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Abstract. Optical technologies, such as reflectance and fluorescence
spectroscopy, have shown the potential to provide improved point-of-
care detection methods for cervical neoplasia that are sensitive, spe-
cific, and cost-effective. Our specific goals are to analyze the diagnos-
tic potential of reflectance and fluorescence spectra, alone and in
combination, to discriminate normal and precancerous cervical tissue
in vivo and to identify which classification features contain significant
diagnostic information. Reflectance spectra are measured at four
source-detector separations and fluorescence emission spectra are
measured at 16 excitation wavelengths, from 324 sites in 161 patients.
These 20 spectral features are permuted in all possible combinations
of one, two, and three; and classification algorithms are developed to
evaluate the diagnostic performance of each combination. Algorithms
based on fluorescence spectra alone vyield better diagnostic perfor-
mance than those based on reflectance spectra alone. The combina-
tion of fluorescence and reflectance do not significantly improve di-
agnostic performance compared to fluorescence alone, except in the
case of discriminating high-grade precancers from columnar normal
tissue. In general, fluorescence emission spectra at 330- to 360-nm
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1 Introduction As an alternative, many groups have demonstrated that

Cervical cancer is the third most common cancer in women t€chniques based on quantitative optical spectroscopy show
worldwide and the leading cause of cancer mortality for promise as a potential diagnostic tool for detecting epithelial
women in developing countriésEarly detection programs neoplasia. In particular, diffuse reflectance and fluorescence
based on the Papanicoloau smear and colposcopy have helpegPectroscopy have shown initial success for precancer detec-
reduce both the incidence and the mortality of cervical tion in various organ sites including the bladdehe uterine
cance? However, the sensitivity and specificity of the Papa- cervix?~® the colom®* the esophagu¥;*® and the breast.
nicoloau smear range from 11 to 99 and 14 to 97%, Coppelson et a.developed a fiber optic probgolar probé
respectively’ Because of this limitation, colposcopy is per- to measure cervical tissue reflectance at four wavelengths in
formed following an abnormal Pap smear. Although colpos- the visible and near-IRNIR) region. An empirical algorithm
copy provides good sensitivity>90%), its specificity is still was developed usingn vivo data from 77 volunteers; its di-
poor (<50%), requiring a biopsy to confirm the diagnosis of agnosis agreed with colposcopy and histology in 85 to 99% of
cervical precancér.The effectiveness of early detection can measurements, depending on tissue type. Based on the in-
be improved by developing more sensitive methods for creased penetration depth of light at larger separation between
screening and diagnosis. the source and detector fibérspther studies have investi-
gated spatially resolved measurements of diffusely reflected
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light to enhance diagnostic performaﬁéé.7 Nordstrom Excitation Control
et al® carried out a clinical trial where 41 patients with ab- Light

normal colposcopy were measurigdvivo using both diffuse Source 9 -
reflectance and UV-excited fluorescence spectroscopy for de-

tection of cervical precancer. A multivariate algorithm based L =]

on the Mahalanobis distance used reflectance spectra to dis-
criminate normal squamouy$N) tissue and high-grade squa-
mous intraepithelial lesioneHG-SIL) with a sensitivity and
specificity of 82 and 67%, respectively, from reflectance mea-
surements. A similar approach using fluorescence spectra re-
sulted in a sensitivity and specificity of 91 and 93%,

respectively® Georgakoudi et al. used a combination iof ‘lgll)’t';:

vivo reflectance and fluorescence spectroscopy to calculate the | Probe

intrinsic fluorescence from cervical tisstigyhich resulted in (@) |
]

a sensitivity and specificity of 62 and 92%, respectively.

The diagnostic capability of fluorescence and diffuse re-
flectance spectroscopy derives from the ability of these tech-
niques to probe the metabolic and architectural changes at the
cellular and molecular levels that accompany the development
of neoplasia. For example, one of the important clinical mark-
ers for diagnosis of cervical precancer is hemoglobin concen-
tration in tissue, which increases during dysplastic progres-
sion due to angiogenic developmehtsFluorescence and
reflectance spectra collected from tissue effectively monitor
the level of hemoglobin concentration by measuring the light
absorption from the chromophore and thereby provide impor-
tant diagnostic informatio On a similar note, reflectance
spectroscopy is also sensitive to light scattering in tissue.
Electromagnetic modeling predicts that the intensity of cellu-
lar light scattering increases with progression of cervical pre-
cancer due to changes in nuclear size and DNA coftent.
Collier used reflectance measurements from a confocal imag- — {
ing system to quantify the level of nuclear scattering from the (b)
cervical epithelium, and demonstrated the diagnostic potential

of cellular light scattering properties in separating normal and Fig. 1 (a) System block diagram showing the light source assembly, a
HG-SIL tissue?? fiber optic probe for delivery and collection of light, and the spec-

