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Abstract. This study explores the possibility of localizing the excita-
tion centers of electrical waves inside the heart wall using voltage-
sensitive dyes �fluorescent or absorptive�. In the present study, we
propose a method for the 3-D localization of excitation centers from
pairs of 2-D images obtained in two modes of observation: reflection
and transillumination. Such images can be obtained using high-speed
charge-coupled device �CCD� cameras and photodiode arrays with
time resolution up to 0.5 ms. To test the method, we simulate optical
signals produced by point sources and propagating ellipsoidal waves
in 1-cm-thick slabs of myocardial tissue. Solutions of the optical dif-
fusion equation are constructed by employing the method of images
with Robin boundary conditions. The coordinates of point sources as
well as of the centers of expanding waves can be accurately deter-
mined using the proposed algorithm. The method can be extended to
depth estimations of the outer boundaries of the expanding wave. The
depth estimates are based on ratios of spatially integrated images. The
method shows high tolerance to noise and can give accurate results
even at relatively low signal-to-noise ratios. In conclusion, we pro-
pose a novel and efficient algorithm for the localization of excitation
centers in 3-D cardiac tissue. © 2006 Society of Photo-Optical Instrumentation En-
gineers. �DOI: 10.1117/1.2204030�
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1 Introduction

During the past few years there has been growing interest in
the use of near-infrared light for biological tissue diagnostics
�see a review in Ref. 1�. One of the numerous applications of
light imaging is the visualization of electrical activity in the
heart.2–9 The commonly applied optical technique makes use
of voltage-sensitive dyes, which allow rapid changes to be
observed in the transmembrane potential of cardiomyocytes.
The technique takes advantage of the dyes’ fluorescence or
absorption properties when excited by an external source, and
could provide invaluable information on the 3-D organization
of the heart’s electrical activity during arrhythmias.

Until today, optical mapping of electrical waves in cardiac
tissue has yielded 2-D images obtained at the tissue bound-
aries. Reconstruction of the 3-D activity is limited by several
factors. First, the thickness of the myocardial wall ��1 cm�
prevents the use of confocal microscopy. Second, the electri-
cal activity is not static and excitation waves can have propa-
gation velocities up to 0.5 m/s, requiring measurements at a
time scale no larger than a few milliseconds. This puts severe
temporal constraints on the acquisition equipment and com-
plicates the application of conventional diffuse optical tomog-
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raphy �DOT� �see Refs. 10 and 11 for reviews on DOT�. The
most advanced functional DOT systems used for 3-D imaging
of brain activity are still too slow for imaging cardiac
excitation.12–14

We propose a method for the localization of an intramural
source of electrical activation from pairs of 2-D optical im-
ages obtained in reflection and transillumination mode �see
Fig. 1�. We consider an experimental setting described by
Baxter et al.,6 where a slab of tissue is placed between two
charge-coupled device �CCD� cameras, measuring fluores-
cence or absorption from both tissue surfaces in rapid succes-
sion. We show that signals derived from these measurements
allow for the calculation of the exact position of a single point
source. The method can be applied to expanding wavefronts.
Specifically, we demonstrate that in addition to exact 3-D lo-
calization of the excitation center, we can also estimate the
distance of the excitation front from the outer tissue bound-
aries at any given moment of time. Contemporary specialized
cooled CCD cameras can readily reach frame rates as high as
2000 Hz, which should be sufficient for the experimental
implementation of our approach.

One of the potential applications of the proposed method is
the localization of so-called ectopic foci—high-frequency
sources of electrical excitation responsible for initiation and
maintenance of cardiac arrhythmias.15 The treatment of such
1083-3668/2006/11�3�/034007/12/$22.00 © 2006 SPIE
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arrhythmias is based on radiofrequency ablation of the
source.16–18 It requires the knowledge of the exact position of
the source and is less concerned about the 3-D shape of the
excitation fronts emanating from the source.

Our method is derived from analytical solutions of the
light transport equation in the diffusion approximation,10,19

and is validated computationally. Here we assume Robin-type
boundary conditions, which represent physical effects at the
boundary and take into account Fresnel reflection due to re-
fractive index mismatch. We use the method of images and a
configuration involving four source-image pairs to construct a
Green’s function in the slab geometry.20–25 The method was
tested with both absorptive and fluorescent voltage-sensitive
dyes.

The work is organized as follows. In Sec. 2 we derive an
analytical formula for the depth estimation of single electrical
point sources based on the ratio of total integrated signals in
the reflection and transillumination modes of observation. In
Sec. 3 we investigate the effects of noise on the depth estima-
tion. In Sec. 4 we consider illumination that alternates be-
tween both sides of the slab to improve the accuracy of the
proposed method. In Sec. 5 we assess the method’s accuracy
for the localization of excitation centers that produce ellipsoi-
dal waves. The technical details of the derivations are pre-
sented in Appendices A, B, and C in Secs. 7, 8, and 9.

