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Abstract. Optical technologies, such as reflectance and fluorescence
spectroscopy, have shown the potential to provide improved point-of-
care detection methods for cervical neoplasia that are sensitive, spe-
cific, and cost-effective. Our specific goals are to analyze the diagnos-
tic potential of reflectance and fluorescence spectra, alone and in
combination, to discriminate normal and precancerous cervical tissue
in vivo and to identify which classification features contain significant
diagnostic information. Reflectance spectra are measured at four
source-detector separations and fluorescence emission spectra are
measured at 16 excitation wavelengths, from 324 sites in 161 patients.
These 20 spectral features are permuted in all possible combinations
of one, two, and three; and classification algorithms are developed to
evaluate the diagnostic performance of each combination. Algorithms
based on fluorescence spectra alone yield better diagnostic perfor-
mance than those based on reflectance spectra alone. The combina-
tion of fluorescence and reflectance do not significantly improve di-
agnostic performance compared to fluorescence alone, except in the
case of discriminating high-grade precancers from columnar normal
tissue. In general, fluorescence emission spectra at 330- to 360-nm
and 460- to 470-nm excitation provide the best diagnostic perfor-
mance for separating all pairs of tissue categories. © 2005 Society of Photo-
Optical Instrumentation Engineers. [DOI: 10.1117/1.1899686]

Keywords: fluorescence; reflectance; tissues; biomedical optics; neoplasia; cervix;
in vivo diagnosis.
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1 Introduction
Cervical cancer is the third most common cancer in women
worldwide and the leading cause of cancer mortality for
women in developing countries.1 Early detection programs
based on the Papanicoloau smear and colposcopy have help
reduce both the incidence and the mortality of cervical
cancer.2 However, the sensitivity and specificity of the Papa-
nicoloau smear range from 11 to 99 and 14 to 97%,
respectively.3 Because of this limitation, colposcopy is per-
formed following an abnormal Pap smear. Although colpos-
copy provides good sensitivity~.90%!, its specificity is still
poor ~,50%!, requiring a biopsy to confirm the diagnosis of
cervical precancer.4 The effectiveness of early detection can
be improved by developing more sensitive methods for
screening and diagnosis.
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As an alternative, many groups have demonstrated
techniques based on quantitative optical spectroscopy s
promise as a potential diagnostic tool for detecting epithe
neoplasia. In particular, diffuse reflectance and fluoresce
spectroscopy have shown initial success for precancer de
tion in various organ sites including the bladder,5 the uterine
cervix,6–9 the colon,10,11 the esophagus,12,13 and the breast.14

Coppelson et al.9 developed a fiber optic probe~polar probe!
to measure cervical tissue reflectance at four wavelength
the visible and near-IR~NIR! region. An empirical algorithm
was developed usingin vivo data from 77 volunteers; its di
agnosis agreed with colposcopy and histology in 85 to 99%
measurements, depending on tissue type. Based on th
creased penetration depth of light at larger separation betw
the source and detector fibers,15 other studies have investi
gated spatially resolved measurements of diffusely reflec
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light to enhance diagnostic performance.16,17 Nordstrom
et al.18 carried out a clinical trial where 41 patients with ab-
normal colposcopy were measuredin vivo using both diffuse
reflectance and UV-excited fluorescence spectroscopy for de
tection of cervical precancer. A multivariate algorithm based
on the Mahalanobis distance used reflectance spectra to d
criminate normal squamous~SN! tissue and high-grade squa-
mous intraepithelial lesions~HG-SIL! with a sensitivity and
specificity of 82 and 67%, respectively, from reflectance mea
surements. A similar approach using fluorescence spectra r
sulted in a sensitivity and specificity of 91 and 93%,
respectively.18 Georgakoudi et al. used a combination ofin
vivo reflectance and fluorescence spectroscopy to calculate th
intrinsic fluorescence from cervical tissue,8 which resulted in
a sensitivity and specificity of 62 and 92%, respectively.