Amond the various intrinsic fluorophores in tissue. fluores- trograph assembly, and (b) schematic diagram of the distal end of the
g p ! probe: [A] fluorescence excitation (white circles) and collection (black

cence from cofactors NADHreduced nicotinamide adenine circles) fiber bundle, [B] reflectance illumination fiber (white circle)
dinucleotide and FAD (flavin adenine dinucleotideconvey and reflectance collection fibers at positions 0 to 3 (black circles la-
important information about the cellular metabolic state. Con- beled with 0 to 3 for each respective position).

focal fluorescence microscopy images of fresh tissue slices

have revealed differences in cytoplasmic fluorescence patterns

from normal and precancerous biopsy specinfénmssibly 2 Materials and Methods

due to variations in the metabolic state of tissue during dys-

plastic progression. .
In most cases, the diagnostic capabilities of fluorescence 1€ SPectroscopic system used to measure fluorescence and
reflectance spectra has previously been described in é&btail.

and reflectance spectroscopy have been investigated sep%. fiv th o | tes th . o
rately. Several recent small studies have suggested that the retly, the system incorporates three main compone&fisa

L . . ; . xenon arc lamp to provide broadband illumination for reflec-
combinations of both techniques may yield improved diag- R : . )
. 18 . . tance and fluorescence excitation light using bandpass filters;
nostic performanc&!® These studies have either been con-

: I (2) a fiber optic probe that directs the light to tissue and col-
ducted at a single excitation wavelength for fluorescEhoe o diffusely reflected and fluorescent emission light; @d

a small number of excitation wavelengthSurthermore, the an optical assembly with an imaging spectrogré@hromex
diagnostic performance of spatially resolved reflectance in 250 |s Albuquerque, New Mexigamnd a thermoelectrically
combination with fluorescence measurements has not been intgooled CCD cameréSpectrasource HPC-1, Westlake Village,
vestigated previously. In this paper, we explore the utility of California) to record the spectral data. Figur&lillustrates
combining spatially resolved reflectance spectra and fluores-the system.

cence spectra measured at a wide range of excitation wave- The probe, whose distal end is illustrated in Fi¢o)1 uti-
lengths for the detection of cervical precancer. lizes a fiber optic bundle for fluorescence measurement in the

2 mm

2.1 Instrumentation
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core surrounded by nine spatially separated optical fibersand carcinoman situ (CIS) using standard histopathologic
[200-um-diam fibers, numerical apertu(slA)=0.2] to mea- criteria? Normal tissues were divided into two categories
sure reflectance. The fluorescence bundle consists of a randonbased on colposcopic impression: normal squamous epithe-
arrangement of 25 illumination and 12 collection fibers, with lium (SN) and normal columnar epitheliufCN). Tissues

a 15-mm-long quartz mixing elemef® mm diameterat the with acute/chronic inflammation or metaplasia were included
distal end of the bundle to diffuse the excitation and collection in the corresponding SN or CN category. In accordance with
light at the measurement site. Fluorescence excitation wave-the Bethesda system, HPV and CIN 1 were termed low grade
lengths range from 330 to 480 nm in 10-nm increments and squamous intraepithelial lesioftGSILs), whereas CIN 2,
each emission spectrum is sampled at 5-nm intervals. Of theCIN 3, and CIS were termed high grade squamous intraepi-
nine reflectance fibers, one excitation fiber provides broad- thelial lesions(HGSILs). The diagnostic categories SN, CN,
band illumination and eight reflectance collection fibers are LGSIL, and HGSIL were used in this analysis.

placed at four different source-detector separatigusition

0, 25044m separation; position 1, 1.1-mm separation; position 2.3 Data Processing and Statistical Analysis