2 Localization of a Single Point Source
2.1 Analytical Derivation of the Depth Estimate

We start by illustrating the localization method in the case of
a single point source within a slab of cardiac tissue. Let us
assume that the excitation light illuminates the epicardial sur-
face of the slab �Fig. 1�a��. The camera located at the epicar-
dial side records in the reflection mode �reflect-epi�, while the
camera located at the endocardial side records in the transil-
lumination mode �trans-epi�. Later, we show that these two
camera images allow the depth of an electrical point source in
the slab to be estimated.

To calculate the optical signal, that is, the photon flux ema-
nating from the tissue surface, we use optical diffusion theory
for light propagation in cardiac tissue.9,26 In the diffusion ap-
proximation, the photon density function ��r�� inside the tis-
sue is governed by the following equation �see a review in
Ref. 10�:

cD�2��r�� − c� · ��r�� + w�r�,t� = 0, �1�

where c is the speed of light, D= ltr /3 is the diffusivity coef-
ficient, ltr is the transport mean free path, � is the photon
absorption coefficient, and w�r� , t� is in our case a distributed
fluorescent or absorptive source of a voltage-dependent sig-
nal.

We assume a sufficiently slow temporal change of w�r� , t�,
so that at any given time the photon density is close to the
solution of the time-independent diffusion equation. We also
assume optical homogeneity of the medium with constant co-
efficients D and �. The ratio D /� gives the attenuation length
�=�D /�. For the diffusion approximation to be valid, the
dimensionless parameter D�= �ltr /3��2 must be small, i.e., ltr

must be smaller than �.
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At tissue boundaries, we employ the so-called Robin con-
dition:

� = d
��

��
, �2�

where d=��n�ltr is the so-called extrapolation distance,23,24

��n� is a coefficient representing the effect of Fresnel reflec-
tion at the boundary due to refractive index mismatch �index
of refraction n�1�, and v� is the inward normal to the bound-
ary.

We assume that the source’s local strength density w�r�� is
proportional to the photon density of the incident light �e�r��
and to the transmembrane potential V�r��:9

w�r�� = � · V�r�� · �e�r�� , �3�

where � is a proportionality coefficient determined by the
quantum yield of the dye. Under uniform illumination of the
z=0 surface with a photon flux Ie, �e depends only on the
distance of the source from the illuminated surface Z. With

Fig. 1 Experimental setting for the 3-D localization of electrical activ-
ity in a slab of cardiac tissue. The external light source illuminates a
slab surface, inducing voltage-dependent optical signals. The latter is
recorded with two CCD cameras: one is aimed at the illuminated
surface �reflection mode� and the other at the opposite surface
�transillumination mode�. �a� shows epicardial illumination, while �b�
illustrates endocardial illumination.
the boundary condition in Eq. �2� at z=L, �e is given by:
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�e�Z� =
Ie�e

De

sinh�L + de − Z

�e
�

cosh��L + de�/�e�
, �4�

where �e, De, and de=3��ne�De are the attenuation length,
the diffusivity, and the extrapolation distance for incident
light, respectively. In the case of fluorescent imaging, the pa-
rameters De, �e, and de correspond to the wavelength of the
excitation light, as opposed to D, �, and d, which are deter-
mined by the fluorescence wavelength. In the case of absorp-
tive imaging, we have De=D, �e=�, and de=d.

Taking into account a finite but sufficiently large thickness
of the tissue slab L��, one can find the flux � of photons
exiting the tissue at any point of the observation surface, the
so-called point-spread function. For a point source of unit
strength placed at a distance Z from the observation surface, �
is given by �see details in Appendix A in Sec. 7�:

��Z,	� = �0�Z + d,	� − �0�2L + 3d − Z,	� , �5�

where

�0�
,	� =



2��
2 + 	2��1

�
+

1
�
2 + 	2�exp�−

�
2 + 	2

�
�,

	 = ��x − X�2 + �y − Y�2�1/2

is the distance from the observation point �x ,y� to the projec-
tion �X ,Y� of the source position �X ,Y ,Z� onto the observa-
tion plane. Replacing Z with L−Z gives the point-spread
function for observation from the opposite slab surface. For a
source of strength w, the flux is ��Z ,	� ·w. Note that in the
case of uniform illumination, we have w=w�Z� �see Eqs. �3�
and �4��.

To calculate the depth of the source, we determine the total
signals on both surfaces by integrating the flux ��Z ,	� ·w
over the entire observation plane. For the setting shown in
Fig. 1�a�, the total signals from camera 1 �reflection mode�
and camera 2 �transillumination mode� are given by:

Jrefl = J�Z� · w�Z� ,

Jtrans = J�L − Z� · w�Z� , �6�

where J�Z� is an exponential function that falls rapidly with
Z:

J�Z� = 2 exp�− �L + 2d�/��sinh�L − Z + d

�
� .

The ratio of total signals given by Eq. �6� is independent of
w and incident light parameters:

Jrefl

Jtrans =
sinh��L − Z + d�/��

sinh��Z + d�/��
. �7�

The depth of the point source can then be determined by

solving Eq. �7� for Z.

Journal of Biomedical Optics 034007-
2.2 Estimation of the Lateral Coordinates
The function ��Z ,	� ·w describing the photon flux through
the surface in Eq. �5� is bell shaped. The coordinates of its
maximum correspond to the lateral coordinates X and Y of the
source. Experimentally, X and Y can be readily estimated by
finding the points with maximal signal on either epicardial or
endocardial images �see Fig. 2 and its discussion�.

