundle packing. The illumination diameter maximizes t
coupling efficiency from the light source, and the SNR for t
fluorescence measurements. The output signals from the t
concentric rings of collection fibers are spatially separated
the CCD chip, thereby enabling fluorescence and diffuse
flectance spectra to be measured at three illuminati
collection separations simultaneously. The illuminatio
collection separation is defined as the distance from the ce
of illumination core to the center of collection fiber in eac
ring. The three illumination-collection separations in th
fiber-optic probe are 735, 980, and 1225mm.

Next, Monte Carlo simulations16 of diffuse reflectance
were carried out to verify that the average thickness of tis
samples collected from patients undergoing lumpectomies
mastectomies provides a semi-infinite geometry for diffu
reflectance spectroscopy measurements with the multisep
tion probe. Simulations were carried out on a homogene
tissue model with absorption coefficients of 1 to 10 cm21,
scattering coefficients of 108 to 176 cm21, and an anisotropy
factor of 0.926. The range of optical properties used is wit
that representative of breast tissues in the UV-VIS spectrum17

The simulated medium was cylindrically shaped with a thic
ness of 4 mm, which represented the minimum thickness
the tissue samples. In each simulation, the photons w
launched at random, uniformly distributed locations ove
range of angles defined by an NA of 0.22 and over a circu
Fig. 1 (a) Schematic of the optical spectrometer and (b) common end
of the fiber optic probe that comes in contact with the tissue (the black
circles correspond to the illumination fibers, the gray circles corre-
spond to the collections fibers that form the three collection rings, and
the white circles correspond to dead fibers for bundle packing).
-3 March/April 2005 d Vol. 10(2)



Zhu et al.
Table 2 The 80% probing depth and the percent fluorescence detected with the three illumination-collection pairs of the multiseparation probe
from a homogeneous fluorescent medium, with (a) variable absorption coefficients (ma) and a fixed scattering coefficient (ms), and (b) variable
scattering coefficients and a fixed absorption coefficient. The anisotropy factor (g) of the medium was set to 0.926.

(a)

Optical Properties

80% Probing Depth
(mm)

Percent Fluorescence Detected
(31024)

lexc
ms5110.4 cm21

lemm
ms5104.3 cm21

ma (cm21) QY ma (cm21) Inner Middle Outer Inner Middle Outer

1.312 0.762 0.994 1200 1400 1500 14.7 10.1 7.62

2.025 0.494 1.596 1100 1300 1400 17.7 11.6 8.46

5.286 0.189 4.352 900 1000 1100 21.6 11.7 7.16

10.316 0.097 8.580 700 800 900 18.5 7.92 4.00

14.427 0.069 12.012 650 700 800 15.4 5.28 2.30

19.191 0.052 16.043 550 600 700 11.9 3.54 1.26

21.236 0.047 17.754 550 550 550 10.6 2.72 1.03

31.812 0.031 26.517 400 500 500 6.38 1.23 0.292

(b)

Optical Properties

80% Probing Depth
(mm)

Percent Fluorescence Detected
(31024)

lexc
ma510.82 cm21

lemm
ma59.0 cm21

ms (cm21) QY ms (cm21) Inner Middle Outer Inner Middle Outer

50.0 1 47.2 800 1000 1050 12.3 4.60 2.34

75.0 1 70.8 800 900 1000 15.7 5.90 2.80

100.0 1 94.4 700 750 900 17.0 6.72 3.50

125.0 1 118.0 650 700 800 19.7 8.06 4.00

150.0 1 141.6 600 650 800 21.4 8.70 4.14

175.0 1 165.3 600 600 700 22.2 9.66 4.62

200.0 1 188.9 500 550 600 24.4 9.94 5.02

225.0 1 212.5 500 550 550 25.2 10.3 4.90

Note: QY is quantum yield, lexc is the excitation wavelength, and lemm is the emission wavelength.
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illumination area defined by the fiber bundle diameter. The
diffuse reflectance escaping the medium was collected over
circular area defined by the fiber diameter and over a range o
exit angles defined by an NA of 0.22. The refractive index
above the medium was set to 1.452 to simulate an optical fibe
and that below the medium was set to 1.0. The refractive
index of the medium was set to 1.37. The simulation results
showed that the light transmittance through the 4-mm-thick
sample was less than 5% for the range of optical propertie
used. Specifically, the light transmittance through the sampl
was 0.2% when the absorption and scattering coefficient wer
10 and 176 cm21, respectively, and 4.8% when the absorption
024032Journal of Biomedical Optics
f
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and scattering coefficients were 1 and 108 cm21, respectively.
These results indicate that the average tissue thickness
ported in this paper provides a semi-infinite geometry for d
fuse reflectance spectroscopy over the UV-VIS range. T
fluorescence emission spectra measured in this study o
within the same wavelength range.