The diagnostic capability of fluorescence and diffuse re-
flectance spectroscopy derives from the ability of these tech
niques to probe the metabolic and architectural changes at th
cellular and molecular levels that accompany the developmen
of neoplasia. For example, one of the important clinical mark-
ers for diagnosis of cervical precancer is hemoglobin concen
tration in tissue, which increases during dysplastic progres
sion due to angiogenic developments.19 Fluorescence and
reflectance spectra collected from tissue effectively monito
the level of hemoglobin concentration by measuring the ligh
absorption from the chromophore and thereby provide impor
tant diagnostic information.20 On a similar note, reflectance
spectroscopy is also sensitive to light scattering in tissue
Electromagnetic modeling predicts that the intensity of cellu-
lar light scattering increases with progression of cervical pre
cancer due to changes in nuclear size and DNA content.21

Collier used reflectance measurements from a confocal imag
ing system to quantify the level of nuclear scattering from the
cervical epithelium, and demonstrated the diagnostic potentia
of cellular light scattering properties in separating normal and
HG-SIL tissue.22

Among the various intrinsic fluorophores in tissue, fluores-
cence from cofactors NADH~reduced nicotinamide adenine
dinucleotide! and FAD ~flavin adenine dinucleotide! convey
important information about the cellular metabolic state. Con-
focal fluorescence microscopy images of fresh tissue slice
have revealed differences in cytoplasmic fluorescence pattern
from normal and precancerous biopsy specimens,23 possibly
due to variations in the metabolic state of tissue during dys
plastic progression.

In most cases, the diagnostic capabilities of fluorescenc
and reflectance spectroscopy have been investigated sep
rately. Several recent small studies have suggested that th
combinations of both techniques may yield improved diag-
nostic performance.8,18 These studies have either been con-
ducted at a single excitation wavelength for fluorescence18 or
a small number of excitation wavelengths.8 Furthermore, the
diagnostic performance of spatially resolved reflectance in
combination with fluorescence measurements has not been i
vestigated previously. In this paper, we explore the utility of
combining spatially resolved reflectance spectra and fluores
cence spectra measured at a wide range of excitation wav
lengths for the detection of cervical precancer.
024031Journal of Biomedical Optics
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2 Materials and Methods
2.1 Instrumentation
The spectroscopic system used to measure fluorescence
reflectance spectra has previously been described in det24

Briefly, the system incorporates three main components:~1! a
xenon arc lamp to provide broadband illumination for refle
tance and fluorescence excitation light using bandpass filt
~2! a fiber optic probe that directs the light to tissue and c
lects diffusely reflected and fluorescent emission light; and~3!
an optical assembly with an imaging spectrograph~Chromex
250 IS, Albuquerque, New Mexico! and a thermoelectrically
cooled CCD camera~Spectrasource HPC-1, Westlake Villag
California! to record the spectral data. Figure 1~a! illustrates
the system.

The probe, whose distal end is illustrated in Fig. 1~b!, uti-
lizes a fiber optic bundle for fluorescence measurement in

Fig. 1 (a) System block diagram showing the light source assembly, a
fiber optic probe for delivery and collection of light, and the spec-
trograph assembly, and (b) schematic diagram of the distal end of the
probe: [A] fluorescence excitation (white circles) and collection (black
circles) fiber bundle, [B] reflectance illumination fiber (white circle)
and reflectance collection fibers at positions 0 to 3 (black circles la-
beled with 0 to 3 for each respective position).
-2 March/April 2005 d Vol. 10(2)
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Combined reflectance . . .
core surrounded by nine spatially separated optical fiber
@200-mm-diam fibers, numerical aperture~NA!50.2# to mea-
sure reflectance. The fluorescence bundle consists of a rando
arrangement of 25 illumination and 12 collection fibers, with
a 15-mm-long quartz mixing element~2 mm diameter! at the
distal end of the bundle to diffuse the excitation and collection
light at the measurement site. Fluorescence excitation wave
lengths range from 330 to 480 nm in 10-nm increments and
each emission spectrum is sampled at 5-nm intervals. Of th
nine reflectance fibers, one excitation fiber provides broad
band illumination and eight reflectance collection fibers are
placed at four different source-detector separations~position
0, 250-mm separation; position 1, 1.1-mm separation; position
2, 2.1-mm separation; position 3, 3.0-mm separation! to col-
lect diffusely reflected light. The emission wavelength in each
reflectance spectrum ranges between 355 and 655 nm
2.5-nm intervals. A single spectroscopic measurement consis
of fluorescence emission spectra from 16 different excitation
wavelengths and four reflectance spectra measured in s
quence in approximately 2 min.

