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Abstract. We present a method for lung cancer detection exploiting
reflectance spectra measured in vivo during endoscopic imaging of
the lung. The measured reflectance spectra were analyzed using a
specially developed light-transport model to obtain quantitative infor-
mation about cancer-related, physiological, and morphologic changes
in the superficial bronchial mucosa layers. The light-transport model
allowed us to obtain the absorption coefficient ��a� and further to
derive the micro-vascular blood volume fraction in tissue and the
tissue blood oxygen saturation. The model also allowed us to obtain
the scattering coefficient ��s� and the anisotropy coefficient �g� and
further to derive the tissue scattering micro-particle volume fraction
and size distribution. The specular component of the reflectance sig-
nal and the instrument response were accounted for during the analy-
sis. The method was validated using 100 reflectance spectra measured
in vivo in a noncontact fashion from 22 lung patients �50 normal
tissue/benign lesion sites and 50 malignant lesion sites�. The classifi-
cation between normal tissue/benign lesions and malignant lesions
was further investigated using the derived quantitative parameters and
discriminant function analysis. The results demonstrated significant
differences between the normal tissue/benign lesions and the malig-
nant lesions in terms of tissue blood volume fraction, blood oxygen
saturation, tissue scatterer volume fractions, and size distribution. The
results also showed that the malignant lung lesions can be differenti-
ated from normal tissue/benign lesions with both diagnostic sensitivity
and specificity of better than 80%. © 2006 Society of Photo-Optical Instrumenta-
tion Engineers. �DOI: 10.1117/1.2337529�

Keywords: reflectance spectroscopy; tissue absorption; tissue scattering; tissue
blood volume fraction; blood oxygen saturation; tissue oxygenation; tissue scatterer
volume fraction; tissue scatterer size distribution; endoscopy; lung cancer detection.
Paper 05187RR received Jul. 15, 2005; revised manuscript received Feb. 15, 2006;
accepted for publication Apr. 4, 2006; published online Aug. 25, 2006.
1 Introduction

Lung cancer is the leading cause of cancer death in North
America, and it has the second most common cancer inci-
dence among both men and women. Yet, its cure rate can
reach more than 90% if it is treated in the early stages. Un-
fortunately, conventional lung endoscopy �bronchoscopy�
based on white light reflectance �WLR� imaging, which is
typically used to detect cancer lesions in the central airways
of the lung, can only detect about 25% of the lung cancers.1

This has created the need for detection or imaging modalities
that can be accompanied to the white light endoscopy and
achieve better diagnostic performance for lung cancer detec-
tion. Several research groups have investigated the use of tis-
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sue autofluorescence to improve the detection sensitivity of
different cancerous lesions and types.2–9 In addition, a number
of fluorescence �FL� imaging systems combined with WLR
imaging have been developed and demonstrated significant
improvement in the diagnostic sensitivity of the lung cancer
in particular.1,10–13 However, such increase in detection sensi-
tivity was at the cost of the decreased detection specificity.
For example, one of the commercial FL imaging systems has
achieved a sensitivity of 67% for lung cancer detection, but
the specificity was reduced to 66% compared to 90% for
WLR imaging alone.1

An alternative approach was to perform additional fluores-
cence and/or reflectance spectroscopic measurements to ob-
tain information about the intrinsic differences in optical
properties, which could be used to improve the detection and
1083-3668/2006/11�4�/044003/12/$22.00 © 2006 SPIE
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classification accuracy of the suspected lesions identified dur-
ing tissue imaging. Intrinsic differences on optical properties
between malignant and benign lesions/normal tissues were
found and were related directly to the changes in tissue physi-
ology and morphology that occurred during cancer trans-
formation.14,15 Clinical spectroscopic measurements and
analyses have been performed on various organ sites includ-
ing the lung.16–22 In particular, Bard et al.21,22 have performed
spectral measurements and analysis on the abnormal lesions
that were identified during fluorescence bronchoscopy and
they found significant changes on both absorption-related and
scattering-related physiological and morphological properties
when tissue became malignant. They have also evaluated the
potential of such spectral measurements for improving the
specificity for lung cancer detection.12 However, their mea-
surements were still conducted using a fiber-optic probe in-
serted through the endoscope instrument channel and been in
contact with the tissue surface during the measurement. Re-
cently, we have developed an integrated WLR/FL endoscopy
system for simultaneous imaging and noncontact spectros-
copy measurements.23,24 Spectral measurements are per-
formed without introducing a fiber-optic probe through the
endoscope instrument channel to touch the tissue surface as in
all previous endoscopic spectral measurements, overcoming
inconveniences associated with fiber probes and interferences
with biopsy forceps and therapeutic tools. This presents great
potential for improving the clinical diagnostic sensitivity and
specificity at the same time.