2.3 Accuracy of Depth Estimation
Equation �7� was derived under the assumption of an infinite
slab in the x and y directions. In finite slabs, the tails of the
point-spread function are cut off at the slab’s edges, causing a
deviation of the estimated depth from its actual value. The
accuracy of the estimates utilizing Eq. �7� for realistic slab
sizes was assessed computationally. In all simulations, we as-
sumed a slab of thickness L=1 cm to represent a typical car-
diac tissue preparation. In the majority of simulations, the
lateral slab sizes were set at 2�2 cm2. In some simulations,
we also used larger slab sizes �3�3 cm2�. The imaging sig-
nals were computed for each of N�N pixels �typically 100
�100� by using the point-spread function in Eq. �5�. Total
signals were calculated by summation over the entire pixel
array, thus simulating summation over CCD camera pixel sig-
nals in the experimental setting.

We used the optical characteristics of swine heart tissue as
in previous simulation studies.9,26 We assumed that all record-
ings, utilizing both fluorescent and absorptive dyes, were
made at 650 nm, for which the attenuation length was �
=1.35 mm. The extrapolation distance was set at d=1 mm,
which corresponds to D=0.22 mm and �=1.5 �according to
calculations in Ref. 24 for n=1.33, isotropic scattering, and a
single-scattering albedo of 0.95�. We simulated a single point
source at various depths throughout the 2�2 cm2 slab rang-
ing from 1.0 to 9.0 mm. We then calculated the optical sig-
nals for each depth, and inserted the data into Eq. �7�. The
estimated locations of the source were then compared with
their actual locations. With the source located at X=Y =0, the
error never exceeds 0.01 mm through the whole range of
depths and is indistinguishable from zero when the source is
located near the middle of the slab �4.0Z6.0 mm� �see
Table 1, columns two and four for fluorescent and absorptive
dyes, respectively�.

It is interesting to note that shifting the source along the x
and y axes has little effect on the accuracy of depth estima-
tion. In the least favorable location—in a corner of the slab—
the error does not exceed 0.1 mm. Increasing the slab size to
3�3 cm2 reduces the error about 30 times. From these data,
one can conclude that the infinite-slab approximation in Eq.
�7� works sufficiently well for realistic slab dimensions.

3 Source Localization in the Presence of Noise
Equation �7� allows for the accurate depth estimation of any
source location. Similarly, the x and y coordinates are the
coordinates of the maximal signal. In the presence of noise,
however, the applicability of the proposed approach is deter-
mined by the signal-to-noise ratio, which in turn depends on
the depth of the source. Let us start with a computational
example that shows simulated raw epicardial and endocardial

signals obtained for two different depths of the source �see
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Fig. 2�. To simulate the effects of noise, we added a matrix of
normally distributed random numbers to the matrix of com-
puted pixel signals. All matrices were sampled from the same
distribution with the mean of zero, so that all the noise values
were independent and identically distributed. The absolute
level of noise, which was defined as the standard deviation of
the distribution, was fixed at 10−7.

Unlike the ideal case described in the previous section, in

Fig. 2 Simulated fluorescence images produced by a single-point sour
point source located 3 mm from the illuminated epicardial surface. �c
source located 7 mm from the illuminated epicardial surface. �e� and
endocardial surface. The profiles through the middle of each image ar
the slab: the black circle indicates the position of the source, and the a
from the image, as shown in �a�.
the presence of noise, the absolute values of signal amplitude
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become important. Accordingly, we have to take into account
the characteristics of the excitation light. In our computational
examples, we assume that excitation of fluorescent dyes oc-
curs at 520 nm and we used �e=0.8 mm, characteristic for
this wavelength.9 Again, we assume that all recordings, utiliz-
ing both fluorescent and absorptive dyes, were made at
650 nm, for which the attenuation length �=1.35 mm. The
extrapolation distance was set at d=1 mm, which corresponds

and �b� show the epicardial and endocardial images obtained from a
d� show the epicardial and endocardial images obtained from a point
ow the same images �source at 7-mm depth� when illuminating the
shown. The insets on top illustrate the geometry in a cross section of
ndicate the illumination. The lateral coordinates �X ,Y� can be inferred
ce. �a�
� and �

�f� sh
e also

rrows i
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to D=0.22 mm and �=1.5. The quantum yield � of both
types of dyes was assumed the same.

Figures 2�a� and 2�b� show the case when the source is
located at 3 mm from the epicardial �illuminated� surface.
The epicardial signal Fig. 2�a� is quite strong, and the position
�X ,Y� of the source in the epicardial plane can be readily
detected from the signal profile shown at the bottom of the
panel. The same is true for the endocardial signal Fig. 2�b�
obtained in transillumination mode. Although the signal is
significantly noisier due to a relatively weaker signal, one can
still clearly see the source. The estimated x and y coordinates
of the source obtained from Fig. 2�b� by picking the ten
brightest pixels and averaging their coordinates were X
=0.01±0.23 mm and Y =0.01±0.23 mm, respectively, very
close to the actual coordinates X=0.0, Y =0.0 of the source.
The average depth, which was estimated by calculating the
total signals on both surfaces and subsequently using Eq. �7�,
is also very close �2.98 mm� to its actual location Z=3 mm.