To assess the probing depth and attenuation of the fluo
cence measured with the multiseparation probe, Monte C
simulations16 of fluorescence were carried out on a homog
neous tissue model with a wide range of optical properties
the UV-VIS spectrum~see Table 2!, an anisotropy factor of
0.926 at both the excitation and emission wavelengths, an
-4 March/April 2005 d Vol. 10(2)
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Use of a multiseparation fiber optic probe . . .
quantum yield of unity. The simulated medium was cylindri-
cally shaped with a thickness of 5 mm. Note that in real
tissue, the absorbers and fluorophores have distinct absorptio
coefficients and the fluorescence efficiency is solely related t
the product of the absorption coefficient and quantum yield o
the fluorophore. However, in the Monte Carlo simulations,
these two absorption coefficients are combined into a singl
absorption coefficient and the fluorescence efficiency is a
function of the overall absorption coefficient~contributed by
both absorbers and fluorophores!. Thus, in our Monte Carlo
simulations, when the absorption coefficient was varied at th
excitation wavelength, the quantum yield was appropriately
scaled to account for the mismatch in fluorescence efficienc
between real tissue and the simulated medium.16

Table 2 shows the 80% probing depth and the percent fluo
rescence detected with the three illumination-collection pairs
of the multiseparation probe from a homogeneous fluorescen
medium, with~a! variable absorption coefficients(ma) and a
fixed scattering coefficient(ms), and ~b! variable scattering
coefficients and a fixed absorption coefficient. The 80% prob
ing depth is defined as the depth above which 80% of the
detected fluorescent photons originate. The percent fluore
cence detected, which is a measure of the collection effi
ciency, is the number of fluorescent photons collected with a
single fiber in each collection ring, divided by the total num-
ber of incident photons~5 million!. In Table 2, the 80% prob-
ing depth varies from 400 to 1500mm. For a medium with
fixed optical properties, the probing depth increases, while th
percent fluorescence detected decreases with increasi
illumination-collection separation. For a fixed illumination-
collection separation, the probing depth decreases with in
creasing absorption or scattering, while the percent fluores
cence detected decreases with increasing absorption a
increases with increasing scattering, respectively.

In summary, for a given set of optical properties, the prob-
ing depth increases only modestly with increasing
illumination-collection separation, while the percentage of
fluorescence detected decreases significantly with increasin
illumination-collection separation, particularly for higher ab-
sorption and scattering coefficients. Thus, the multiseparatio
probe geometry can be used to measure the attenuation ch
acteristics of the fluorescence from breast tissues. It is ex
pected that this probe geometry will measure similar trends in
diffuse reflectance of the breast. One of the objectives in thi
paper is to explore whether the fluorescence/reflectance a
tenuation with increasing probing depth can be utilized for
discriminating malignant from nonmalignant breast tissues.

2.3 Optical Spectroscopy of Breast Tissues
Fluorescence emission spectra were recorded at eight excit
tion wavelengths ranging from 300 to 440 nm, in 20-nm in-
crements. The slit width of the excitation monochromator
~Gemini 180! was set to provide an excitation band pass of
6.2 nm. The output power at the common end of the fibe
optic probe was measured using a low power detector~New-
port 818-UV, Newport! connected to a handheld optical power
meter ~Newport 840-C, Newport! and ranged from 10 to 20
mW over the 300- to 440-nm excitation wavelength range. At
each excitation wavelength, fluorescence emission spect
were measured over a 260-nm wavelength range, with the firs
wavelength shifted by 20 nm from the excitation wavelength.
024032Journal of Biomedical Optics
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The slit width of the imaging spectrograph was set to prov
a spectral resolution of 7.9 nm. Each intensity-wavelen
point in the emission spectrum was binned over 18 pixels
the CCD chip, resulting in a wavelength increment of 4.7 n
The integration time for each fluorescence spectrum ran
from 0.12 to 2 s, depending on the excitation wavelen
used. The diffuse reflectance spectra were recorded from
to 600 nm. The slit widths of the excitation monochroma
and imaging spectrograph were chosen to provide bandpa
of 3.5 and 7.9 nm, respectively. Each intensity-wavelen
point in the diffuse reflectance was binned over 18 pixels
the CCD chip, resulting in a wavelength increment of 4.7 n
The integration time for each diffuse reflectance spectrum w
0.05 s. The overall acquisition time was approximately 1 m
for a single scan of eight fluorescence spectra and one dif
reflectance spectrum.