2, 2.1-mm separation; position 3, 3.0-mm separattoncol- Three investigator§YM, DDC, RRK) blinded to the patho-
lect diffusely reflected light. The emission wavelength in each |ogic results reviewed all spectra. Spectra indicating evidence
reflectance spectrum ranges between 355 and 655 nm inof user or instrument error, such as probe slippage, were dis-
2.5-nm intervals. A single spectroscopic measurement consistscarded from further analysis. Reflectance spectra at each
of fluorescence emission spectra from 16 different excitation source-detector separation were normalized by the corre-
wavelengths and four reflectance spectra measured in sesponding spectrum from the microsphere suspension to cor-

guence in approximately 2 min. rect for the effects of the source spectrum, variations in the
o illumination intensity, and the wavelength-dependent response
2.2 Clinical Measurements of the detection system. For each fluorescence measurement,

The study protocol was reviewed and approved by the Insti- variations in the source light were corrected with excitation
tutional Review Boards at the University of Texas M. D. illumination intensity measured at the probe tip using a cali-
Anderson Cancer Center and the University of Texas at Aus- brated photodiodg818-UV, Newport Research Cojp.To

tin. Details of the clinical study are provided in Refs. 25 and correct for the nonuniform spectral response of the detection
26. A health-care provider described the study to eligible pa- system, the spectra of two calibrated sources were measured
tients who had been referred on the basis of an abnormalat the beginning of the study; a National Institute of Standards
Papanicoloau smear; written consent was obtained from thoseand TechnologyNIST) traceable calibrated tungsten ribbon
agreeing to participate. Following colposcopic examination, filament lamp in the visible range and a deuterium lamp
but prior to biopsy, a fiber optic probe was advanced through (550C and 45D, Optronic Laboratories Inc, Orlando, Florida
the speculum and placed in contact with the cervix. Spectra in the UV range. System response correction factors for fluo-
were measured from up to four sites in each patient: one col- rescence emission spectra were derived from these calibration
poscopically normal cervical site covered with squamous epi- spectra.

thelium, one or two colposcopically abnormal cervical sites, Reflectance data from a single measurement site are repre-
and if visible, one colposcopically normal cervical site cov- sented as a matrix containing calibrated reflectance intensity
ered with columnar epithelium. Following spectroscopic mea- as a function of source-detector separation and emission
surements, all sites were biopsied. wavelength. Spectra from each of the four source-detector

Within 2 h of each patient measurement, spectra from re- separation positions form column vectors containing 121 in-
flectance and fluorescence standards were measured. As &ensity measurements corresponding to emission wavelengths
positive control for reflectance measurements, reflectancefrom 355 to 655 nm in 2.5-nm increments. Fluorescence data
spectra were measured from a 1-cm-path length cuvette confrom a single measurement site are represented as an
taining a suspension of 1.02n-diam polystyrene micro-  excitation-emission matrixEEM), where the emission spec-
spheres(6.25% by volumg Fluorescence spectra measured tra at the various excitation wavelengths are concatenated into
from a solution of Rhodamine 61(Exciton, Dayton, Ohip a 2-D matrix so that the calibrated fluorescence intensity is
dissolved in ethylene glycdR mg/ml) in a 1-cm-path length expressed as a function of excitation and emission wave-
cuvette was used for positive control of fluorescence measure-length. Columns of this matrix correspond to emission spectra
ments. As a negative control, reflectance and fluorescenceat each excitation wavelength, containing between 50 to 130
spectra were measured with the probe tip immersed in a largeintensity measurements ranging from 380 to 700 nm emission
container of distilled water to record levels of various back- in 5-nm increments. The excitation wavelengths range from
ground signal. 330 to 480 nm in 10-nm increments.

Biopsies were fixed and submitted for permanent section.  The spectroscopic data were then analyzed to determine
The 4-.um-thick sections were stained with both hematoxylin which reflectance source-detector separations and fluores-
and eosinH&E) as well as Feulgen stains. Two pathologists cence excitation wavelengths, termed classification features,
who were blinded to the results of spectroscopy read eachcontained the most diagnostically useful information to sepa-
biopsy, with discrepant cases reviewed a third time for con- rate a pair of diagnostic categories of the cervix. We devel-
sensus diagnosis by the study histopathologist. Diagnosticoped classification algorithms to discriminate SN versus CN,
classification categories included normal tissue, human papil- SN versus LGSIL, SN versus HGSIL, CN versus LGSIL, and
loma virus infection(HPV), grade 1 cervical intraepithelial CN versus HGSIL from the following three datasets: combi-
neoplasia(CIN 1), grade 2 cervical intraepithelial neoplasia nations of four reflectance features, combinations of 16 fluo-
(CIN 2), grade 3 cervical intraepithelial neoplagi@IN 3), rescence features, and combinations of 20 integrated features.
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Table 1 Number of different possible feature vector combinations Table 2 Data set classified by histopathologic diagnosis.
used to evaluate diagnostic performance.