The situation changes, however, when the source is located
further away from the illuminated surface. Figures 2�c� and
2�d� show the case of a source located 7 mm from the illumi-
nated epicardial surface. Now, the source can no longer be
identified on the epicardial surface and can only be seen in the
transillumination mode Fig. 2�d�. The effect of noise as a
function of source depth is illustrated in Table 1 �see columns
3 and 4�. The accuracy is higher when the source is located
near the epicardial �illuminated� surface and gradually dete-
riorates as the source moves toward the endocardial surface.

The observed trend is the result of the overall reduction of
the surface signal with increasing Z. When the source moves
away from the illuminated boundary, the random component
of the signals recorded from both surfaces becomes dominant.
As a result, the average ratio of integrals approaches 1 �the

Table 1 Depth estimation of a single point source by the method of
signal ratios. Comparison between fluorescent and absorptive dyes for
epicardial illumination. The absolute noise level was set to 5.0·10−6.
Each number was obtained by averaging 100 measurements sampled
from the same random distribution.

Actual depth
Z �mm�

Fluorescent dyes Absorptive dyes

Z �mm�
no-noise

Z �mm�
with

Z �mm�
no-noise

Z �mm�
with

1.0 0.99 0.99±0.08 0.99 0.98±0.05

2.0 1.99 1.94±0.16 1.99 1.99±0.05

3.0 2.99 2.93±0.33 2.99 3.00±0.05

4.0 4.0 3.97±0.48 4.0 3.99±0.05

5.0 5.0 4.96±0.76 5.0 5.00±0.08

6.0 6.0 5.25±1.07 6.0 6.05±0.25

7.0 7.01 4.97±1.01 7.01 6.80±0.60

8.0 8.01 4.88±1.12 8.01 7.02±0.62

9.0 9.01 5.04±1.05 9.01 7.05±0.67
noise is identical for both signals�, yielding the estimated
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depth close to L /2=5 mm. Indeed, one can see that at Z
=5 mm, the estimated depth reaches 5 mm and practically
does not change as Z increases all the way up to 9 mm.

Such underestimation is less pronounced in the case of
absorptive dyes �column 4�: the largest SD was 0.67 mm for
a source located at Z=9.0 mm �compare to 1.05 mm in the
case of fluorescent dyes�. This is the result of the longer illu-
mination wavelength in the case of absorptive dyes �650 ver-
sus 520 nm�. At 650 nm, the penetration depth of light is
larger �1.35 versus 0.8 mm, see earlier� and the signal is less
attenuated. Consequently the effect of noise is less pro-
nounced.

4 Alternating Illumination
The accuracy of the depth detection in the presence of noise
can be increased by utilizing alternating illumination when the
direction of illumination switches between epicardium �see
Fig. 1�a�� and endocardium �see Fig. 1�b��, producing two
pairs of images. By combining the depths estimated from each
pair, one can significantly reduce the depth dependence of the
localization accuracy in the presence of noise.

The basic idea of alternating illumination can be readily
understood from a simple example. From the previous sec-
tion, we already know that our method is least accurate when
the source is located far from the illuminated surface. One
such example is shown in Figs. 2�c� and 2�d�. In this case, the
epicardial signal �Fig. 2�c�� is buried in noise and the accu-
racy of depth detection is not very high. Figures 2�e� and 2�f�
show the images of the same source after the illumination was
switched to the other side of the slab. The situation has dra-
matically improved �compare Figs. 2�c� with 2�e� and 2�d�
with 2�f��. Now the signal is clearly identifiable on both sur-
faces. Note that Figs. 2�e� and 2�f�, if flipped, look almost
identical to Figs. 2�a� and 2�b�, except for the noise compo-
nents, which are different statistical samples with the same

Table 2 Effect of endocardial versus epicardial illumination. The ab-
solute noise level was set to 5.00e−6.

Actual depth
Z �mm�

Fluorescent dyes+noise
�mean±SD�

Absorptive dyes+noise
�mean±SD�

Zepi �mm� Zendo �mm� Zepi �mm� Zendo �mm�

1.0 0.99±0.08 4.70±1.27 0.98±0.05 2.98±0.68

2.0 1.94±0.16 4.61±0.98 1.99±0.05 2.81±0.82

3.0 2.93±0.33 4.93±0.93 3.00±0.05 3.08±0.58

4.0 3.97±0.48 4.91±0.96 3.99±0.05 3.93±0.32

5.0 4.96±0.76 5.02±0.77 5.00±0.08 5.00±0.07

6.0 5.25±1.07 6.15±0.49 6.05±0.25 6.01±0.05

7.0 4.97±1.01 6.98±0.21 6.80±0.60 7.00±0.05

8.0 4.88±1.12 8.02±0.14 7.02±0.62 8.01±0.04

9.0 5.04±1.05 9.01±0.08 7.05±0.67 9.01±0.05
distribution. This resemblance results from the fact that the
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depth of 7 mm for endocardial illumination is equivalent to a
depth of 3 mm for epicardial illumination �with the slab
thickness L=10 mm�.