All fluorescence and diffuse reflectance spectra were c
brated in order to correct for the~1! background spectrum,~2!
wavelength dependence, and~3! throughput of the system
The background spectrum, which was measured with
probe immersed in distilled water using the same experim
tal setup for optical spectroscopy of tissue, was first s
tracted point-by-point from each spectrum prior to furth
calibration. The fluorescence emission spectral intensitie
each excitation wavelength were normalized to the output
citation power, to account for the wavelength-depend
variation of the excitation light intensity. The fluorescen
spectrum was then corrected for the wavelength-depen
response of the collection fibers, imaging spectrograph
CCD camera, by multiplying it point-by-point by the corre
tion factors measured using a National Institute of Standa
and Technology~NIST! tungsten calibration lamp. This pro
cedure also corrected for differences in the collection e
ciency of each collection ring. Finally, each fluorescen
spectrum was divided by the peak fluorescence inten
~excitation-emission wavelength of 460 to 580 nm! measured
with the probe placed on the face of a quartz cuvette cont
ing a solution of Rhodamine B~2.14mM! dissolved in ethyl-
ene glycol~115H3423, Sigma Chemical Co., Missouri! using
the same integration time, to account for the time-depend
changes in the throughput of the instrument. The diffuse
flectance spectrum was calibrated for the waveleng
dependent response and the throughput of the system by
malizing it to the diffuse reflectance spectrum measured w
the common end of the fiber optic probe inserted into an
tegration sphere~DRA-CA-30I, Labsphere, Inc., New Hamp
shire!.

2.4 Data Analysis
Statistical analysis was carried out on two types of data
puts: ~1! the fluorescence and diffuse reflectance spectra
corded at each of the three illumination-collection separati
and ~2! the fluorescence~at each excitation wavelength! or
diffuse reflectance intensity integrated over the entire sp
trum as a function of illumination-collection separation.
multivariate statistical algorithm similar to the one develop
previously by our group10 was used for input 1. All data
analyses were carried out using a self-programmed Ma
code.
-5 March/April 2005 d Vol. 10(2)
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Zhu et al.
2.4.1 Spectral analysis at each of the three
illumination-collection separations
Briefly, the multivariate statistical algorithm consists of four
steps.10 First, the spectral data are preprocessed to minimiz
interpatient variations and variations due to probe-tissue con
tact, by normalizing each spectrum to a specific intensity-
wavelength point in the spectra or the integrated spectral in
tensity. Particularly, the fluorescence spectra were eac
normalized to their peak intensity and the diffuse reflectance
spectra were normalized to their integrated intensity. Second
the spectral data are dimensionally reduced using a multivar
ate analysis technique, such as principal componen
analysis.18 The third step is to perform feature extraction, i.e.,
identify the principal components~PCs! that show the statis-
tically most significant differences between malignant and
nonmalignant breast tissues using a Wilcoxon rank-sum test.19

The fourth step is to use a support vector machine~SVM!
algorithm20 to classify each sample as malignant or nonmalig-
nant based on their PC scores.

Data obtained in the clinical study can be divided into
‘‘independent’’ and ‘‘dependent’’ variables. The ‘‘indepen-
dent’’ variables are in the spectral data matrixX, where each
row corresponds to the preprocessed fluorescence or refle
tance spectrum of a tissue sample and each column corr
sponding to preprocessed spectral intensity at a specific wav
length. The ‘‘dependent’’ variableY is a binary variable that
represents the histological diagnosis of each sample, with
for malignant tissues and 0 for nonmalignant~benign and nor-
mal! tissues. Two multivariate statistical analysis techniques
principal component analysis18 ~PCA! and partial least-
squares~PLS! regression21 were employed for spectral data
reduction. Both methods project the set of spectra onto a sub
space expanded by the principal components to represent t
spectral data with a few variables, which account for most o
the variance in the original spectral data set.

In PCA, the set of independent variables~X! were used for
extraction of the PCs, that is, spectra measured from all tissu
samples regardless of histological diagnoses were pooled t
gether to extract the PCs. The PCs were calculated such th
the first principal component~PC1! accounts for the largest
amount of the total variance of the input data. The second PC
~PC2! accounts for the second largest amount of the varianc
while being orthogonal to PC1, and so on.

PLS is a regression method,21 where both the independent
~X! and dependent~Y! variables are utilized in calculating the
PCs. The PLS regression procedure searches for a set of co
ponents that performs a simultaneous decomposition ofX and
Y with the constraint that these components explain as muc
of the covariance betweenX and Y. This amounts to deter-
mining two sets of weightsw andc to create a linear combi-
nation of the columns ofX andY such that their covariance is
maximal. Specifically, a pair of vectorst5Xw andu5Yc are
obtained with the constraint thattTu is maximal ~where the
superscriptT denotes the matrix transpose!. Whent has con-
verged, it is used to compute the principal component,p for
X, wherep5XTt ~again the superscriptT denotes the matrix
transpose!. When the first PC~PC1! is found, the spectral data
explained by this PC is subtracted from bothX andY, and the
procedure is repeated. That is, additional PCs are calculate
from residuals, which account for the portion of input data
024032Journal of Biomedical Optics
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that were not accounted for by the previously extracted P
The use of dependent variables~histological diagnoses! in

PLS gives rise to the difference between PCA and PLS. P
provides PCs that account for most of the spectral varian
however, some of these components may not necessaril
relevant to the diagnoses of the tissue samples. PLS look
PCs that not only account for a large amount of the varian
but also those that are most relevant to the known histolog
the samples.