Diagnostic Class SN CN HPV CIN'1 CIN 2 CIN 3/CIS Total

Number of feature vectors in a 1 2 3 4

combination Number of sites 227 18 52 9 3 15 324

Number of combinations using only 4 6 4 1 (161 patients)

reflectance spectra

h\‘umbef of combinations using only 16 120 560 Not used sified and the means of the two possible classification groups
vorescence emission specira was calculated; the sample was then assigned to the group that

Number of combinations using both 20 190 1140 Not used it was closest to in this muml\/.a”a.te space. o

reflectance and fluorescence emission The performance of classification depends on the principal

spectra component scores included for analysis. For each eigenvector

selected at an ESL, the corresponding set of principal compo-

nent scores were applied to the Mahalanobis distance classi-

fication, and the set yielding the best initial performance was
The diagnostic performance of each combination was evalu- retained in the data matrid for analysis. Among the remain-
ated with the classification algorithm. In the analysis using ing eigenvectors, the set of principal component scores that
only the reflectance features, up to four spectra at different improved this performance most when combined witiwas
source-detector separations were considered as input to theselected in sequence. This process was repeated until perfor-
classifiers, whereas in analyses of fluorescence alone andnance was no longer enhanced by the addition of principal
combination of fluorescence and reflectance, combinations of components, or until all components were selected.
up to three reflectance spectra or fluorescence emission spec- The diagnostic performance of the data matvixat each
tra were considered. Table 1 lists the number of different pos- ESL was evaluated relative to the histopathologic diagnosis.
sible combinations of feature vectors considered in each The Mahalanobis classifier was trained and tested using all
analysis. the samples iM. In calculating the sensitivity and the speci-

Classification algorithms were developed to separate dataficity for each pair of diagnostic classes, diseased tissue was

from the two diagnostic classes under analysis. The algorithmtaken as the positive sample relative to either columnar or
development was described previouSiand consists of data ~ squamous normal tissue. However, when CN was discrimi-

reduction using principal component analy§xCA) followed nated against SN, columnar normal tissue was taken as the
by binary classification using Mahalanobis distance. Each steppositive sample relative to squamous normal tissue.
is described in detail in the following. A potential problem with this approach is that it may over-

Prior to PCA, an input matrix was assembled with the estimate sensitivity and specificity due to overtraining. To
specified feature vector combination from the two diagnostic minimize the effect of overtraining, we carried out each
classes. For each measurement, fluorescence and reflectandg@alysis once with the true diagnosis and 50 times when the
spectra from the combinational features were concatenateddiagnosis was randomly assigned. The total number of posi-
end-to-end as a single row vector. To reduce interpatient tive and negative samples was kept the same when generating
variation, each fluorescence spectrum was normalized by itsthe set of randomized diagnosis. We ranked each feature com-
maximum intensity prior to concatenation. These row vectors bination according to the difference in the sum of the sensi-
were concatenated in a column to form the input matrix. tivity and specificity obtained with the true diagnosis with that

Eigenvectors of the corresponding covariance matrix were Of the average sensitivity and specificity from the randomized
then calculated to generate the principal components; thosediagnosis. Since leave-one-out cross-validation provides a
accounting for up to 65, 75, 85, and 95% of the total variance less biased estimate of algorithm performafftthe diagnos-
were retained for algorithm development. We denote the frac- tic performance of the top 25 ranking combinations was fur-
tion of the total variance accounted for by the eigenvectors asther evaluated using leave-one-out cross-validation.
the eigenvector significance lev@SL). Principal component
scores of each measurement in the input matrix were calcu-3 Results
lated using the selected eigenvectors. 31 D