By using alternating illumination, one can effectively
achieve accurate depth detection throughout the whole thick-
ness of the slab. Table 2 shows the estimated depths for image
pairs obtained during epicardial �Zepi� and endocardial �Zendo�
illumination. We define both quantities as distances from the
epicardium, i.e., Zendo=L−Z, with Z given by Eq. �7� during
endocardial illumination. One can see that Zepi becomes less
accurate as the distance from the epicardial surface increases
�column 2�, whereas Zendo has an opposite trend. Qualitatively
similar results were obtained for absorptive dyes �compare
columns 4 and 5�, although the accuracy shows less depth
dependence.

The algorithm of selection between Zepi and Zendo is quite
straightforward. One must compare image pairs obtained dur-
ing epicardial and endocardial illumination and select the
dataset with the highest signal-to-noise ratio. If the signal-to-
noise ratios of both pairs are comparable, the best accuracy
can be achieved by calculating the source coordinates inde-
pendently from each dataset, i.e., by averaging the results.

5 Ellipsoidal Waves
Our next step was to determine how well our approach works
in more realistic situations when, instead of a single point
source, we have an expanding excitation front. To achieve this
goal we have extended our model to account for the specific
features of cardiac electrical propagation.

The excitation wave in the heart has a very sharp front and
a well-defined plateau whose amplitude can be considered
constant with a high degree of accuracy. Accordingly, in our
simulations, the potential V in Eq. �2� for each voxel was set

Fig. 3 Fluorescence images of an expanding hollow ellipsoidal wa
epicardium. An x-z cross section of the excited voxels is shown on t
indicates its actual xy position.
to 1 �excited state� or 0 �resting state�.
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Cardiac tissue is anisotropic for electrical propagation:
wavefronts have a larger conduction velocity along than
across fibers. Moreover, the orientation of the fibers rotates
through the heart wall.27 Hence, point stimulation results in
ellipsoidal waves and the orientation of their x and y axes
changes as they propagate deeper in the tissue.

In our computational examples, the semi-axis ratio of the
ellipsoid was 6:2:15 �in directions x, y, and z, respectively�. In
each run we simulated six consecutive frames; three of them
�frames 2, 4, and 6� are shown in Figs. 3 �fluorescence� and 4
�absorption�. The number of voxels in the excited state varied
from 30 �frame 1� to 1000 �frame 6�. The wave is initiated in
a voxel in frame 1 at depth 6.1 mm. Ellipsoidal waves pro-
duced considerably stronger signals than a single point
source. To see the effects of noise in these cases, we increased
the absolute noise level by a factor of 50. We repeated the
simulations ten times for different random samples from the
same noise distribution, and calculated the mean depths and
SD.

Figure 3 depicts the optical images obtained for an expand-
ing hollow ellipsoidal wavefront originating near the endocar-
dial surface in the case of fluorescent dyes. We illustrate dif-
ferent stages of the propagating wave by showing the signals
for frames 2, 4, and 6. At an early stage �frame 2�, the wave
can only be distinguished on the endocardial surface, only
during endocardial illumination. As the wave expands and
moves closer to the epicardial surface, the signal starts to
exceed the noise background in the other images: first in
transillumination mode �frame 4� and then, eventually, in all
four images �frame 6�. The images of the excitation front in
frames 4 and 6 acquire a pronounced elliptical shape. One can
also see the counterclockwise rotation of the axes of the el-
lipsoid, simulating the effect of fiber rotation as described

t. The wave was initiated in one voxel at depth 6.1 mm from the
of each frame. A black dotted line in one of the four source images
vefron
he top
before.
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Figure 4 shows the optical signals for the same ellipsoidal
wave, but in the case of absorptive dyes. The results were
qualitatively similar to the ones obtained with fluorescent
dyes �Fig. 3�. However, absorptive dyes give overall brighter
signals, leading to less noticeable effects of noise �compare
corresponding frames in Figs. 3 and 4�.

Figure 5 shows the depths Zepi and Zendo estimated during
epicardial and endocardial illumination in all six frames. As
the front expands, the values of Zepi and Zendo steadily start to
diverge. However, their average �solid line� remains nearly
constant and accurately predicts the position of the excitation
center, even at very late stages of the wavefront expansion.
The maximal standard deviation �indicated by error bars� was
observed at the earliest stages of the excitation, primarily due

Fig. 4 Absorption images of an expanding hollow ellipsoidal wave
compared to Fig. 3 due to increased signal magnitude.

Fig. 5 Accuracy of localizing the excitation center of the expanding
position of the excitation center �6 mm� is indicated by a dashed line
shows the calculated position of the excitation center. The SD due to

absorption imaging, respectively.
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to the small volume of excited voxels and thus the lower
magnitude of the signal. However, the error rapidly decreases
as the front becomes larger. Computer simulations show the
same effect for absorptive dyes.