In this work we developed a method to obtain quantitative
information about cancer-related physiological and morpho-
logical changes in lung tissue from reflectance spectra mea-
sured with our integrated WLR/FL endoscopic imaging and
spectroscopy system. We also investigated the potential of
using the so-obtained quantitative information to differentiate
malignant lung lesions from normal tissue or benign lesions.
In the second section of this article, we describe the in vivo
spectral measurements with our apparatus and the theoretical
foundation of the method used for analyzing the measured
reflectance spectra. We then present and discuss the results
obtained from the preliminary in vivo study performed to vali-
date the proposed method.

2 Materials and Methods
2.1 In Vivo Reflectance Spectral Measurements

Reflectance spectroscopy was performed during endoscopic
examination using our integrated endoscopy system for simul-
taneous imaging and spectroscopy described in detail else-
where by Zeng et al.23 The bronchial tissue was illuminated
by the endoscope with a broad beam ��2 cm beam diameter
on tissue�. The light source used is a Xenon arc lamp provid-
ing both white light �400–700 nm, 10 mW� for WLR imag-
ing and reflectance spectral measurements and a strong blue
light �400–460 nm, �50 mW� with weak near-infrared
�NIR� light �720–800 nm, 4 mW� for FL imaging and fluo-
rescence spectral measurements. The illumination fiber bundle
of the endoscope is interfaced to the light source to illuminate
the bronchial tree, and the imaging bundle of the endoscope
collects and relays the reflected and the FL signal from the

tissue surface to the system for imaging and spectroscopy.
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The spectral measurements were performed using a spe-
cially designed spectral attachment between the endoscope
eyepiece and the camera �Fig. 1�. As shown in Fig. 1, the light
coming out of the endoscope is focused by Lens 4 to form an
interim image at a fiber-mirror assembly. This assembly is
fabricated by drilling a hole through a mirror and mounting
a 200 �m core-diameter taper fiber through the hole. The
200-�m optical fiber carries the optical reflectance signal or
fluorescence signal from a spot at the center of the image,
which corresponds to an area of 1-mm diameter at the tissue
surface when the endoscope tip is 10 mm from the tissue
surface, to the spectrometer �USB2000, Ocean Optics, Dune-
din, FL� for spectral analysis. The system spectral resolution
is 5 nm. We installed a band-pass �BP� filter �470–700 nm�
at the spectrometer entrance to block the reflected blue and
NIR light to facilitate fluorescence spectral measurements. As
such, the reflectance spectral measurement wavelength range
was also restricted to between 470 nm and 700 nm. The spec-
trometer exposure time was set at 200 ms. The choice of this
200 ms exposure time was determined empirically so that the
measured reflectance/fluorescence spectra have good S/N
without the risk of movement artifacts. This has also been
verified by reviewing video files from randomly chosen 10
patients in a frame by frame fashion and calculated the dis-
placement of our spectral measurement spot during the 200
-ms period �=6 image frames�. We found that the displace-
ment is less than 10% of the measurement spot size. The
video image and the spectrum, either in the WLR mode or in
the FL mode, are displayed simultaneously on the computer
monitor in live mode. A still image or a spectrum at any time
point of interest during the endoscopy procedure can be cap-
tured and stored in the PC. The suspected lesions are identi-
fied using FL imaging and/or WRL imaging and then both
reflectance and fluorescence spectra are acquired from some
of the suspected �identified� lesions. However, in this paper
we have only analyzed reflectance spectra. The advantage of
this system is that spectral measurements are performed in a
noncontact manner through an intermediate image plane.
Therefore, no fiber probes are needed to go through the in-
strument channel of the endoscope as often in other literature,
making clinical applications of this technology much more
convenient. It also created measurement geometry of broad
beam illumination and narrow spot detection, simplifying the-
oretical modeling of the measured spectra.

The in vivo reflectance signal measured from the tissue,
Im1���, can be described as follows:

Im1��� = a1I��� + b1I���Rtm��� , �1�

where I��� is the instrument spectral response, including light
source spectral features, fiber-bundle transmittance, and de-
tector efficiency, a1 is a constant related to the efficiency by
which the tissue-surface specular reflection was collected by
the probe, b1 is a constant related to the efficiency of collect-
ing diffuse reflected light from tissue by the measuring probe,
and Rtm��� is the true tissue diffuse reflectance to be derived.
The reflectance signal measured from tissue Im1��� was di-
vided by the reflectance signal measured from a reflectance
standard disc �WS-1 diffuse reflectance standard, Ocean Op-

tics, Dunedin, FL� to account for instrument spectral response
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I���. The reflectance signal measured from the standard disc,
Im2���, can be described as follows:

Im2��� = a2I��� + b2I���Rs �2�

where a2 is a constant related to the efficiency by which the
specular reflection was collected by the probe b2 is a constant
related to the efficiency by which the diffuse reflection signal
was collected, and Rs is the reflectivity of the standard disc,
which is a constant across the whole visible wavelength
range. Dividing Eq. �1� and Eq. �2� and rearranging the equa-
tion, we obtained the following:

Rm��� =
Im1���
Im2���

= a0 + b0Rtm��� �3�

where Rm��� is the apparent reflectance spectra measured by
our apparatus, Rtm��� is the true tissue reflectance spectrum to
be derived, and a0 and b0 are additive offset and multiplica-
tive factor, respectively, which depend on the measurement
conditions during each in vivo measurement performed. This
includes the amount of specular reflection collected, the ma-
terial of the standard disc, and the probe distance from the
tissue during the measurement.