In this study, PCA and PLS were performed on all fluore
cence spectra, one excitation wavelength at a time and s
rately on the diffuse reflectance spectra to generate a se
PCs for each spectral data set. Rather than retaining all o
PCs, only a subset of PCs was retained for further data
cessing. In the case of PCA, the PCs that account for 95%
the total spectral variance were retained for further analy
In the case of PLS, the first five PCs of each spectrum w
retained, which account for 95 to 99% variance in the spec
data. In both cases, the original spectrum could be faithfu
approximated using the linear combination of the selec
subset of PCs.

The scores of the selected PCs extracted from either fl
rescence or diffuse reflectance spectra, were then pooled
gether for a Wilcoxon rank-sum test. The Wilcoxon rank-su
test was used to determine which PCs showed the statistic
most significant differences between malignant and nonma
nant breast tissues. The scores of three statistically most
nificant PCs obtained using either PCA or PLS were retain
as inputs for classification. SVMs, including the linear SV
and the nonlinear SVM@e.g., polynomial SVM and a radia
basis function~RBF! SVM ~Ref. 20!# were employed as clas
sification schemes to specify a particular sample as malign
or nonmalignant. Finally, the unbiased performance of
PCA-SVM and PLS-SVM algorithms was evaluated using
‘‘leave-one-out’’ scheme.22

2.4.2 Integrated spectral intensity analysis
Integrated spectral intensities were first obtained by integ
ing the intensities over the entire spectrum for each fluor
cence spectrum and the diffuse reflectance spectrum at a
cific collection ring. Then intensity ratios were calculated
normalizing the integrated intensity recorded from each c
lection ring to that from the inner collection ring~shortest
illumination-collection separation!. Thereby two intensity ra-
tios were obtained for each spectrum, i.e., the intensity ra
of the middle and inner ring~middle-to-inner intensity ratio!
and the intensity ratio of the outer and inner ring~outer-to-
inner intensity ratio!. The middle-to-inner and the outer-to
inner intensity ratios of each spectrum~two variables! were
then input to the SVM classifier for discriminating betwee
malignant and nonmalignant tissues. An unbiased evalua
on the algorithm’s performance was obtained using the lea
one-out scheme.22

3 Results
Figure 2 shows the average excitation emission matri
~EEMs! of malignant (n513), normal/benign fibrous(n
514), and normal adipose(n520) tissues. Figures 2~a! to
2~c! correspond to the average EEMs of malignant tiss
measured with the inner@Fig. 2~a!#, middle @Fig. 2~b!#, and
-6 March/April 2005 d Vol. 10(2)



Use of a multiseparation fiber optic probe . . .
Fig. 2 Average EEMs of malignant (n513), normal/benign fibrous (n514), and normal adipose (n520) tissues, where (a) to (c) correspond to the
average EEMs of malignant tissues measured with the (a) inner, (b) middle, and (c) outer collection rings, respectively, and (d) and (e) correspond
respectively to average EEMs of normal/benign fibrous and normal adipose tissues measured with the inner collection ring. All figures are plotted
on a log scale.
ca-
e-
outer @Fig. 2~c!# collection rings, respectively, and Figs. 2~d!
and 2~e! correspond, respectively, to average EEMs of
normal/benign fibrous and normal adipose tissues measure
with the inner collection ring. All figures are plotted on a log
024032Journal of Biomedical Optics
d

scale. Average EEMs of malignant tissues@Figs. 2~a! to 2~c!#
show that four peaks are visible and appear at similar lo
tions in all three EEMs, i.e., at excitation-emission wav
length pairs of 3002340, 3402390, 360/3802460, and
-7 March/April 2005 d Vol. 10(2)
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Fig. 3 (a) Average diffuse reflectance spectra of (a) malignant breast
tissues (n513) measured with the inner, middle, and outer rings and
(b) malignant (n513), normal/benign fibrous (n514), and normal
adipose tissues (n520) measured with the inner ring.
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4402520 nm. As expected, the fluorescence intensity at eac
peak location decreases from the inner ring to the outer ring
Such a decrease in fluorescence intensity is also observed
the EEMs of normal/benign fibrous and normal adipose tis
sues measured with three collection rings~not shown here!.
The average EEM of normal/benign fibrous tissues measure
with the inner ring@Fig. 2~d!# has the same four peaks as the
malignant tissue EEM measured with the inner ring@Fig.
2~a!#. However, the average adipose tissue EEM measure
with the inner ring@Fig. 2~e!# displays distinct differences,
024032Journal of Biomedical Optics
.
n

with a weak presence of the 3402390-nm peak and a red shif
in the peak at 3602460 nm to approximately 3602500 nm.