2.2 Clinical Measurements
The study protocol was reviewed and approved by the Insti
tutional Review Boards at the University of Texas M. D.
Anderson Cancer Center and the University of Texas at Aus
tin. Details of the clinical study are provided in Refs. 25 and
26. A health-care provider described the study to eligible pa
tients who had been referred on the basis of an abnorma
Papanicoloau smear; written consent was obtained from thos
agreeing to participate. Following colposcopic examination
but prior to biopsy, a fiber optic probe was advanced through
the speculum and placed in contact with the cervix. Spectr
were measured from up to four sites in each patient: one co
poscopically normal cervical site covered with squamous epi
thelium, one or two colposcopically abnormal cervical sites,
and if visible, one colposcopically normal cervical site cov-
ered with columnar epithelium. Following spectroscopic mea-
surements, all sites were biopsied.

Within 2 h of each patient measurement, spectra from re
flectance and fluorescence standards were measured. As
positive control for reflectance measurements, reflectanc
spectra were measured from a 1-cm-path length cuvette co
taining a suspension of 1.02-mm-diam polystyrene micro-
spheres~6.25% by volume!. Fluorescence spectra measured
from a solution of Rhodamine 610~Exciton, Dayton, Ohio!
dissolved in ethylene glycol~2 mg/ml! in a 1-cm-path length
cuvette was used for positive control of fluorescence measure
ments. As a negative control, reflectance and fluorescenc
spectra were measured with the probe tip immersed in a larg
container of distilled water to record levels of various back-
ground signal.

Biopsies were fixed and submitted for permanent section
The 4-mm-thick sections were stained with both hematoxylin
and eosin~H&E! as well as Feulgen stains. Two pathologists
who were blinded to the results of spectroscopy read eac
biopsy, with discrepant cases reviewed a third time for con
sensus diagnosis by the study histopathologist. Diagnosti
classification categories included normal tissue, human papi
loma virus infection~HPV!, grade 1 cervical intraepithelial
neoplasia~CIN 1!, grade 2 cervical intraepithelial neoplasia
~CIN 2!, grade 3 cervical intraepithelial neoplasia~CIN 3!,
024031Journal of Biomedical Optics
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and carcinomain situ ~CIS! using standard histopathologi
criteria.2 Normal tissues were divided into two categori
based on colposcopic impression: normal squamous ep
lium ~SN! and normal columnar epithelium~CN!. Tissues
with acute/chronic inflammation or metaplasia were includ
in the corresponding SN or CN category. In accordance w
the Bethesda system, HPV and CIN 1 were termed low gr
squamous intraepithelial lesions~LGSILs!, whereas CIN 2,
CIN 3, and CIS were termed high grade squamous intra
thelial lesions~HGSILs!. The diagnostic categories SN, CN
LGSIL, and HGSIL were used in this analysis.

2.3 Data Processing and Statistical Analysis
Three investigators~YM, DDC, RRK! blinded to the patho-
logic results reviewed all spectra. Spectra indicating evide
of user or instrument error, such as probe slippage, were
carded from further analysis. Reflectance spectra at e
source-detector separation were normalized by the co
sponding spectrum from the microsphere suspension to
rect for the effects of the source spectrum, variations in
illumination intensity, and the wavelength-dependent respo
of the detection system. For each fluorescence measurem
variations in the source light were corrected with excitati
illumination intensity measured at the probe tip using a ca
brated photodiode~818-UV, Newport Research Corp.!. To
correct for the nonuniform spectral response of the detec
system, the spectra of two calibrated sources were meas
at the beginning of the study; a National Institute of Standa
and Technology~NIST! traceable calibrated tungsten ribbo
filament lamp in the visible range and a deuterium lam
~550C and 45D, Optronic Laboratories Inc, Orlando, Florid!
in the UV range. System response correction factors for fl
rescence emission spectra were derived from these calibra
spectra.

Reflectance data from a single measurement site are re
sented as a matrix containing calibrated reflectance inten
as a function of source-detector separation and emis
wavelength. Spectra from each of the four source-dete
separation positions form column vectors containing 121
tensity measurements corresponding to emission wavelen
from 355 to 655 nm in 2.5-nm increments. Fluorescence d
from a single measurement site are represented as
excitation-emission matrix~EEM!, where the emission spec
tra at the various excitation wavelengths are concatenated
a 2-D matrix so that the calibrated fluorescence intensity
expressed as a function of excitation and emission wa
length. Columns of this matrix correspond to emission spe
at each excitation wavelength, containing between 50 to
intensity measurements ranging from 380 to 700 nm emiss
in 5-nm increments. The excitation wavelengths range fr
330 to 480 nm in 10-nm increments.