We performed in vivo measurements of normal bronchial
mucosa and both benign and malignant lesions on 22 patients.
In this pilot study, we obtained a total of 100 spectra. A biopsy
sample was obtained for each measurement to classify the
measured tissue site into normal, benign, or malignant. The
pathology examination of biopsies revealed that 21 reflec-
tance spectra were from normal tissue sites, 29 from benign
lesions �26 hyperplasia and 3 mild dysplasia�, and 50 from
malignant lesions �7 small cell lung cancer, 3 combined squa-
mous cell carcinoma and non-small cell lung cancer, 30 non-
small cell lung cancer, 10 adenocarcinoma�. Due to the small
sample size, our analysis was to develop algorithms to clas-
sify the spectra into two groups: �1� malignant lesions for
tissue pathology conditions that were moderate dysplasia or
worse and �2� normal tissue/benign lesions for tissue pathol-
ogy conditions that were below moderate dysplasia. This bi-
nary classification is also inconsistent with clinical practice
that group 1 lesions should be biopsied and treated �or moni-
tored�, while group 2 conditions could be left unattended.
During routine clinical endoscopy examination all suspected
malignant lesions �group 1� should be biopsied while group 2

Fig. 1 Schematic diagram of the spectroscopy module attached
measurements.
conditions will not be biopsied. However, in this specially
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designed study for each patient an extra biopsy �and corre-
sponding spectral measurement� was taken randomly from ei-
ther a normal-looking area or a suspected benign lesion so
that we can assess the performance of the spectral diagnosis
relatively independent of the performance of the imaging di-
agnosis. Five histopathology-confirmed malignant lesions
were found by these random biopsies.

2.2 Modeling of the Reflectance Spectra

In order to extract quantitative information about cancer-
related tissue changes we developed a theoretical model that
links the tissue reflectance spectrum measured by our appara-
tus to specific tissue physiological and morphological param-
eters related to cancer changes. This was achieved by devel-
oping light transport model with its optical absorption
coefficient expressed in terms of the micro-vascular related
parameters and scattering coefficients expressed in terms of
the tissue microstructure scatterer related parameters. The re-
flectance measurements performed by our apparatus can be
represented by an equivalent one-dimensional �1-D� measure-
ment geometry shown in Fig. 2�a�. In such geometry a
continuous-wave �CW� plane source was irradiating the tissue
and the reflectance was detected from a small spot on the
tissue surface through a noncontact optical fiber located at an
intermediate image plane. The light fluence distribution inside
the tissue is a function of depth z only �Fig. 2�b��.

Theoretically, the tissue reflectance spectra Rt��� at each
wavelength can be obtained using Fick’s law:

Rt��� = �− j�z,��
I0

�
z=0

= ��−1 � ��z,���z=0, �4�

where � is the light fluence spatial distribution, j is the dif-
fuse flux, I0 is the incident power, and � is the diffusion
constant, which depends on the tissue optical properties. The
light fluence � was obtained from the general diffusion ap-
proximation model.25 The general diffusion equation is differ-
ent from the standard diffusion approximation model in that it
explicitly includes the collimated source in the radiance ap-
proximation and it uses the �-Eddington approximation to
model the single scattering phase function, and thus was ex-
pected to give better predictions of visible light
�470–700 nm� distribution in the lung tissue, which was

endoscopy imaging system for performing noncontact spectral
to the
found to have low albedo value �i.e., �a��s�. For a CW
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plane source decaying exponentially in the z-direction, the
general diffusion model is given by 25,26

�2��z� − �d
2��z� = − �S�z� ,

with �d
2 = 3�a�tr, � = 3�s

*��tr + g*�t
*� , �5�

where � is the light fluence, S�z� is the incident collimated
source term, �tr is the transport attenuation coefficient equiva-
lent to ��a+�s�1−g��, where �s and �a are the scattering
and the absorption coefficients, respectively. �t