Figure 3~a! displays the average diffuse reflectance spec
of malignant breast tissues(n513) measured with the inner
middle, and outer rings, and Fig. 3~b! shows the average dif
fuse reflectance spectra of malignant(n513), normal/benign
fibrous (n514), and normal adipose tissues(n520) mea-
sured with the inner ring. In each spectrum, five valleys
notable at 350, 420, 470, 540, and 570 nm. The valleys at 4
540, and 570 nm correspond to hemoglobin absorption,
one at 350 nm corresponds to NADH, and the one at 470
can be assigned tob-carotene. In Fig. 3~a!, the diffuse reflec-
tance intensity measured from malignant breast tissues
creases from the inner collection ring to the outer collect
ring, particularly in the wavelength range above 450 nm. Su
a decrease is also observed in diffuse reflectance spect
normal/benign fibrous and normal adipose tissues meas
with the three collection rings~not shown here!. A comparison
of spectral intensities for the three tissue types, measured
the inner ring@Fig. 3~b!# shows that fibrous tissues have th
highest average diffuse reflectance intensity, while adip
tissues have the lowest average diffuse reflectance intens

PCA and PLS were carried out on the fluorescence
diffuse reflectance spectra measured with each of the t
collection rings to obtain a set of PCs that faithfully represe
the spectral data. Table 3 shows the three statistically m
significant PCs for each collection ring, identified by a W
coxon rank-sum test from the two sets of PCs obtained fr
the PCA and PLS analyses. All the PCs here display stat
cally significant differences between malignant and nonma
nant tissues below a significance level ofp,0.005.The three
most significant PCs obtained from PLS analysis were
tracted from fluorescence spectra at 320- and 420-nm ex
tions and from the diffuse reflectance spectra. The three m
significant PCs obtained from PCA analysis were extrac
from fluorescence spectra at 320-, 420-, 300-, and 340
excitation and from the diffuse reflectance spectra.

Table 4 shows the overall classification rate, sensitiv
and specificity achieved with the linear SVM for discrimina
ing between malignant and nonmalignant breast tissues u
the three statistically most significant PCs~obtained from
PCA and PLS analysis! for each collection ring. Note that in
several cases, particularly in the case where PLS analysis
used, the three most significant PCs included those obta
from both diffuse reflectance and fluorescence spectra.
classification accuracy achieved with PCA-SVM or PL
SVM did not differ significantly between the three collectio
rings. However, for spectral data acquired by a given coll
Table 3 The three statistically most significant PCs for each collection ring, identified by a Wilcoxon rank-sum test from the two sets of PCs
obtained from the PCA and PLS analyses.

PCA →Increasing Significance PLS →Increasing Significance

Inner 420 nm, PC1 320 nm, PC1 reflectance, PC4 Inner 420 nm, PC1 reflectance, PC1 320 nm, PC1

Middle 320 nm, PC1 420 nm, PC1 340 nm, PC1 Middle 420 nm, PC1 reflectance, PC1 320 nm, PC1

Outer 320 nm, PC1 300 nm, PC3 420 nm, PC1 Outer 420 nm, PC1 reflectance, PC1 320 nm, PC1

All the PCs here display statistically significant differences between malignant and nonmalignant tissues below a significance level of p,0.005.
-8 March/April 2005 d Vol. 10(2)
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Use of a multiseparation fiber optic probe . . .
tion ring, the PLS-SVM algorithm achieved consistently
higher classification accuracy than the PCA-SVM algorithm.
It was also found that the overall classification rate, sensitiv
ity, and specificity obtained using nonlinear SVM classifica-
tion ~polynomial SVM and RBF SVM! did not differ signifi-
cantly from that obtained using linear SVM classification~not
shown here!.

Table 5 shows the overall classification rate, sensitivity,
and specificity achieved with linear SVM for discriminating
between malignant and nonmalignant breast tissues using th
three statistically most significant PCs extracted from PLS
analysis of the diffuse reflectance spectra measured with eac
collection ring. The three PCs show statistically significant
differences between malignant and nonmalignant tissues b
low a significance level ofp,0.05.Only the results from the
PLS-SVM algorithm are shown, since this approach yields
superior results compared to the PCA-SVM algorithm. The
overall classification rate did not differ significantly between
the different collection rings. In addition, the specificity was
higher than the sensitivity for all three collection rings. A
comparison of the classification accuracy achieved using~1!
combined fluorescence and reflectance spectra~Table 4! ver-
sus ~2! reflectance spectra only~Table 5! indicates that the
overall classification rates do not differ significantly for these
two cases. However, the sensitivity is consistently higher fo
the former, while the specificity is consistently higher for the
latter.

Figure 4 shows the average integrated spectral intensit

Table 4 The overall classification rate, sensitivity and specificity
achieved with linear SVM for discriminating between malignant and
nonmalignant breast tissues using the three statistically most signifi-
cant PCs (obtained from PCA and PLS analysis) for each collection
ring.

PCA+Linear SVM PLS+Linear SVM

Inner Middle Outer Inner Middle Outer

Classification
rate (%)

78.72 65.96 57.45 82.98 82.98 80.85

Sensitivity (%) 38.46 30.77 15.38 61.54 69.23 69.23

Specificity (%) 94.12 79.41 73.53 91.18 88.24 85.29

Table 5 The overall classification rate, sensitivity, and specificity
achieved with linear SVM for discriminating between malignant and
nonmalignant breast tissues using the three statistically most signifi-
cant PCs extracted from PLS analysis of the diffuse reflectance spectra
measured with each collection ring.