The spectroscopic data were then analyzed to determ
which reflectance source-detector separations and fluo
cence excitation wavelengths, termed classification featu
contained the most diagnostically useful information to se
rate a pair of diagnostic categories of the cervix. We dev
oped classification algorithms to discriminate SN versus C
SN versus LGSIL, SN versus HGSIL, CN versus LGSIL, a
CN versus HGSIL from the following three datasets: com
nations of four reflectance features, combinations of 16 fl
rescence features, and combinations of 20 integrated feat
-3 March/April 2005 d Vol. 10(2)
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Chang et al.
The diagnostic performance of each combination was evalu
ated with the classification algorithm. In the analysis using
only the reflectance features, up to four spectra at differen
source-detector separations were considered as input to t
classifiers, whereas in analyses of fluorescence alone an
combination of fluorescence and reflectance, combinations o
up to three reflectance spectra or fluorescence emission spe
tra were considered. Table 1 lists the number of different pos
sible combinations of feature vectors considered in eac
analysis.

Classification algorithms were developed to separate dat
from the two diagnostic classes under analysis. The algorithm
development was described previously,25 and consists of data
reduction using principal component analysis~PCA! followed
by binary classification using Mahalanobis distance. Each ste
is described in detail in the following.

Prior to PCA, an input matrix was assembled with the
specified feature vector combination from the two diagnostic
classes. For each measurement, fluorescence and reflecta
spectra from the combinational features were concatenate
end-to-end as a single row vector. To reduce interpatien
variation, each fluorescence spectrum was normalized by it
maximum intensity prior to concatenation. These row vectors
were concatenated in a column to form the input matrix.

Eigenvectors of the corresponding covariance matrix were
then calculated to generate the principal components; thos
accounting for up to 65, 75, 85, and 95% of the total variance
were retained for algorithm development. We denote the frac
tion of the total variance accounted for by the eigenvectors a
the eigenvector significance level~ESL!. Principal component
scores of each measurement in the input matrix were calcu
lated using the selected eigenvectors.

Classifiers based on the principal component scores wer
generated to perform binary classification into the two diag-
nostic classes under analysis. Classification is based on th
Mahalanobis distancer i

2 which is a multivariate measure of
the separation of a data point from the mean of a dataset i
n-dimensional space:27

r i
25~x2 x̄i !8•Cx

21
•~x2 x̄i !. ~1!

Here, x is the vector containing principal component scores
from a sample,x̄i is the mean of the principal component
scores from diagnostic classi, andCx is the covariance ma-
trix. The multivariate distance between the sample to be clas

Table 1 Number of different possible feature vector combinations
used to evaluate diagnostic performance.

Number of feature vectors in a
combination

1 2 3 4

Number of combinations using only
reflectance spectra

4 6 4 1

Number of combinations using only
fluorescence emission spectra

16 120 560 Not used

Number of combinations using both
reflectance and fluorescence emission
spectra

20 190 1140 Not used
024031Journal of Biomedical Optics
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sified and the means of the two possible classification gro
was calculated; the sample was then assigned to the group
it was closest to in this multivariate space.

The performance of classification depends on the princ
component scores included for analysis. For each eigenve
selected at an ESL, the corresponding set of principal com
nent scores were applied to the Mahalanobis distance cla
fication, and the set yielding the best initial performance w
retained in the data matrixM for analysis. Among the remain
ing eigenvectors, the set of principal component scores
improved this performance most when combined withM was
selected in sequence. This process was repeated until pe
mance was no longer enhanced by the addition of princ
components, or until all components were selected.

The diagnostic performance of the data matrixM at each
ESL was evaluated relative to the histopathologic diagno
The Mahalanobis classifier was trained and tested using
the samples inM. In calculating the sensitivity and the spec
ficity for each pair of diagnostic classes, diseased tissue
taken as the positive sample relative to either columnar
squamous normal tissue. However, when CN was discri
nated against SN, columnar normal tissue was taken as
positive sample relative to squamous normal tissue.