* is the total
attenuation coefficient and is equivalent to ��a+�s

*�. �s
* is

the reduced scattering coefficient, which is equivalent to
�s�1− f�, where f is the fraction of light scattered directly
forward in the �-Eddington approximation to the scattering
phase function. g* denotes the degree of asymmetry in the
diffuse portion of the scattering. The values of f and g* were
related to the single scattering anisotropy: g from the match-
ing of the second moment of the �-Eddington phase function
to the Henyey-Greenstein phase function,26 and are equivalent
to g2 and g / �1+g�, respectively.25

Since we were interested in reflectance spectral signals that
were more affected by the superficial mucosa layer
��0.5 mm thickness�, within which most early cancerous
changes occur, we solved Eq. �5� for the two-layer tissue
model �Fig. 2�a�� with the top layer thickness L setting to
0.5 mm. Figure 2�b� shows the light fluence distribution as a
function of tissue depth, z, obtained using Monte Carlo simu-
lation. The optical properties of lung tissue used in this simu-
lation were from Ref. 27, and a 4% blood content was added
into the tissue model. The fluence becomes insignificant �re-
duced by factor e−1� for depths after 0.8 mm and 1.6 mm for
�=470 nm and �=700 nm, respectively. Therefore, the mea-

Fig. 2 �a� The equivalent geometry of our endoscopic noncontact spec
obtained using Monte Carlo simulation in a turbid media with optical
becomes insignificant �reduced by factor e−1� for depths after 0.8 mm
sured reflectance signal comes from a tissue volume starting
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from the surface and up to a depth of 0.8–1.6 mm depending
on the wavelength of light. We solved Eq. �5� in the
z-direction �1-D� for layer 1 and layer 2, using the index mis-
matching boundary conditions at interface 1 �air–tissue inter-
face� and the index matching boundary conditions at interface
2 �between the two tissue layers�.26,28 By substituting the so-
lution of Eq. �5� into Eq. �4�, we obtained an expression for
the tissue reflectance spectrum Rt��� in terms of the absorp-
tion coefficient �a, the scattering coefficient �s, and the scat-
tering anisotropy, g.

The absorption coefficient, �a, was modeled in terms of
the blood contents and the absorption coefficient of lung tis-
sue measured in vitro with blood drained out. Two parameters
were used to describe the blood contents in tissue; the blood
volume fraction, �, and the blood oxygen saturation, 	. The
absorption properties of lung tissue in vivo can be described
by the following equations:

�a��� = �blood���� + �in vitro�1 − �� ,

�blood��� = 	�HbO2
+ �1 − 	��Hb, �6�

where �HbO2
and �Hb are the absorption coefficients for the

oxy- and deoxy-hemoglobin, respectively. The in vitro ab-
sorption coefficient, �in vitro, was obtained from the in vitro
lung tissue measurements made previously by Qu et al.27

The scattering coefficient �s and the scattering anisotropy
g were modeled in terms of the microstructure scatterer vol-
ume fractions and size distribution. The tissue scattering
model was developed using the fractal approach, assuming
that the tissue microstructures’ refractive index variations can
be approximated by a statistically equivalent volume of dis-
crete micro-scattering particles with a constant refractive in-

29,30

asurements. �b� Light fluence distribution as a function of tissue depth,
rties typical to the lung tissue and a 4% blood content.27 The fluence
.6 mm for �=470 nm and �=700 nm, respectively.
tral me
prope
and 1
dex but different sizes. The transport scattering coeffi-

July/August 2006 � Vol. 11�4�4



Fawzy et al.: In vivo assessment and evaluation of lung tissue¼
cients for a bulk tissue can then be calculated by adding
randomly the light waves scattered by each particle
together.26,30 Thus, the transport scattering coefficient and the
scattering anisotropy can be modeled using the following in-
tegral equations:

�s��� =�
0




�Q�x,n,���
��x�
��x�

dx �7�

g��� =

�
0




�g�x,n,��Q�x,n,���
��x�
��x�

dx

�
0




�Q�x,n,���
��x�
��x�

dx

�8�

where Q�x� is the optical scattering cross section of individual
particle with diameter x, refractive index �n�, and wavelength
���. ��x� is the volume of the scattering particle with diameter
x, g�x� is the mean cosine of the scattering angles of single
particle. For spherical microparticles, Q�x� and g�x� were cal-
culated from Mie theory using the Mie scattering code by
Bohren et al.31 The volume fraction distribution ��x� were
assumed to follow a skewed logarithmic distribution;26,30

��x� = �C0x− exp	−
�ln x − ln xm�2

2�m
2 
 , �9�

where � is the total volume fraction of all the scattering par-
ticles in tissue,  is the size-distribution parameter �fractal
dimension� that determines the shape of the volume-fraction
size distribution and is related directly to the size of the scat-
tering particles,26 xm and �m set the center and width of the
distribution, respectively, and C0 is a normalizing factor ob-
tained from the condition �=�0


��x�dx. The value of xm was
assumed equal to the geometrical mean of �0.05 �m� and
�20 �m�, which represent the limits of the scattering par-
ticles’ range of diameters found typically in tissues.26 Thus
xm= ��0.05��20.0��1/2=1.0. The width parameter �m was as-
sumed to be a constant of 2.0 to match with the fractal scaling
range of tissues.32 Having xm and �m being set, the larger the
value of , the higher the contribution of the smaller-size
particles in the scattering particle size distribution function.