PLS+Linear SVM

Inner Middle Outer

Classification rate (%) 80.85 78.72 85.11

Sensitivity (%) 53.85 30.77 46.15

Specificity (%) 91.18 97.06 100
024032Journal of Biomedical Optics
e
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ratios and standard deviations for fluorescence spectr
300-nm excitation@Fig. 4~a!# and diffuse reflectance spectr
@Fig. 4~b!# of malignant(n513), normal/benign fibrous(n
514), and normal adipose tissues(n520). For fluorescence
at 300-nm excitation, the average values of middle-to-in
ratio and outer-to-inner ratio were 0.2960.12 and 0.2160.06,
respectively, for malignant tissues; 0.3560.08 and 0.2560.04
for normal/benign fibrous tissues; and 0.4960.09 and 0.35
60.06 for normal adipose tissues. For the diffuse reflectan
the average values of middle-to-inner ratio and outer-to-in
ratio were 0.5260.08 and 0.4860.07, respectively, for malig-
nant tissues; 0.4860.07 and 0.4360.05 for normal/benign fi-
brous tissues; and 0.6260.08 and 0.5960.12 for normal adi-
pose tissues. As expected, the spectral intensity ratios of
fluorescence and diffuse reflectance decrease with increa
illumination-collection separation. Furthermore the decre
~attenuation! in spectral intensity is greater from inner ring t
middle ring than from middle ring to outer ring. Also, th
attenuation in spectral intensity is different for different tiss
types. In particular, normal adipose tissues undergo less
tenuation relative to normal/benign fibrous and malignant
sues. Spectral intensity ratios at the other seven excita
wavelengths are not shown here, but display a similar pat

Fig. 4 Average integrated spectral intensity ratios and standard devia-
tions for (a) fluorescence spectra at 300-nm excitation, and (b) diffuse
reflectance spectra of malignant (n513), normal/benign fibrous (n
514), and normal adipose tissues (n520).
-9 March/April 2005 d Vol. 10(2)
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Table 6 The overall classification rate, sensitivity, and specificity achieved with linear SVM for discriminating between malignant and nonmalig-
nant tissues using the middle-to-inner and outer-to-inner intensity ratios for fluorescence collected at different excitation wavelengths and for the
diffuse reflectance.

300 nm 320 nm 340 nm 360 nm 380 nm 400 nm 420 nm 440 nm Refl.

Classification rate (%) 82.98 78.72 78.72 78.72 68.09 68.09 65.96 61.70 72.34

Sensitivity (%) 69.23 61.54 53.85 61.54 23.08 23.08 0 0 0

Specificity (%) 88.24 85.29 88.24 85.29 85.29 85.29 91.18 85.29 100
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to that observed at an excitation wavelength of 300 nm. Wil-
coxon rank-sum tests showed that the middle-to-inner an
outer-to-inner intensity ratios of fluorescence at 300-nm exci
tation displayed statistically significant differences between
malignant and nonmalignant tissues below a significance leve
of p,0.005.The same test indicated that the middle-to-inner
and outer-to-inner intensity ratios of diffuse reflectance did
not display statistically significant differences between malig-
nant and nonmalignant tissues(p,0.5).

Table 6 shows the overall classification rate, sensitivity,
and specificity achieved with linear SVM for discriminating
between malignant and nonmalignant tissues using th
middle-to-inner and outer-to-inner intensity ratios for fluores-
cence collected at different excitation wavelengths and for th
diffuse reflectance. The results show that classification usin
fluorescence spectral intensity ratios at 300-nm excitation pro
vides the highest classification accuracy, which is comparabl
to that obtained using the entire spectral input for a given
collection ring ~Table 4!. Using fluorescence at 320- to
360-nm excitation provides slightly lower classification accu-
racy, which is still comparable to that obtained using the en
tire spectral input for a given collection ring. When spectral
intensity ratios of either fluorescence at excitation wave-
lengths of 380 to 440 nm, or diffuse reflectance were used, th
classification yields high specificity, but very low sensitivity.

Figure 5 shows the scatter plots of the middle-to-inner and
outer-to-inner ratios for~a! fluorescence spectra at 300-nm
excitation @Fig. 5~a!# and ~b! diffuse reflectance spectra
@Fig. 5~b!# of malignant and nonmalignant breast tissues and
the corresponding hyperplanes obtained from linear SVM. In
the case of fluorescence at 300-nm excitation@Fig. 5~a!#, the
clusters of the spectral intensity ratios for the two tissue type
are separable. However, in the case of diffuse reflectance@Fig.
5~b!#, the clusters of spectral intensity ratios for the two tissue
types are nonseparable. Similar observations were made fro
scatter plots of spectral intensity ratios for fluorescence spec
tra at excitation wavelengths of 380 to 440 nm~not shown
here!.