A potential problem with this approach is that it may ove
estimate sensitivity and specificity due to overtraining.
minimize the effect of overtraining, we carried out ea
analysis once with the true diagnosis and 50 times when
diagnosis was randomly assigned. The total number of p
tive and negative samples was kept the same when gener
the set of randomized diagnosis. We ranked each feature c
bination according to the difference in the sum of the sen
tivity and specificity obtained with the true diagnosis with th
of the average sensitivity and specificity from the randomiz
diagnosis. Since leave-one-out cross-validation provide
less biased estimate of algorithm performance,28 the diagnos-
tic performance of the top 25 ranking combinations was f
ther evaluated using leave-one-out cross-validation.

3 Results
3.1 Data Set
The data set consisted of a set of spectra from 324 sites
group of 161 patients that were deemed adequate for b
reflectance and fluorescence analysis by independent rev
ers. Table 2 shows the diagnostic composition of the data
Tissues with acute/chronic inflammation or metaplasia w
included in the corresponding squamous or columnar nor
category.

3.2 Reflectance Spectra
Typical reflectance and fluorescence spectra from three m
surement sites diagnosed as normal squamous@Fig. 2~a!#, nor-
mal columnar@Fig. 2~b!#, and CIS@Fig. 2~c!# are shown in

Table 2 Data set classified by histopathologic diagnosis.

Diagnostic Class SN CN HPV CIN 1 CIN 2 CIN 3/CIS Total

Number of sites
(161 patients)

227 18 52 9 3 15 324
-4 March/April 2005 d Vol. 10(2)



Combined reflectance . . .
Fig. 2 Typical in vivo reflectance spectra (left) and fluorescence EEMs (right) from cervical tissue: (a) normal squamous, (b) normal columnar, and
(c) carcinoma in situ. In the left column, reflectance spectra at four different source-detector separations (position 0=——; position 1=— · —;
position 2=— —; position 3=·····), normalized by a standard microsphere solution, are shown. In the right column, fluorescence EEM data are
shown.
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Fig. 2. The reflectance spectra from each site at the four dif
ferent source-detector separation positions are shown in th
left column of Fig. 2. Positions 0, 1, 2, and 3 correspond to an
increasingly greater source-detection separation. All reflec
tance spectra show valleys due to hemoglobin absorption a
420, 542, and 577 nm. In general, reflectance intensity de
creases from SN tissue to abnormal tissue, with the most sig
nificant level of attenuation observed with HGSIL. Reflec-
tance intensity from CN tissue is low compared to that from
SN tissue.

3.3 Fluorescence Spectra
The fluorescence EEMs measured at the identical sites a
shown in the right column of Fig. 2. Fluorescence peaks from
several fluorophores are evident. The peak at 350 nm
024031Journal of Biomedical Optics
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excitation/450 nm emission is due to cofactor NADH as w
as collagen crosslinks, while the peak along 525-nm emiss
at both 370- and 450-nm excitation is due to cofactor FA
and collagen crosslinks. Fluorescence from endogenous
phyrin, if present, appears as a peak at 410 nm excitation/
nm emission. Absorption due to hemoglobin causes vall
parallel to the excitation and emission wavelength axes al
420, 540, and 580 nm. As observed in the reflectance spe
the hemoglobin absorption valley is generally more promin
in abnormal tissue compared to squamous normal tissue.

3.4 Statistical Analysis
Figure 3 shows the average cross-validated sensitivity
specificity of the five best-performing feature combinatio
among all possible combinations; results are shown fr
-5 March/April 2005 d Vol. 10(2)