The refractive index of the background surrounding media
�nbkg� was assumed to be 1.36. The refractive index of the
scatterers inside the lung tissue was estimated based on the
type of the tissue using the following relation from Schmitt
et al.30

n = nbkg + f f�nf − ns� + fn�nn − nc� + fo�no − nc� , �10�

where f is the fraction and n is the refractive index, and the
subscripts f is for collagen fibers, n for nucleus, s for inter-
stitial fluids, o for organelles including mitochondria, and c
for intracellular fluids. In this study we have assumed that
nn=no=1.4, ns=1.34, and nc=1.36.30 The fibrous-tissue frac-
tion f f value was assumed to be 10% for the first layer �epi-
thelial layer and part of the upper submucosa�, and 70% for
the second layer, which is constituted of the lower submucosa

and the cartilage layer. This results in refractive indexes of
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�n1=1.41� and �n2=1.45� for the first and the second layers,
respectively.

2.3 Inverse Algorithms
To obtain quantitative information about the blood volume
fraction ���, the oxygen saturation parameter �	�, the scatter-
ing volume fraction ���, and the size-distribution parameter
�� from the measured in vivo reflectance spectra Rm���, we
developed a numerical inversion �fitting� algorithm based on
Newton-type iteration scheme through least-squares minimi-
zation of the function:

�2 = �
i

�Rm��i� − �a0 + b0Rt��i���2, �11�

where Rm��i� is the reflectance measured at wavelength �i,
Rt��i� is the computed reflectance at wavelength �i according
to Eq. �4�. The iteration procedure were terminated when the
�2 difference between two adjacent fittings became smaller
than 0.01. The following parameters were used as free fitting
variables during the inversion process:

• the blood volume fraction ��� assumed to be the same for
both tissue layers;
• the blood oxygen saturation parameter �	� assumed to be
the same for both tissue layers;
• the scattering volume fraction in top and bottom layers ���;
• the size-distribution parameters �� in top and bottom lay-
ers; and
• the additive and multiplicative terms in Eq. �3� �a0� and
�b0�.
Using the Marquardt-type regularization scheme,33 we can ob-
tain the updates of these parameters from the following sys-
tem of equations:

��T� + �I��� = �T�Rm − �a0 + b0Rt�� , �12�

where � is the Jacobian matrix, �� is the vector updates for
the eight parameters �� ,	 ,�1 ,�2 ,1 ,2 ,a0 ,b0�, I is the iden-
tity matrix, and � could be a scalar or diagonal matrix.33 The
Jacobian matrix � represents the sensitivity of the measured
reflectance coefficients on the eight parameters and its ele-
ments were computed from the derivatives of Rt��� with re-
spect to these eight parameters. The inclusion of a0 and b0 in
the fitting were essential to account for the specular reflection
component and the diffuse reflectance probing collection effi-
ciency, which varied for each measurement and depended,
among others, on the probe-tissue distance and angle. Thus,
the true tissue reflectance �or called “corrected reflectance”�
Rtm��� can then be extracted from the reflectance spectra
measured by the apparatus, Rm���, using the values of a0 and
b0 that were obtained from the fitting procedure and substitut-
ing in Eq. �3�. Of course, all other parameters, �, 	, �1, �2,
1, and 2 were also derived by this inverse algorithm.

2.4 Tissue Phantom Experiments
To verify our modeling approach, we have built a two-layer
optical phantom using microparticles with various sizes in
order to simulate the scattering properties of tissue micro-

structures and hemoglobin to simulate tissue blood
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Fig. 3 �a� The measured reflectance spectra, their fitting with our modeling, and the theoretical diffuse reflectance spectrum, Rt of a two-layer tissue
phantom consisting of microparticles with various sizes and hemoglobin.26 Rm0 is a measurement to avoid the specular reflection, while Rm1, Rm2,
and Rm3 are measurements with specular reflection contributions and varied endoscope-phantom distances. The symbols are experimental data
points, while the curves are model fitting. �b� Corrected reflectance spectra derived from Eq. �3� using the correction coefficient a0 and b0, obtained
from curve fitting with our developed model. Also shown is the true diffuse reflectance spectrum Rtm �=Rt�, which is calculated using our forward
modeling Eqs. �4�–�8� and the phantom constitution parameters.
Journal of Biomedical Optics July/August 2006 � Vol. 11�4�044003-6
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absorption.26 In our previous study, we have carried out ex-
periments on this tissue phantom to verify our modeling ap-
proach including comparing the derived scatter volume frac-
tion and scatter size distribution with the phantom
constitution. An accuracy of 80% has been achieved.26 In this
study, we used the same tissue phantom to verify the capabil-
ity of our modeling approach to accurately predict the con-
stant a0 and b0, and therefore recover the corrected diffuse
reflectance spectrum, Rtm.