. ata Set

Classifiers based on the principal component scores were ] o
generated to perform binary classification into the two diag- 'Ne data set consisted of a set of spectra from 324 sites in a
nostic classes under analysis. Classification is based on thedfoup of 161 patients that were deemed adequate for both
Mahalanobis distanceiz which is a multivariate measure of eflectance and fluorescence analysis by independent review-

the separation of a data point from the mean of a dataset in€'S: Table 2 shows the diagnostic composition of the data set.
n-dimensional spac¥: Tissues with acute/chronic inflammation or metaplasia were

included in the corresponding squamous or columnar normal
2 — 1 — category.
rE=(x=%)"- Gt (x=X)). (1) 9o
Here, x is the vector containing principal component scores 3.2 Reflectance Spectra
from a sampley; is the mean of the principal component Typical reflectance and fluorescence spectra from three mea-

scores from diagnostic classandC, is the covariance ma-  surement sites diagnosed as normal squarffeigs 2(a)], nor-
trix. The multivariate distance between the sample to be clas- mal columnar{Fig. 2(b)], and CIS[Fig. 2(c)] are shown in
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Fig. 2 Typical in vivo reflectance spectra (left) and fluorescence EEMs (right) from cervical tissue: (a) normal squamous, (b) normal columnar, and
(c) carcinoma in situ. In the left column, reflectance spectra at four different source-detector separations (position 0=——; position 1=—-—;
position 2=— —; position 3=----), normalized by a standard microsphere solution, are shown. In the right column, fluorescence EEM data are
shown.

Fig. 2. The reflectance spectra from each site at the four dif- excitation/450 nm emission is due to cofactor NADH as well
ferent source-detector separation positions are shown in theas collagen crosslinks, while the peak along 525-nm emission
left column of Fig. 2. Positions 0, 1, 2, and 3 correspond to an at both 370- and 450-nm excitation is due to cofactor FAD
increasingly greater source-detection separation. All reflec- and collagen crosslinks. Fluorescence from endogenous por-
tance spectra show valleys due to hemoglobin absorption atphyrin, if present, appears as a peak at 410 nm excitation/630
420, 542, and 577 nm. In general, reflectance intensity de- nm emission. Absorption due to hemoglobin causes valleys
creases from SN tissue to abnormal tissue, with the most sig-parallel to the excitation and emission wavelength axes along
nificant level of attenuation observed with HGSIL. Reflec- 420, 540, and 580 nm. As observed in the reflectance spectra,
tance intensity from CN tissue is low compared to that from the hemoglobin absorption valley is generally more prominent
SN tissue. in abnormal tissue compared to squamous normal tissue.

3.3 Fluorescence Spectra 3.4 Statistical Analysis

The fluorescence EEMs measured at the identical sites areFigure 3 shows the average cross-validated sensitivity and
shown in the right column of Fig. 2. Fluorescence peaks from specificity of the five best-performing feature combinations
several fluorophores are evident. The peak at 350 nmamong all possible combinations; results are shown from
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analyses using reflectance spectra alone, fluorescence spectra 0%
alone, and reflectance combined with fluorescence. In general,
discrimination between SN and CN gave the best perfor-
mance, followed by CN versus LGSIL, SN versus HGSIL, Fig. 4 Average sensitivity (black) and specificity (gray) of the top 10
and CN versus HGSIL. Discrimination between SN and LG- performing combinations for each pairwise analysis when the 20 clas-
SIL resulted in the lowest sensitivity and specificity. For all sification features from fluorescence and reflectance measurements
pairs of diagnostic categories, the use of reflectance aloneare combined one, two, or three at a time at (a) an ESL of 65% and (b)
resulted in good diagnostic performance; however, better per-2" ESt of 95%. Black and gray dots indicate the sensitivity and speci-
. . . ficity of the best performing combination, respectively.

formance is achieved using fluorescence data alone. In the
cases of SN versus LGSIL, SN versus HGSIL, and CN versus
HGSIL, the addition of reflectance features to fluorescence
features showed modest improvement in the average perfor-wavelengths between 330 and 360 nm and 440 and 470 nm
mance compared to the results using only the fluorescenceoccur relatively frequently. Similarly, for discrimination of SN
spectra. For SN versus CN and CN versus LGSIL, the averagefrom HGSILs[Fig. 5c)] and CN from LGSILs[Fig. 5(d)],
performance from the combination of fluorescence and reflec- fluorescence excitation wavelengths between 330 and 360 hm
tance spectra was equal to those from fluorescence spectrand 440 and 480 nm appear relatively frequently. Note that
alone. for separating CN tissue from HGSIIEig. 5(e)], reflectance