4 Discussion
Optical spectroscopy in the UV-VIS spectral range shows dis
tinct differences between malignant and nonmalignant breas
tissues, and thus this technique has the potential to be used
a diagnostic tool for breast cancer. Statistical analysis of th
spectra indicated that the fluorescence spectra at excitatio
wavelengths of 300, 320, 340, and 420 nm and the diffuse
reflectance spectrum showed the statistically most significan
differences(p,0.005) between malignant and nonmalignant
024032Journal of Biomedical Optics
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breast tissues. A previous study by our group10 showed that
fluorescence spectra at excitation wavelengths of 300, 3
400, 420, 440, and 460 nm showed the statistically most
nificant differences between malignant and nonmalign
breast tissues(p,0.005). The excitation wavelengths identi
fied in this study are a subset of the wavelengths identifi
previously, except for the excitation wavelength of 340 n
Another difference is that in the previous study, the diffu
reflectance spectrum was not found to show statistically s
nificant differences between malignant and nonmalign
breast tissues.

Fig. 5 Scatter plots of middle-to-inner and outer-to-inner intensity ra-
tios for (a) fluorescence spectra at 300-nm excitation and (b) diffuse
reflectance spectra of malignant and nonmalignant breast tissues and
the corresponding hyperplanes obtained from the linear SVM.
-10 March/April 2005 d Vol. 10(2)
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Use of a multiseparation fiber optic probe . . .
Two statistical methods, PCA and PLS, were used in this
study for spectral data reduction. One of the differences be
tween PCA and PLS is that in PCA, the components are cho
sen so that maximal data variance is explained, while PLS
looks for not only components that describe as much of the
data variance as possible, but those that are also most releva
to the known group association of each sample. A linear SVM
algorithm based on PCs obtained from PLS outperformed tha
based on PCs obtained from PCA for spectra collected at a
three illumination-collection separations~Table 4!. To deter-
mine how different the PCs obtained from PCA and PLS are
for a given spectrum measured at a particular illumination-
collection separation, those extracted from fluorescence spe
tra at 320- and 420-nm excitation and from the diffuse reflec
tance spectra measured with the inner collection ring of the
fiber optic probe~see first row of Table 3! were compared.
Although the line shapes of the PLS and PCA component
extracted from the fluorescence and diffuse reflectance spect
were found to be generally similar, the PLS components ha
additional structural features that were not present in the PC
components. However, it is difficult to directly assign these
features to particular fluorophores and chromophores in th
tissue. This is due to the fact that these linear models do no
accurately describe the nonlinear relationship between fluo
rescence, absorption, and scattering in turbid media such a
tissue. Moreover, a component can be multiplied by21 with-
out affecting the decomposition model. Thus, peaks in the
PCA/PLS components could correspond to peaks or valleys i
a given spectrum, making it difficult to assign the spectral
features to particular fluorophores or chromophores in the tis
sue.

Typically, the optical spectral features of different tissue
types are not completely separable, and a nonlinear SVM i
expected to be superior to a linear SVM classification in deal
ing with such nonseparable cases. However, using the sam
data reduction technique, PCA or PLS, the classification rates
sensitivities, and specificities provided by linear and nonlinea
SVMs did not differ significantly. On the other hand, linear
SVM classification associated with PLS data reduction~PLS-
SVM! provided higher classification accuracy than linear
SVM associated with PCA data reduction~PCA-SVM! ~Table
4!. This suggests that the improvement in the classification
accuracy is more heavily dependent on the data reductio
technique. An alternative approach to improving the classifi-
cation accuracy could be to employ physical models to extrac
tissue optical and fluorescence properties that are diagnos
cally useful.23 This will be explored in future studies.

In this study, fluorescence and diffuse reflectance spectr
were measured from breast tissues with a multiseparation fi
ber optic probe. This probe has three illumination-collection
separations, which enable optical spectra to be measured fro
different depths within the tissue. The classification accuracy
achieved with PCA-SVM or PLS-SVM did not differ signifi-
cantly between the three illumination-collection separations
This is likely due to the facts that~1! the probing depth is
expected to increase only modestly with increasing
illumination-collection separation~based on the Monte Carlo
simulation results in Table 2! and ~2! there is no apparent
structural change in breast tissue with increasing depth tha
could be captured with different illumination-collection sepa-
rations.
024032Journal of Biomedical Optics
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The fluorescence/reflectance signal attenuates with incr
ing probing depth in tissue~due to the increased path leng
of the photons! and the multiseparation fiber optic probe ca
be used to measure the attenuation characteristics of t
signals in the breast. The results from the data analysis s
that using the integrated fluorescence intensities recorded
single excitation wavelength at all three illumination
collection separations~a measure of attenuation! can discrimi-
nate malignant from nonmalignant breast tissues with sim
classification accuracy to that using spectral data measure
several excitation wavelengths at a single illuminatio
collection separation. The use of integrated fluorescence
tensities at a single excitation wavelength is expected to~1!
significantly reduce the measurement time and~2! require
much less data processing. This finding has significant im
cations in clinical applications, where both speed and low c
are desirable. Although each spectrum takes only a few
onds to measure, hardware changes between measurem
increases the time for a single scan of eight fluorescence s
tra and one diffuse reflectance spectrum to a minute. If
system can be streamlined to include a subset of the wa
lengths evaluated in this study~such as the integrated inten
sity at a single excitation wavelength!, the measurement an
data processing time can be significantly reduced to ena
near-real-time implementation of this technology during
clinical procedure.