Our study procedures are as follows:

1. Constitute the tissue phantom and record the blood vol-
ume ���, oxygen saturation �	�, microparticles volume frac-

Fig. 4 �a� Reflectance spectra measured �and fitted� from two normal/
benign tissue sites and two malignant lesions from the same patient.
N1—normal, N2—hyperplasia-diffused, C1—non-small cell carci-
noma, C2—another non-small cell carcinoma. The symbols are ex-
perimental data points, while the curves are model fitting. �b� True
tissue reflectance spectra derived from Eq. �3� using the correction
coefficient a0 and b0 obtained from curve fitting with our developed
model.
tion ���, and size distribution ��.
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2. Calculate the theoretical tissue diffuse reflectance Rt us-
ing our forward modeling Eqs. �4�–�8� and the recorded pa-
rameters in step 1.

3. Measure the diffuse reflectance from the tissue phantom
at a fixed distance and angle between the endoscope and the
phantom surface. This distance and angle is chosen so that the
specular reflectance is completely avoided. The measured
spectrum is denoted as Rm0. Please note that the specular re-
flection from the phantom is easy to avoid or capture because
the liquid phantom has an ideal flat surface.

4. Perform another three reflectance measurements on the
phantom from different distances so that specular reflections
contribute to the measured signals. They are denoted as Rm1,
Rm2, and Rm3.

5. Correct all the measured spectra by model fitting and
compare with the theoretical diffuse reflectance spectrum.

Figure 3�a� shows the measured reflectance spectra, their fit-
ting with our modeling, and the theoretical diffuse reflectance
spectrum, Rt. It is obvious that Rm1, Rm2, and Rm3 are signifi-
cantly deviated from Rt because they have included contribu-
tions from specular reflection. But they can all be fitted accu-
rately with our modeling approach. As anticipated, Rm0 is
very well consistent with Rt, confirming the validity of our
phantom experiment and our forward modeling approach
�Eqs. �4�–�8��. We then replotted Rt as Rtm in Figure 3�b�,
which compares the derived diffuse reflectance spectra �cor-
rected reflectance spectra, Rtm1, Rtm2, Rtm3� from the mea-
sured Rm1, Rm2, and Rm3 with the true tissue diffuse reflec-
tance spectrum �Rtm�. We can see that Rtm1, Rtm2, and Rtm3
agree with Rtm very well, confirming the validity of our whole
modeling and experimental measurement approach.

2.5 Statistical Analysis

All the fitting results obtained from the 100 tissue spectral
measurements were collected and saved in two groups
�benign/normal and malignant� for statistical analysis. We
used the STATISTICA software package �version 6, StatSoft
Inc., Tulsa, OK� for the analysis. While we were not sure if
the derived parameters follow normal distributions, the
Kolmogorov-Smirnov two-sample test was chosen to evaluate
the significance of differences between the two groups �nor-
mal tissue/benign lesions vs. malignant lesions� for each of
the six parameters �� ,	 ,�1 ,1 ,�2 ,2� obtained from our fit-
ting results. Discriminant function analysis �DFA� was then
applied to the identified diagnostically significant parameters
to build diagnostic algorithms for tissue classification. DFA
determined the discrimination function line that maximized
the variance in the data between groups while minimizing the
variance between members of the same group. The perfor-
mance of the diagnostic algorithms rendered by the DFA mod-
els for correctly predicting the tissue status �i.e., normal/
benign vs. malignant� underlying each parameter set derived
from the reflectance spectrum was estimated using the leave-
one-out, cross-validation method on the whole dataset.34,35 In
this method, one case is removed from the dataset and the
DFA-based algorithm is redeveloped and optimized using data
of the remaining cases. The optimized algorithm was then
used to classify the withheld spectrum. This process was re-

peated until all withheld cases �100 spectra/cases� were clas-
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sified. The sensitivity and specificity were calculated from the
results of the classification using the following expressions:

Sensitivity = % �Malignant lesions

− False Negative�/Malignant lesions

Specificity = % �Benign lesions

− False Positive�/Benign lesions.

The sensitivity and specificity of imaging diagnosis can also
be calculated in a similar fashion by comparing the imaging-
based tissue classification results with the histopathology
diagnoses.