It is interesting that Zepi and Zendo predict not only the
origin of the excitation front by their average, but also the z
coordinates of the excitation front above and below the exci-
tation center. Figure 6 shows Zepi and Zendo as well as the z
coordinates of the front for fluorescent �Fig. 6�a�� and absorp-
tive dyes �Fig. 6�b�� in the absence of noise in the case of
hollow and solid ellipsoidal waves. In the fluorescent case, the
deviation between the predicted and actual position of the

hown in Fig. 3. There is a significantly higher signal-to-noise ratio

ellipsoidal wave using the method of total signal ratios. The actual
d lines show the calculated depths Zepi and Zendo, and the solid line
is indicated for each data point. �a� and �b� are for fluorescence and
front s
hollow
, dotte
noise
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front is less than 0.9 mm. In the absorption case, it was
higher, up to 1.6 mm, yet still rather close.

The difference between the actual front coordinates and the
respective values of Zepi and Zendo represents a systematic
error resulting from the fact that the pairs of images used to
calculate Zepi and Zendo represent selectively the portions of
the excitation wave on the epicardial and endocardial side,
respectively. This systematic error can be expressed in terms
of the so-called form factor, a geometric characteristic of the
source configuration �see Appendix C in Sec. 9�. The less
accurate results obtained for “solid” waves in Figs. 6�a� and
6�b� are a manifestation of differences in � for hollow and
solid source configurations. Indeed, in the case of solid waves,
the inner core makes a contribution to the signal additional to
that from the front surface, resulting in the shift of the esti-
mated values to the center of the core.

As shown in Appendix C in Sec. 9, the form factor is
determined by the vertical size of the ellipsoid and does not
depend on the semi-axes ratios. This property of the system-
atic error allows for the design of an iterative procedure to
correct the values of the depths Zepi and Zendo �Appendix C in
Sec. 9�. Figures 6�c� and 6�d� show the results of such correc-

Fig. 6 Comparison of Zepi and Zendo with the actual positions of the fro
by solid lines, dashed lines show the calculated positions for the hollo
�a� and �b� are for fluorescence and absorption imaging, respectively
corrected for the form factor of the source distribution �see Appendix
tion. We see that, after correction, the dotted and solid lines

Journal of Biomedical Optics 034007-
match perfectly, i.e., Zepi and Zendo accurately predict the dis-
tance of the wavefront to the epicardial and endocardial sur-
faces, respectively. The corrected depths obtained in the worst
case, i.e., in frame 6 with the largest ellipsoid, differ from the
actual depths by less than 0.6%.

A qualitative understanding of the physical meaning of Zepi
and Zendo for source configurations extended in the z direction
can be achieved by analyzing the case of two point sources
located at two different depths, ZA and ZB, as illustrated in
Fig. 7. Indeed, during epicardial illumination, both the epicar-
dial �reflect-epi� and the endocardial �trans-endo� images
show only source A located near the epicardial surface.
Source B, located near the endocardium, becomes visible only
after the illumination is switched to the endocardium �reflect-
endo and trans-epi�. Note that the depth selectivity is more
pronounced in the case of fluorescent dyes �not shown�. An
important factor that determines the higher depth selectivity in
this case is the difference in the attenuation lengths of the
excitation and emission light.9

6 Concluding Remarks
We are proposing a method for the localization of sources of

ve and beneath the excitation center. The real positions are indicated
e, and dotted lines are for the calculated positions for the solid wave.
d �d� show the results after the depth estimates Zepi and Zendo were

ec. 9�.
nt abo
w wav
. �c� an
electrical activity inside the myocardial wall. It is based on
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ratios of the total photon flux signals in reflection and transil-
lumination. We demonstrate that even with a considerable
level of noise, the method provides 3-D information on the
source position and size. In general, we found that the depth
estimate was more accurate when using fluorescent rather
than absorptive dyes. However, absorptive dyes provided
brighter signals and made the depth estimation method less
sensitive to noise and more attractive for experiments.

We show that by using alternating illumination, one can
significantly increase the accuracy of the proposed method.
Importantly, it can be used not only to localize the intramural
sources of excitation, but also to study qualitatively the dy-
namics of the wavefront expansion. It should be noted, how-
ever, that the experimental implementation of this approach
might require rather high acquisition speeds. Specifically, to
achieve an error due to motion-related smearing of less than
1 mm, the whole measurement cycle, including epicardial and
endocardial illumination, should be completed in 2 ms �in
view of the propagation speed in the heart of about 0.5 m/s�.
However, this is well within the reach of contemporary CCD
cameras that can readily achieve frame rates of
2000 frames/s.

Our theoretical approach is based on previous studies of
the forward problem of light propagation in cardiac tissue.9,26

A major improvement added to the present study consists in
using the more accurate Robin boundary condition. The latter
takes Fresnel reflection at the tissue boundaries into account,

Fig. 7 Simulated fluorescence images produced by two point sources.
Reflection and transillumination signals were obtained by illuminating
either the epicardium �reflect-epi and trans-epi� or endocardium
�reflect-endo and trans-endo�. The depths ZA and ZB of the sources
were respectively 2.0 and 8.0 mm from the epicardium �see inset on
top�.
as opposed to the previously used zero-boundary conditions.