Note that the number of nonmalignant samples(n534) is
much greater than that of malignant samples(n513) in this
study. The principal idea of an SVM is to determine an op
mal hyperplane that maximizes the margin between t
classes, and equalize the distances of the misclass
samples in each class from the separation boundary. F
poorly separable case@as in Fig. 5~b!# and when the numbers
of elements in the two classes are unbalanced, a large num
of samples from each class become support vectors~i.e., mar-
ginal samples!, and it is likely that most samples from th
class that has much fewer elements~in this case, the malig-
nant tissues! will be misclassified. This would result in a hig
specificity, but very low sensitivity. However, for the cas
where sample clusters are separable@Fig. 5~a!#, it is less likely
that the sensitivity and specificity are sensitive to the num
of samples in each class. This also likely explains the h
specificity and low sensitivity achieved when diffuse refle
tance spectra alone~Table 5! rather than the combination o
fluorescence and diffuse reflectance spectra~Table 4! were
used for discriminating between malignant and nonmalign
breast tissues. The three PCs extracted from diffuse re
tance spectra showed statistically smaller differences betw
malignant and nonmalignant tissues(p,0.05) compared to
the three PCs extracted from fluorescence and diffuse re
tance spectra(p,0.005). To verify this explanation, data
analyses~using spectral intensity ratios only! were carried out
on a subset of spectral data, which included balanced ma
nant and nonmalignant samples. In this data set, only hal
the normal/benign fibrous samples~7! and half of normal adi-
pose samples~10! were retained, and the number of maligna
samples versus nonmalignant samples was 13:17. The cl
fication results indicated that for the separable case~i.e., fluo-
rescence at an excitation wavelength of 300 nm!, the sensitiv-
ity and specificity achieved with the balanced data set~61.54
and 82.35%, respectively! are comparable to that achieve
-11 March/April 2005 d Vol. 10(2)
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Zhu et al.
with the unbalanced data set~69.23 and 88.24%, respec-
tively!. However, for the nonseparable case, there was a sig
nificant disparity in the sensitivities and specificities achieved
with the balanced and unbalanced data sets~53.85 and
68.75% for the balanced data set versus 0 and 100% for un
balanced data set!. In summary, when sample clusters are
separable, the sensitivity and specificity do not appear to b
highly sensitive to the number of samples in each class. How
ever, when samples are poorly separable, it is likely that th
specificity overwhelms the sensitivity when there are too
many nonmalignant versus malignant samples. This sugges
that in the poorly separable case, a balanced data set for ea
class would be desirable to avoid a bias toward the classifica
tion of one tissue type.

The statistical data analyses described in this paper dem
onstrates that malignant and nonmalignant breast tissues c
be discriminated using either a subset of fluorescence an
diffuse reflectance spectra measured with a single
illumination-collection separation, or integrated fluorescence
intensities measured at a single excitation wavelength with
three illumination-collection separations. This suggests en
couraging opportunities for simplifying the optical measure-
ments and data processing procedure, to enable near-real-tim
implementation of the optical technology during a clinical
procedure. However, in the current study, a relatively smal
data set of 47 samples was analyzed, of which only 13 wer
malignant. Moreover, the ‘‘leave-one-out’’ cross-validation
scheme, which was used to provide an unbiased estimate
the algorithm’s performance, is based on ‘‘resampling,’’ and
thus does not provide an independent testing data set for pr
spectively evaluating the algorithm. In spite of the limitations
in the sample size and the testing scheme, similar classifica
tion accuracies were obtained when different preprocessin
techniques~spectra versus integrated spectral intensity!, fea-
ture extraction methods and classifiers~linear and nonlinear
SVMs! were used. These results suggest that the difference
the spectral features between malignant and nonmalignant ti
sues can be identified consistently using a variety of differen
algorithms. Note, however, that a significantly larger data se
~that can be divided into independent training and testing dat
sets! and a training set with a balanced number of malignan
and nonmalignant samples will be required in future studies to
fully evaluate and validate the performance of the classifica
tion algorithms described here.

The study presented here and our previous study10 provide
the foundation for the primary focus of future work, which is
to explore the utility of optical spectroscopy for breast cance
detection during core needle biopsy. The current probe geom
etry will be modified into a side-firing fiber optic probe and
implemented for use in a vacuum-assisted core biopsy needl
If this optical technique proves to be diagnostically useful, it
can potentially improve the diagnostic efficacy of breast
needle biopsy and lead to fewer biopsies and follow-up pro
cedures in patients suspected to have breast cancer. Additio
ally, the fiber optic probe can be made thin enough to fit
through an even smaller needle than the standard 1/4-in. siz
making an emotionally draining procedure less physically
traumatic.
024032Journal of Biomedical Optics
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