3 Results and Discussions
In this section we present and discuss the results obtained by
analyzing the 100 reflectance spectra measured in vivo using
the above model and curve fitting. An example of the reflec-
tance spectra measured in vivo from two malignant lesions
�both are nonsmall cell carcinomas� and two benign tissue
sites �one normal tissue site and one hyperplasia-diffused le-

Fig. 5 Absorption and scattering related parameters obtained from fit
fraction ���, �b� tissue oxygen saturation parameter �	�, �c� scattering v
describing the scatterer’s size-distribution in both layers �1 and 2�.
derived from the formal covariance matrix of the least-squares fit.
sion� from the same patient are shown in Fig. 4�a�. As can be

Journal of Biomedical Optics 044003-
seen the measured reflectance spectra have large intensity dif-
ferences, which are related to the variations in the specular
reflectance signal and the distance between the endoscope tip
and the tissue surface for different measurements. The accu-
racy of the model fitting to the measured reflectance demon-
strated the validity of our proposed method. We have then
derived the true tissue reflectance spectra, Rtm��� by correct-
ing the measured reflectance spectra Rm��� using the fitting
results. The corrected spectra, Rtm��� and the fitting of the
model are shown in Fig. 4�b�. The specular reflection compo-
nents have been successfully removed and the reflectance in-
tensities fall between 0 and 1 �100%�, while the original un-
corrected spectra, Rm��� have quite arbitrary reflectance
intensities between 0 and 350%. The fitting results obtained
from the analysis of the two benign and the two malignant
spectra are summarized in Fig. 5.

The average of the corrected reflectance spectra �Rtm� for
both the normal/benign group and the malignant group are
shown in Fig. 6. It shows that the average reflectance spectra
of the normal/benign group have higher intensities in the mea-
sured wavelength range �470–700 nm� than the malignant
group. These intensity differences are significantly larger for

e two benign and two malignant spectra in Fig. 4: �a� Blood volume
fraction in both layers ��1 and �2�, and �d� size-distribution parameter
ror bars represented the standard deviations of the fitting parameters
ting th
olume
The er
wavelengths above 600 nm. In addition, the two hemoglobin

July/August 2006 � Vol. 11�4�8



Fawzy et al.: In vivo assessment and evaluation of lung tissue¼
absorption valleys around 550 nm and 480 nm are larger and
more obvious on the normal/benign group spectral curve than
on the malignant group spectral curve. The average fitting
parameters �� ,	 ,�1 ,1 ,�2 ,2� and their standard deviations
for the two groups are shown in Table 1. Figure 7 are scatter-
plots for the values of the bronchial mucosa layer �top layer�
parameters �� ,	 ,�1 ,1� obtained from analyses of the 100
benign and malignant reflectance spectra measured. As shown
in Table 1, the mean value of the blood volume fraction was
higher for malignant lesions �0.065±0.03� compared to the
benign lesions �0.032±0.02�. The mean value of the oxygen
saturation parameter was reduced from 0.9 for benign lesions
to 0.78 for malignant lesions. For the scattering parameters,
the mucosal layer showed moderate to significant changes be-
tween normal/benign tissues and malignant lesions with the
mean values of �1 and 1 for the benign lesions to be 0.077
and 0.97, respectively, compared to 0.048 and 0.91 for the
malignant lesions. The scattering parameters ��2 and 2� for
the bottom layer showed minimal differences between the
normal/benign tissue and malignant lesions. It should be
noted that the larger the value of , the higher the contribu-

Table 1 Mean and Standard Deviation of the Six
for the Normal/Benign Tissue Group and the Ma

Parameter

Normal/Benign

Mean Std. Dev.

� 0.032 0.02

	 0.90 0.11

�1 0.077 0.057

1 0.97 0.15

�2 0.066 0.048

2 0.94 0.12

Note: Also shown are the statistical test results on the sig

Fig. 6 Average true reflectance spectrum of the 50 normal tissue/
benign lesions versus that of the 50 malignant lesions. The error bars
are shown for a few data points to give an idea about the degree of the
reflectance intensity overlap between the two groups.
parameters.

Journal of Biomedical Optics 044003-
tion of the smaller-size particles in the scattering particle size
distribution function. Thus, an increase in  value indicates a
decrease in the scattering particle average size.26,30 Statistical
analysis, using the Kolmogorov–Smirnov two-sample test,
showed that the malignant group has significant increase in
the blood volume fraction, � �p=0.001�0.05�, significant
decrease in the oxygen saturation parameter, 	 �p=0.022
�0.05�, and significant decrease in the mucosa layer scatter-
ing volume fraction, �1 �p=0.013�0.05� compared to the
benign group. The results also showed moderate significant
decrease in the size-distribution parameter of the mucosa
layer �1� in the malignant group compared to the benign
group �p=0.095�0.1�.