Journal of Biomedical Optics 034007-
The present work represents the first step in exploring the
feasibility of a 3-D visualization of electric activity inside the
cardiac muscle. We focus on the transmural depth of sources
of electrical activity and do not attempt to reconstruct the
amplitude or 3-D distribution of the transmembrane voltage
V. It should be noted, however, that just knowing the location
of sources of electrical activity in cardiac tissue might have
important applications in cardiac electrophysiology as a tool
to understand the mechanisms underlying life-threatening ar-
rhythmias, and toward the development of new antiarrhythmic
procedures.

7 Appendix A: Derivation of a Point-Spread
Function in a Thick-Slab Approximation

7.1 Solution for a Point Source in an Infinite Medium
The basic solution of Eq. �1� for a point source of unity

strength w�r��=��r�−R� � in infinite space �or far from bound-
aries� is given by:

�0�r�� =
exp�− r/��
4� · D · r

, �8�

where r is the distance from the point source to the observa-
tion point. At distances from the source greater than �, the
photon density rapidly vanishes due to light absorption. The
photon flux in the radial direction is given by Fick’s law as

− D ·
d�0

dr
=

exp�− r/��
4� · r

�1

�
+

1

r
� . �9�

7.2 Point-Spread Function in a Semi-Infinite Slab
To find a solution satisfying the Robin boundary condition
�Eq. �2� in the main text�, we use the so-called extrapolation
distance approach �see, for example, Refs. 23 and 24�, in
which � is set to zero at a distance d �so-called extrapolation
distance� from the boundary. Employing the method of im-
ages, we seek the solution as a sum of basic solutions in Eq.
�8� for a point source and its mirror image:

� = �0�r1� − �0�r2� , �10�

where

r1 = ��Z − z�2 + 	2�1/2, r2 = ��Z + z + 2d�2 + 	2�1/2,

	 = ��x − X�2 + �y − Y�2�1/2

is the distance from the observation point �x ,y� to the projec-
tion of the source position �X ,Y ,Z� onto the observation
plane, and �0 is Green’s function given by Eq. �8�. At
z=−d, the two terms �for the source and its image� in Eq. �10�
cancel each other.

To find the photon density at the boundary z=0, we ex-
pand Eq. �10� about z=−d. Note that the function in Eq. �10�
is odd about z=−d. Therefore, all its even derivatives, along
with the function itself, vanish at z=−d. Discarding terms of

third and higher order in d gives
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���z=0 = d	 ��

�z
	

z=−d
, 	 ��

�z
	

z=0
= 	 ��

�z
	

z=−d
.

Combining both equations, we find that � satisfies the Robin
boundary condition if d=��n�ltr. Since d is of the same order
as the small path ltr, the previous expansion is justified. The
photon flux � across the boundary is then given by �=�0�Z
+d ,	�, where

�0�
,	� =



2��
2 + 	2��1

�
+

1
�
2 + 	2�exp�−

�
2 + 	2

�
� .

�11�

The flux in Eq. �11� integrated over the entire boundary plane
is a simple exponential function of the source depth:

J�Z� = exp�− �Z + d�/�� . �12�

7.3 Point-Spread Function in Thick-Slab
Approximation

For the slab geometry with the observation surface at z=0 and
another boundary at z=L, we assume that the slab thickness L
is much greater than the attenuation length �. Strictly speak-
ing, in the slab geometry, the method of images requires an
infinite sequence of mirror sources. However, when � is much
smaller than L, the contributions from distant image sources
decrease exponentially. Thus, to satisfy the boundary condi-
tion at z=L, it is found to be sufficient to add two more
images to a solution satisfying a boundary condition at z=0
�see Fig. 8�. The function ��0�r1�−�0�r2��− ��0�r3�
−�0�r4�� with r1= ��Z−z�2+	2�1/2, r2= ��Z+z�2+	2�1/2, r3
= ��2L−Z−z�2+	2�1/2, and r4= ��2L−Z+z�2+	2�1/2 for the
four sources satisfies the condition �=0 at z=0. This func-
tion also approximately satisfies the condition �=0 at the z
=L boundary, since the contribution to the photon density
from the real source 1 cancels the contribution from source 3,
and the contributions from sources 2 and 4 at this border are
exponentially small �less than exp�−L /���. The photon flux
�point-spread function� at the observation surface z=0 is then
given by:

��Z,	� = �0�Z,	� − �0�2L − Z,	� . �13�

For the total flux at this surface, we find J �Z�=exp�−Z /��
−exp�−�2L−Z� /��. Replacing Z with L−Z gives the signal
on the surface z=L.