The average cross-validated performances from the top 10source-detector separations 0 and 1 occurred more frequently
performing combinations of one, two, and three features than any fluorescence excitation wavelength or any other re-
among 20 reflectance and fluorescence features are shown itfilectance feature.
Fig. 4. The sensitivity and specificity of the single best per- Table 3 compares the classification features identified as
forming combination in each analysis is indicated with black significant from the three different trials: one using only the
and gray dots, respectively. Figuréay shows the average fluorescence features, another using only the reflectance fea-
performance from eigenvectors selected at an ESL of 65%. tures and the other using integrated features from fluorescence
The diagnostic performance is high when limited to the use of and reflectance data. In each trial, significant features were
a single feature, and a small increase in performance is ob-identified for the following five different analyses: SN versus
served when a second feature is added. However, addition ofCN, SN versus LGSIL, SN versus HGSIL, CN versus LGSIL,
a third feature does not result in increased performance inand CN versus HGSIL. In the trial using reflectance features
many cases. Again, the best performance is obtained whenonly, source-detector separation positions 0 and 1 appear sig-
discriminating between SN and CN, reaching an average sen-nificant in all five analyses. The trial using only fluorescence
sitivity of 94% and specificity of 90% with the use of two or features shows that excitation wavelengths between 330 and
three classification features. Increasing the ESL from 65 to 360 nm and those between 460 and 480 nm appear frequently
95% does not noticeably increase performance, as shown inin most analyses. Note that in four analy$8& versus CN,
Fig. 4(b). SN versus LGSIL, SN versus HGSIL, and CN versus LGSIL

Figure 5 shows the frequency with which each classifica- only the fluorescence excitation wavelengths are identified as
tion feature appears among the 10 best-performing featuresignificant features in the trial integrating both fluorescence
combinations selected in Fig(a}. Figure %a) shows that in and reflectance spectra. The selected wavelength ranges cor-
discriminating SN and CN tissues, fluorescence excitation respond well with those identified in the trial using fluores-

Fig. 3 Average sensitivity (black) and specificity (gray) of the five best
performing classification combinations in each pairwise analysis (at
ESL of 65%). Results are shown for reflectance and fluorescence fea-
tures combined (R+F) when selecting combinations of up to three
features, fluorescence spectra alone (F) when selecting combinations
of up to three excitation wavelengths, and reflectance spectra alone
(R) when selecting combinations of up to four source-detector sepa-
rations.

e o °

Sensitivity, Specificity
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Fig. 5 Histograms showing frequency of appearance of each classification feature among the top 10 performing combinations when considering up
to three features at ESL of 65%. Results from the five pairwise analyses are shown: (a) SN versus CN, (b) SN versus LGSIL, (c) SN versus HGSIL, (d)
CN versus LGSIL, and (e) CN versus HGSIL. ESL=65%. The four reflectance source detector separation positions and the 16 fluorescence excitation
wavelengths are indicated by s-d and \,, respectively.