Chang et al.
Fig. 3 Average sensitivity (black) and specificity (gray) of the five best
performing classification combinations in each pairwise analysis (at
ESL of 65%). Results are shown for reflectance and fluorescence fea-
tures combined (R+F) when selecting combinations of up to three
features, fluorescence spectra alone (F) when selecting combinations
of up to three excitation wavelengths, and reflectance spectra alone
(R) when selecting combinations of up to four source-detector sepa-
rations.
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analyses using reflectance spectra alone, fluorescence spec
alone, and reflectance combined with fluorescence. In genera
discrimination between SN and CN gave the best perfor
mance, followed by CN versus LGSIL, SN versus HGSIL,
and CN versus HGSIL. Discrimination between SN and LG-
SIL resulted in the lowest sensitivity and specificity. For all
pairs of diagnostic categories, the use of reflectance alon
resulted in good diagnostic performance; however, better pe
formance is achieved using fluorescence data alone. In th
cases of SN versus LGSIL, SN versus HGSIL, and CN versu
HGSIL, the addition of reflectance features to fluorescence
features showed modest improvement in the average perfo
mance compared to the results using only the fluorescenc
spectra. For SN versus CN and CN versus LGSIL, the averag
performance from the combination of fluorescence and reflec
tance spectra was equal to those from fluorescence spec
alone.

The average cross-validated performances from the top 1
performing combinations of one, two, and three features
among 20 reflectance and fluorescence features are shown
Fig. 4. The sensitivity and specificity of the single best per-
forming combination in each analysis is indicated with black
and gray dots, respectively. Figure 4~a! shows the average
performance from eigenvectors selected at an ESL of 65%
The diagnostic performance is high when limited to the use o
a single feature, and a small increase in performance is ob
served when a second feature is added. However, addition
a third feature does not result in increased performance i
many cases. Again, the best performance is obtained whe
discriminating between SN and CN, reaching an average sen
sitivity of 94% and specificity of 90% with the use of two or
three classification features. Increasing the ESL from 65 to
95% does not noticeably increase performance, as shown
Fig. 4~b!.

Figure 5 shows the frequency with which each classifica
tion feature appears among the 10 best-performing featur
combinations selected in Fig. 4~a!. Figure 5~a! shows that in
discriminating SN and CN tissues, fluorescence excitation
024031Journal of Biomedical Optics
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wavelengths between 330 and 360 nm and 440 and 470
occur relatively frequently. Similarly, for discrimination of SN
from HGSILs @Fig. 5~c!# and CN from LGSILs@Fig. 5~d!#,
fluorescence excitation wavelengths between 330 and 360
and 440 and 480 nm appear relatively frequently. Note t
for separating CN tissue from HGSILs@Fig. 5~e!#, reflectance
source-detector separations 0 and 1 occurred more freque
than any fluorescence excitation wavelength or any other
flectance feature.

Table 3 compares the classification features identified
significant from the three different trials: one using only t
fluorescence features, another using only the reflectance
tures and the other using integrated features from fluoresc
and reflectance data. In each trial, significant features w
identified for the following five different analyses: SN vers
CN, SN versus LGSIL, SN versus HGSIL, CN versus LGSI
and CN versus HGSIL. In the trial using reflectance featu
only, source-detector separation positions 0 and 1 appear
nificant in all five analyses. The trial using only fluorescen
features shows that excitation wavelengths between 330
360 nm and those between 460 and 480 nm appear frequ
in most analyses. Note that in four analyses~SN versus CN,
SN versus LGSIL, SN versus HGSIL, and CN versus LGSI!,
only the fluorescence excitation wavelengths are identified
significant features in the trial integrating both fluorescen
and reflectance spectra. The selected wavelength ranges
respond well with those identified in the trial using fluore

Fig. 4 Average sensitivity (black) and specificity (gray) of the top 10
performing combinations for each pairwise analysis when the 20 clas-
sification features from fluorescence and reflectance measurements
are combined one, two, or three at a time at (a) an ESL of 65% and (b)
an ESL of 95%. Black and gray dots indicate the sensitivity and speci-
ficity of the best performing combination, respectively.
-6 March/April 2005 d Vol. 10(2)



Combined reflectance . . .
Fig. 5 Histograms showing frequency of appearance of each classification feature among the top 10 performing combinations when considering up
to three features at ESL of 65%. Results from the five pairwise analyses are shown: (a) SN versus CN, (b) SN versus LGSIL, (c) SN versus HGSIL, (d)
CN versus LGSIL, and (e) CN versus HGSIL. ESL=65%. The four reflectance source detector separation positions and the 16 fluorescence excitation
wavelengths are indicated by s-d and lex , respectively.
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cence features. However, when discriminating CN and HG
SIL, reflectance positions 0 and 1 were selected in addition t
the fluorescence features.