The obtained results agree with the results by Bard et
al.21,22 in terms of the significant differences found in the
blood volume and the oxygen saturation parameter for benign
versus malignant lesions. However, our result seems to have
higher absolute values for both parameters. This difference
may be related to the higher sensitivity in our measurement
geometry to the blood absorption. The broad beam illumina-
tion and narrow spot detection geometry in our case samples a
deeper tissue volume than their contact fiber probe. It should
be noted that the significant increase in the blood volume
fraction of the malignant lesions measured in our study agreed
with the biological observations that tumors and cancerous
tissues exhibit increased microvasculature and accordingly in-
creased blood content.36 The significant decrease in the blood
oxygenation in the malignant lesions is consistent with that
hypoxia-related changes occurring during cancerous
development,37 which could be related to the increase in tissue
metabolism rate, the lower quality of the tumoral microcircu-
lation, and to the high proliferation rate of the cancerous cells.
The significant decrease in the scattering volume fraction
found in the measured malignant lesions is consistent with the
results obtained by Bard et al.22,23 for the lung cancer lesions
and that obtained by Feld et al.15 for the colon polyps. The
mechanism for such a decrease in the scattering volume frac-
tion is still poorly understood due to the complex nature of the
tissue scattering process. However, this may be related to the
decrease in the mitochonderial content in cell nucleus,38

eters Related to Tissue Absorption and Scattering
Lesion Groups

Malignant

Significance �p�ean Std. Dev.

65 0.03 0.001

78 0.13 0.022

48 0.046 0.013

91 0.12 0.095

07 0.032 0.25

92 0.1 0.65

e of the differences between the two groups for these six
Param
lignant

M

0.0

0.

0.0

0.

0.

0.

nificanc
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which have been found to contribute most significantly to the
light scattering in the backward �reflectance� directions39 or to
the changes in the refractive index of the cytoplasm due to an
increased protein and enzyme content. The size-distribution
parameter �1� decrease means increased scatterer particle
sizes on average for malignant tissues as compared to normal/
benign tissues. This is consistent with the fact that cancerous
cells have larger nuclei than normal and benign cells.40

The results obtained from the DFA showed that the three
parameters �� ,	 ,�1� were significant for the discrimination
between the two groups. Figure 8�a� shows the classification
results based on measuring the blood volume fraction ��� and
the scattering volume fraction ��1� and �Fig. 8�b�� shows the
classification results based on measuring the blood volume
fraction and the tissue oxygen saturation parameter. As the
figure shows, we can easily identify two domain spaces, with
slight overlap, for benign and malignant groups. The DFA
results using the three parameters �� ,	 ,�1� with the leave-
one-out, cross-validation method showed that we could differ-

Fig. 7 Scatterplots of the physiological and morphological paramet
analysis: �a� Blood volume fraction � and �b� oxygen saturation param
1.
entiate the measured lesions into normal/benign and malig-

Journal of Biomedical Optics 044003-1
nant with sensitivity and specificity of 83% and 81%,
respectively. In comparison, we also calculated the sensitivity
and specificity of imaging �WLR+FL� diagnosis for the same
patient population to be 87% and 43%, respectively. The rela-
tive improvement on detection specificity for spectral diagno-
sis over imaging diagnosis is obvious, and the magnitude of
improvement is significant. It should also be noted that the
imaging diagnosis is a somewhat subjective procedure that
depends on the experience of the attending physician on using
fluorescence endoscopy, while the spectral diagnosis pre-
sented in this study is a quantitative and objective method.

4 Conclusions
We have successfully developed a light-transport model and
numerical method for analyzing in vivo tissue reflectance
spectra obtained in noncontact measurements to derive quan-
titative parameters related to tissue morphology and physiol-
ogy such as the blood volume fraction, the tissue blood oxy-

the bronchial mucosa layer obtained from the reflectance spectral
�c� scattering volume fraction �1, and �d� size-distribution parameter
ers of
eter 	
gen saturation, and the scattering particle total volume
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fraction and size distribution. The method also corrected the
effects of the specular reflection and the varying distance be-
tween endoscope tip and tissue surface on the clinical reflec-
tance measurements. Our results demonstrated that normal
tissue/benign lesions could be discriminated from malignant
lesions based on the blood volume fraction, tissue blood oxy-
gen saturation, and the scattering particle volume fraction.
The preliminary in vivo study using 100 spectra showed that
we could detect lung cancers with both sensitivity and speci-
ficity of better than 80%, presenting great potential for im-
proving endoscopic lung cancer detection. Future work will
involve the application of the method to more in vivo mea-
surements and the investigation of combining the reflectance
spectroscopy and the fluorescence spectroscopy with the
WLR/FL imaging to obtain even better diagnostic sensitivity

Fig. 8 Binary plot of �a� blood volume fraction � versus the scattering
volume �1, �b� blood volume fraction � versus oxygen saturation pa-
rameter 	.
and specificity for lung cancer detection and localization.
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