cence features. However, when discriminating CN and HG-  To investigate the diagnostic information inherent in the
SIL, reflectance positions 0 and 1 were selected in addition to classification features that were selected as significant, we
the fluorescence features. plotted the spectra of correctly classified and misclassified
Based on the results in Table 3, we attempted to identify a samples in each pairwise analysis of Table 5. In Fi{g),6he
set of three features that yields the best overall performance inleft plot shows the classification of samples from SN when
all the five pairwise analyses. All combinations of the 20 clas- discriminated against CN. The heavy black plot is the average
sification features that appear in Table 3 were combined into of all the correctly classified SN samples, and the thin gray
sets of three, and the combinations that gave the best perfordines are the individual misclassified samples. The right plot
mance in each pairwise analysis were identified. The overall corresponds to results of CN samples when discriminated
diagnostic performance of each combination in this analysis against SN. The main discriminating factors between SN and
was calculated as the average sensitivity and specificity from CN samples in Fig. & appear to be the valley around
the five pairwise classification algorithms. When the available 380-nm emission at 330-nm excitation and that around 570
features were limited to three, we found that fluorescence nm at 470-nm excitation. Note that these valleys correspond
emission spectra at excitation wavelengths of 330, 430, andto hemoglobin absorption peaks. Figuréh)6shows similar
470 nm resulted in optimal overall classification performance. plots for the case of SN versus LGSIL, where the plot on the
The feature combination and the corresponding classification left shows the samples from SN and that on the right shows
performance for each pairwise analysis from the limited- the samples from LGSIL. We find that, on average, the peak
feature set are listed in Table 4. When the number of available of the correctly classified SN samples is toward the lower
features was increased to four, fluorescence excitation wave-wavelengths compared to that from correctly classified LGSIL
lengths 330, 360, 430, and 470 nm were selected as the sesamples. Figure (6) shows equivalent plots for the case of
resulting in best overall performan¢&able 5. Performance SN versus HGSIL, with the plot for SN samples on the left
of the limited-feature sets is comparable to those when all and that for HGSIL samples on the right. In Figdp the plot
possible combinations of classification features were testedon the left shows samples from CN and that on the right
[Fig. 4@)]. Note that limiting the number of available features shows those from LGSIL. In both pairwise analyses, the val-
from three to four did not result in significant improvement in ley around 380-nm emission at 330-nm excitation appears to
classification performance. be an evident discriminating factor as well as the peak shift in
024031-7
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Table 3 Classification features that appeared most frequently among the 10 best-performing combinations when taken up to three features for the
following five analyses: SN versus CN, SN versus LGSIL, SN versus HGSIL, CN versus LGSIL, and CN versus HGSIL. Results from the following
three trials are shown: one using only the reflectance features only (dark gray bars), another using only the fluorescence features only (light gray
bars), and the other using both reflectance and fluorescence features (black bars).

SNvs. I
CN

SN vs.
LGSIL
SN vs.
HGSIL
CNvs. s
LGSIL

CNvs. BB
HGSIL H—

0123

330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480

either 430-nm excitation or the 360-nm excitation. The main In a previous studyin vivo fluorescence spectroscopy us-

discriminating factor between CN and HGSIL, as shown in
Fig. 6(e), is the hemoglobin absorption valley around 580-nm
emission, which is more prominent in Cieft figure).

4 Discussion and Conclusions

ing 340, 380, and 460 nm excitation yielded a sensitivity of
79% and a specificity of 78% to discriminate HGSIL from all
other cervical tissue typ€dn a separate study, we were able
to discriminate HGSIL from SN with a sensitivity and speci-
ficity of 71 and 79%, respectively, using fluorescence emis-

In our study of the diagnostic potential of combined fluores- sion spectra from three excitation wavelengthsiowever,
y 9 P we were able to discriminate HGSIL from CN with a very low

Sﬁ/';csqeagsdurf:iﬁgngte fcs)gregtlglsn i:(:i}gu\lrv:e%t:ggt%? g:"‘gf;lio sensitivity and specificity. We also performed a previous pair-
P Nwise diagnostic-category comparison using reflectance spec-

e e e i {05C0pY slone, and o we could derminte HGSIL o
9 ’ columnar normal tissue with a 72% sensitivity and an 83%

which classification combination contained the most diagnos- specificity?® These initial findings would indicate the use of a

tically useful information. Results showed the sensitivity and strategy utilizing the respective strengths of fluorescence and

o, Sl esScalon 2, efectance spectoscopy. n i paper, e consider th adds
The addition of a second cISssification fgature did increase thetional diagnostic performance that can be obtained by com-
bining fluorescence and reflectance spectra. We find fluores-

sensitivity and specificity; however, there was no noticeable . .
y P Y: ’ cence alone gives superior performance compared to

increase in classification performance when data from hlgherreflectance alone and that the addition of reflectance spectra

ESLs are included. Furthermore, fluorescence excitation - . . )
! with fluorescence spectra provides a modest improvement in
wavelengths between 330 and 360 nm and 460 and 470 nm iagnostic performance using the empirical diagnostic algo-

and reflectance source-detector separations at positions 0 ANGithms considered here. In particular, reflectance spectroscopy
1 appear most frequently among the best performing classifi-

cation feature combinations.

Table 4 Diagnostic performance of each pairwise analysis when the
available classification features are limited to three (fluorescence ex-
citation wavelengths of 330, 430, and 470 nm). The three classifica-
tion features were selected on the basis of best overall diagnostic
performance in all five pairwise analyse at an ESL=65%.