Based on the results in Table 3, we attempted to identify a
set of three features that yields the best overall performance
all the five pairwise analyses. All combinations of the 20 clas-
sification features that appear in Table 3 were combined int
sets of three, and the combinations that gave the best perfo
mance in each pairwise analysis were identified. The overa
diagnostic performance of each combination in this analysi
was calculated as the average sensitivity and specificity from
the five pairwise classification algorithms. When the available
features were limited to three, we found that fluorescence
emission spectra at excitation wavelengths of 330, 430, an
470 nm resulted in optimal overall classification performance
The feature combination and the corresponding classificatio
performance for each pairwise analysis from the limited-
feature set are listed in Table 4. When the number of availabl
features was increased to four, fluorescence excitation wave
lengths 330, 360, 430, and 470 nm were selected as the s
resulting in best overall performance~Table 5!. Performance
of the limited-feature sets is comparable to those when a
possible combinations of classification features were teste
@Fig. 4~a!#. Note that limiting the number of available features
from three to four did not result in significant improvement in
classification performance.
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To investigate the diagnostic information inherent in t
classification features that were selected as significant,
plotted the spectra of correctly classified and misclassifi
samples in each pairwise analysis of Table 5. In Fig. 6~a!, the
left plot shows the classification of samples from SN wh
discriminated against CN. The heavy black plot is the aver
of all the correctly classified SN samples, and the thin g
lines are the individual misclassified samples. The right p
corresponds to results of CN samples when discrimina
against SN. The main discriminating factors between SN
CN samples in Fig. 6~a! appear to be the valley aroun
380-nm emission at 330-nm excitation and that around 5
nm at 470-nm excitation. Note that these valleys corresp
to hemoglobin absorption peaks. Figure 6~b! shows similar
plots for the case of SN versus LGSIL, where the plot on
left shows the samples from SN and that on the right sho
the samples from LGSIL. We find that, on average, the p
of the correctly classified SN samples is toward the low
wavelengths compared to that from correctly classified LGS
samples. Figure 6~c! shows equivalent plots for the case
SN versus HGSIL, with the plot for SN samples on the l
and that for HGSIL samples on the right. In Fig. 6~d!, the plot
on the left shows samples from CN and that on the rig
shows those from LGSIL. In both pairwise analyses, the v
ley around 380-nm emission at 330-nm excitation appear
be an evident discriminating factor as well as the peak shif
-7 March/April 2005 d Vol. 10(2)
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Table 3 Classification features that appeared most frequently among the 10 best-performing combinations when taken up to three features for the
following five analyses: SN versus CN, SN versus LGSIL, SN versus HGSIL, CN versus LGSIL, and CN versus HGSIL. Results from the following
three trials are shown: one using only the reflectance features only (dark gray bars), another using only the fluorescence features only (light gray
bars), and the other using both reflectance and fluorescence features (black bars).
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either 430-nm excitation or the 360-nm excitation. The main
discriminating factor between CN and HGSIL, as shown in
Fig. 6~e!, is the hemoglobin absorption valley around 580-nm
emission, which is more prominent in CN~left figure!.

4 Discussion and Conclusions
In our study of the diagnostic potential of combined fluores-
cence and reflectance spectroscopy, we obtained cervicalin
vivo measurements at four distinct source-detector separatio
positions and for 16 fluorescence excitation wavelengths. Us
ing Mahalanobis distance-based classification, we determine
which classification combination contained the most diagnos
tically useful information. Results showed the sensitivity and
specificity to be high when using a single classification fea-
ture at the lowest level of eigenvector significance considered
The addition of a second classification feature did increase th
sensitivity and specificity; however, there was no noticeable
increase in classification performance when data from highe
ESLs are included. Furthermore, fluorescence excitatio
wavelengths between 330 and 360 nm and 460 and 470 n
and reflectance source-detector separations at positions 0 a
1 appear most frequently among the best performing classifi
cation feature combinations.

Table 4 Diagnostic performance of each pairwise analysis when the
available classification features are limited to three (fluorescence ex-
citation wavelengths of 330, 430, and 470 nm). The three classifica-
tion features were selected on the basis of best overall diagnostic
performance in all five pairwise analyse at an ESL=65%.