We obtain solutions satisfying the Robin boundary condi-
tions by simply substituting L+2d for L �for identical condi-
tions at the two boundaries� and Z+d for Z:

��Z,	� = �0�Z + d,	� − �0�2L + 3d − Z,	� , �14�

J�Z� = exp�− �Z + d�/�� − exp�− �2L + 3d − Z�/��

= 2exp�− �L + 2d�/��sinh�L − Z + d

�
� . �15�

Here, the function �0�
 ,	� is given by Eq. �11�. Again, the
signal on the opposite surface can be found by replacing Z

with L−Z.
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8 Appendix B: Analytical Approximation of the
Depth Estimate

By assuming that a point source is far from the boundaries
�L−Z+d�� and Z+d���, one can obtain from Eq. �7� in
the main text an explicit expression for the source position:

Z =
1

2

L − � ln� Jrefl

Jtrans�� . �16�

For a given level of tolerance �=error/Z, this approximation
works in the range z��Z�L−z�, where z�=−� /2 ln���−d.
For relevant tissue parameters �L=10 mm, �=1.35 mm, d
=1 mm� and tolerance as low as �=0.05, this range is rea-
sonably broad: 1 mm�Z�9 mm.

9 Appendix C: Form Factor and Its Calculation
In Sec. 5, we showed computationally that the ratio of total
photon fluxes measured in reflection and transillumination
modes can be used to estimate the minimal distance of the
excitation front from the illuminated surface �see Fig. 6�. The
systematic error of such estimates can be expressed as a func-

Fig. 8 The method of images for the solution in slab geometry. The
real source located at depth Z inside the tissue �hatched region� is
represented by a filled circle. The mirror images are shown as open
circles.
tion of the so-called form factor �, a geometric characteristic
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of distributed source configurations. Next, we introduce a
general definition of � and present an analytical derivation
for ellipsoidal waves.

9.1 Definition of �

Let us consider a source configuration with its strength den-
sity arbitrarily distributed over a certain volume. Let a point S
be the closest point of the configuration to the illuminated
surface, with the distance Zmin between point and surface. A
point source placed at S would produce surface fluxes in re-
flection and transillumination modes, which we denote by jref

and jtrans, respectively. Similarly, the distributed source pro-
duces fluxes Jref and Jtrans. We now define � as the double
ratio

� = �jref/jtrans�/�Jref/Jtrans� . �17�

Using the formula in Eq. �17� and approximation in Eq.
�16�, one can readily derive the estimate for the systematic
error of localizing point S of the configuration. Substitution of
�jref / jtrans�=��Jref /Jtrans� for Jrefl /Jtrans into Eq. �16� yields
Zmin:

Zmin =
1

2

L − � ln��

Jrefl

Jtrans�� = Z −
1

2
� ln � . �18�

By definition, Zmin is the actual distance of the excitation front
from the surface, whereas Z is the distance obtained under the
point-source assumption. The difference between Z in Eq.
�16� and Zmin gives the systematic error in the depth detection:

Z − Zmin =
1

2
� ln � . �19�

An explicit expression for � can be derived from the formulas
in Eq. �6�. We derive such an expression for an ellipsoidal
source configuration and use it to correct the systematic error
in the depth detection.

9.2 � for Ellipsoidal Source Configuration

Let us approximate hyperbolic functions in Eq. �6� with ex-
ponential functions as in Appendix B in Sec. 8 and assume
that sources are evenly distributed over volume V. Subse-
quently, Eq. �17� can be rewritten as:

� = exp�− 2Zmin/��
�

�

exp
− z� 1

�e
−

1

�
��dV

�
�

exp
− z� 1

�e
+

1

�
��dV

. �20�

Let us consider an ellipsoid of volume V centered at z
=Z0 with lateral semi-axes a and b, and vertical semi-axis R.
The volume element is then given by dV= �ab /R2�dVs, with
dVs=��R2− �z−Z0�2�dz the volume element of a sphere with

radius R. From the definition in Eq. �20� it follows:
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� = ��/�e + 1

�/�e − 1
�3

�
���/�e − 1� − 2 + ����/�e − 1� + 2�exp�− ���/�e − 1��
���/�e + 1� − 2 + ����/�e + 1� + 2�exp�− ���/�e + 1��

,

�21�

where �=2R /�. Note that the form factor is independent of
the position Z0 and of the lateral semi-axes a and b. It de-
pends only on one geometric parameter �, the length of its
vertical semi-axis. Computer simulations suggest that the
same is also true for hollow ellipsoids: � changes by less than
3% when the semi-axis ratio increases from 1 to 3.

9.3 Iterative Algorithm for Depth Correction
As we showed earlier, the actual distance of the excitation
front from the surface can be calculated from Eq. �18�. How-
ever, the value of �, which is required for this calculation,
depends on �, the vertical size of the ellipsoid �see Eq. �21��,
which is unknown in real experimental situations. This com-
plication can be readily resolved by a simple iterative algo-
rithm described next.

To generate the initial approximation, we assume that �
= �Zepi−Zendo� /�, where the values Zepi and Zendo are calcu-
lated from the original experimental data using Eq. �7�. By
inserting this value of � in Eq. �21�, we find the first approxi-
mation of � and subsequently the corrected values of Zepi and
Zendo. During the next iteration we repeat step 1. However, to
calculate �, we now use the corrected values of Zepi and
Zendo. After k+1 steps, the values of the absolute error and �
are, respectively:

ek+1 =
1

2
� ln��k�, �k = �Zendo − Zepi + 2ek�/�, e0 = 0.

�22�

The cycle is repeated until the difference between two suc-
cessive depth values reaches a preset level of tolerance.
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