Feature
Combination

Diagnostic Pair  Sensitivity (%) Specificity (%)

provides good discrimination of CN and HGSIL tissues.

Table 5 Diagnostic performance of each pairwise analysis when the
available classification features are limited to four (fluorescence exci-
tation wavelengths of 330, 360, 430, and 470 nm). The four classifi-
cation features were selected on the basis of best overall diagnostic
performance in all five pairwise analyses at an ESL=65%.

Diagnostic Pair  Sensitivity (%) Specificity (%) ~ Combination

SN versus CN 94 91 330 nm, 470 nm SN versus CN 94 91 330 nm, 470 nm
SN versus LGSIL 55 63 430 nm SN versus LGSIL 55 63 430 nm

SN versus HGSIL 83 80 330 nm, 430 nm SN versus HGSIL 83 80 330 nm, 430 nm
CN versus LGSIL 90 83 330 nm CN versus LGSIL 87 94 330 nm, 360 nm
CN versus HGSIL 72 78 470 nm CN versus HGSIL 72 78 470 nm
Average 79 79 Averages 78 81

Journal of Biomedical Optics 024031-8 March/April 2005 + Vol. 10(2)
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330nm 470nm
1
0.9
~~
=°0.8
S 0.7
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=05
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E03
E 0.2]
0.1] CN

0380 430 480 530 580 555 605 655 0380 430 480 530 580 555 605 655
(2 Emission wavelength (nm) Emission wavelength (nm)

430nm 430nm

. 1o

0.9 0.9
0.7 307
A4 A d

0.6 206
So4 So4
~bd b
=03 '50.3
o2 02

0.1 017 LGSIL -

0480 530 580 630 680 %80 530 580 630 680
Emission wavelength (nm) Emission wavelength (nm)
(b)

330nm 430nm 330nm 430nm
1
0.
Z08
L.
0.
e
20.5
Q0.
203
0.
0.1l HGSIL L

0380 435 490 545 485 540 595 650 0380 435 490 545 485 540 595 650

(c0 Emission wavelength (nm) Emission wavelength (nm)

Fig. 6 Average spectra of correctly classified tissue measurements (heavy black line). Error bars represent one standard deviation. Individual spectra
of the misclassified tissue measurements (thin gray lines) from each diagnostic class in the pairwise analysis when available features are limited to
fluorescence excitation wavelengths of 330, 360, 430, and 470 nm. Results are shown for the following pairwise analyses: (a) SN versus CN, (b) SN
versus LGSIL, (c) SN versus HGSIL, (d) CN versus LGSIL, and (e) CN versus HGSIL.

Several studies have investigated the diagnostic effective- wavelengths were used in this study in contrast to the single
ness of fluorescence and reflectance spectroscopy. Nordstronfluorescence excitation waveleng®65 nn) used in Ref. 18.
et all®investigated fluorescence and reflectance spectroscopyin fact, we have identified that fluorescence excitation wave-
separately, and he reports that fluorescence spectroscopyengths between 330 and 350 nm were significant in discrimi-
yields higher classification performance in separating a pair of nating HGSIL from SN.
diagnostic classes except for the case of HGSIL versus meta- Our previous studies using fluorescence and reflectance
plastic tissues, where reflectance spectroscopy performed betspectroscopy individually indicate that stepwise diagnostic al-
ter. In our study, metaplastic tissue was included in the SN gorithms are required to determine the tissue type of an un-
category and yet we were able to achieve a high level of known sample based on its spectrum because of the large
sensitivity and specificity when SN was classified from HG- differences in optical properties of squamous and columnar
SIL using only fluorescence spectra. This could be attributed cervical tissué>?® The pairwise analysis presented here pro-
to the fact that a large number of fluorescence excitation vides the foundation for this type of diagnostic algorithm. In a

Journal of Biomedical Optics 024031-9 March/April 2005 + Vol. 10(2)
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Fig. 6 (Continued.)

similar analysis, we examined fluorescence EEMs also for 6. W.S. Glassman, C. H. Liu, G. C. Tang, S. Lubicz, and R. R. Alfano,

discrimination of all diagnostic categories. Hence, this infor-

mation can be used toward the development of multistep clas-

sification algorithms to determine the tissue type of an un-

7.

known sample based on its reflectance and fluorescence

spectra.
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