Diagnostic Pair Sensitivity (%) Specificity (%)
Feature

Combination

SN versus CN 94 91 330 nm, 470 nm

SN versus LGSIL 55 63 430 nm

SN versus HGSIL 83 80 330 nm, 430 nm

CN versus LGSIL 90 83 330 nm

CN versus HGSIL 72 78 470 nm

Average 79 79
024031Journal of Biomedical Optics
n
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In a previous study,in vivo fluorescence spectroscopy u
ing 340, 380, and 460 nm excitation yielded a sensitivity
79% and a specificity of 78% to discriminate HGSIL from a
other cervical tissue types.7 In a separate study, we were ab
to discriminate HGSIL from SN with a sensitivity and spec
ficity of 71 and 79%, respectively, using fluorescence em
sion spectra from three excitation wavelengths.25 However,
we were able to discriminate HGSIL from CN with a very lo
sensitivity and specificity. We also performed a previous pa
wise diagnostic-category comparison using reflectance s
troscopy alone, and found we could discriminate HGSIL fro
columnar normal tissue with a 72% sensitivity and an 83
specificity.26 These initial findings would indicate the use of
strategy utilizing the respective strengths of fluorescence
reflectance spectroscopy. In this paper, we consider the a
tional diagnostic performance that can be obtained by co
bining fluorescence and reflectance spectra. We find fluo
cence alone gives superior performance compared
reflectance alone and that the addition of reflectance spe
with fluorescence spectra provides a modest improvemen
diagnostic performance using the empirical diagnostic al
rithms considered here. In particular, reflectance spectrosc
provides good discrimination of CN and HGSIL tissues.

Table 5 Diagnostic performance of each pairwise analysis when the
available classification features are limited to four (fluorescence exci-
tation wavelengths of 330, 360, 430, and 470 nm). The four classifi-
cation features were selected on the basis of best overall diagnostic
performance in all five pairwise analyses at an ESL=65%.

Diagnostic Pair Sensitivity (%) Specificity (%) Combination

SN versus CN 94 91 330 nm, 470 nm

SN versus LGSIL 55 63 430 nm

SN versus HGSIL 83 80 330 nm, 430 nm

CN versus LGSIL 87 94 330 nm, 360 nm

CN versus HGSIL 72 78 470 nm

Averages 78 81
-8 March/April 2005 d Vol. 10(2)
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Fig. 6 Average spectra of correctly classified tissue measurements (heavy black line). Error bars represent one standard deviation. Individual spectra
of the misclassified tissue measurements (thin gray lines) from each diagnostic class in the pairwise analysis when available features are limited to
fluorescence excitation wavelengths of 330, 360, 430, and 470 nm. Results are shown for the following pairwise analyses: (a) SN versus CN, (b) SN
versus LGSIL, (c) SN versus HGSIL, (d) CN versus LGSIL, and (e) CN versus HGSIL.
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Several studies have investigated the diagnostic effective
ness of fluorescence and reflectance spectroscopy. Nordstro
et al.18 investigated fluorescence and reflectance spectroscop
separately, and he reports that fluorescence spectrosco
yields higher classification performance in separating a pair o
diagnostic classes except for the case of HGSIL versus met
plastic tissues, where reflectance spectroscopy performed be
ter. In our study, metaplastic tissue was included in the SN
category and yet we were able to achieve a high level o
sensitivity and specificity when SN was classified from HG-
SIL using only fluorescence spectra. This could be attributed
to the fact that a large number of fluorescence excitation
024031Journal of Biomedical Optics
-
m
y
y

-
t-

wavelengths were used in this study in contrast to the sin
fluorescence excitation wavelength~355 nm! used in Ref. 18.
In fact, we have identified that fluorescence excitation wa
lengths between 330 and 350 nm were significant in discri
nating HGSIL from SN.

Our previous studies using fluorescence and reflecta
spectroscopy individually indicate that stepwise diagnostic
gorithms are required to determine the tissue type of an
known sample based on its spectrum because of the l
differences in optical properties of squamous and colum
cervical tissue.25,26 The pairwise analysis presented here p
vides the foundation for this type of diagnostic algorithm. In
-9 March/April 2005 d Vol. 10(2)
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Fig. 6 (Continued.)
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similar analysis, we examined fluorescence EEMs also fo
discrimination of all diagnostic categories. Hence, this infor-
mation can be used toward the development of multistep clas
sification algorithms to determine the tissue type of an un
known sample based on its reflectance and fluorescenc
spectra.
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