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Abstract. Subsurface structural features of biological tis-
sue are visualized using polarized light images. The tech-
nique of Pearson correlation coefficient analysis is used to
reduce blurring of these features by unpolarized backscat-
tered light and to visualize the regions of high statistical
similarities within the noisy tissue images. It is shown that
under certain conditions, such correlation coefficient
maps are determined by the textural character of tissues
and not by the chosen region of interest, providing infor-
mation on tissue structure. As an example, the subsurface
texture of a demineralized tooth sample is enhanced from
a noisy polarized light image. © 2006 Society of Photo-Optical In-
strumentation Engineers. �DOI: 10.1117/1.2400248�
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Characterization of biological tissues from intrinsically
noisy digital images is currently considered in the frames of
several scientific approaches, i.e., pattern recognition, texture
analysis, and image processing.1–4 Many methods are sug-
gested to increase the contrast, eliminate scattered bright or
dark pixels, and filter out noise and certain artifacts. Among
the most popular are gray-level run techniques,5 fast Fourier
transforms,6 and wavelet analysis.7 None is universal in appli-
cation, but individual user preference is commonly based on
features of the data. Texture analysis aims to characterize the
image using a number of parameters that are sensitive to spe-
cific structural features of the object and especially to distin-
guish normal and abnormal biological tissues in the noisy
images. For example, a few methods were developed for the
detection of clustered microcalcifications from digital
mammograms.8–10 Texture enhancement is also required when
imaging subsurface tissue structures with a diffusively back-
scattered polarized beam. Previously it was shown that imag-
ing the degree of polarization can enhance the visibility of the
hidden x-ray-induced early fibrosis of mouse skin.11 The
analysis of Pearson correlation coefficients was also used to
estimate local variations of the directionality and orientation
of the structural elements. That work led us to visualize the

*
Tel: 301–594–0351; E-mail: hassanm@mail.nih.gov

Journal of Biomedical Optics 060504-
hidden structures of biological tissues by imaging regions of
statistical similarities using the correlation coefficient as the
measure of comparison. The mathematical basis for this ap-
proach was established earlier by a mathematical proof that
such a measure enabled one to reveal dependencies between
random variables.12,13

Biological tissues often exhibit characteristic regular fea-
tures or ornamental patterns. Therefore, various regions of the
tissue image can be statistically well correlated. By choosing
a region of interest �ROI� and comparing it with other regions
of the image through the correlation coefficient, it is possible
to map the degree of statistical similarities. This mapping can
carry valuable comparative information about the structural
features of the tissue.

Let us consider the main principles of image processing
using correlation coefficients. To evaluate the spatial correla-
tion in the raw image data, one has an intensity matrix G.
Then two similar submatrices A and B of size �2m+1�
� �2n+1�, are introduced that are formed from the original
matrix. Let the submatrix A be centered at a given point with
coordinates �indices� �i0, j0�, while submatrix B is shifted
relative to A by some vector r. The Pearson correlation coef-
ficient between two submatrices A and B is defined by the
expression

corr�A,B� =

�
k=1

2m+1

�
l=1

2n+1

�Ak,l − Ā��Bk,l − B̄�

�2m + 1��2n + 1�stdev�A�stdev�B�
, �1�

where Ā and B̄ are the mean values of the elements of sub-
matrices A and B, and stdev �A� and stdev �B� are the stan-
dard deviations of elements in submatrices A and B, respec-
tively. The coefficient corr�A ,B� can vary between 1 and −1,
depending on the degree of correlation between A and B.
Correlation is maximal when corr�A ,B�=1 or −1 and mini-
mal when corr�A ,B�=0. The minus sign of the correlation
coefficient means that the corresponding elements have oppo-
site signs relative to the mean values. To reveal possible struc-
tural similarities between various regions of the image �pat-
terns�, submatrix A should be fixed at some reference point,
while submatrix B is scanned throughout the image, provid-
ing an image of correlation coefficients. Pearson correlation
coefficient images were obtained by Matlab in 2.42 s with a
computer �processor: amd64 3200�. The image may be pos-
sible to obtain in real time with a high-speed computer.

Note that linear tranforms of the intensity matrices do not
affect the Pearson correlation coefficient: corr�kA+c ,B�
=corr�A ,B�, where k and c are constants. For example, uni-
form scaling of the intensity matrices does not change the
correlation coefficient. In practice, this means that overall in-
tensity changes in the illuminating beam or background will
not have an influence on the image of Pearson correlation
coefficients.

The efficiency of the proposed analysis is demonstrated by
Fig. 1. This image of a demineralized slice of human tooth
illuminated by a linearly polarized illuminating light was
taken by digital camera through a polarizer oriented perpen-
dicular to the polarization vector of the incident beam. We
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expected to visualize the subsurface structure of the collagen
network of the tooth using the birefringence effects of aniso-
tropically oriented collagen bundles. In such experiments, dif-
fusively scattered non-polarized light can mask the weak bi-
refringence polarization effect, making some structural
features barely visible on the sample surface. The multiple
scattered light may be interpreted as a background noise.
Some structural features may be barely visible on the surface
of this sample.

Processing the data with Pearson correlation coefficients,
using the ROI as a reference, transforms the original image to
the pattern shown in Fig. 2. One can clearly see the ripples on
the tooth slice. We believe that most of them are due to col-
lagen bundles. The visibility of a set of weaker oblique nar-
row lines has been also enhanced. These lines reveal the slight
scratches created by a diamond saw during sample prepara-
tion. More detailed consideration of Fig. 2 shows small grainy
modulations of correlation coefficient that are independent of
the pattern region. This fine effect is probably due to the CCD
sensor’s matrix, not the intrinsic tissue structure.

Changes in the ROI position and size result in the trans-
formation of the correlation pattern. However, the shift of the
ROI position does not drastically change the characteristic
features of the transformed patterns. The regions of statistical
similarities are mainly preserved with variations only relative
amplitude and sign. It appears that transformed matrices, cor-
responding to various ROI positions, are well correlated. It is
especially true if the ROI is centered at the regions of statis-

Fig. 2 Eight-bit images of correlation coefficients corresponding to
Fig. 1 calculated with respect to the ROIs shown by arrow. The size of

Fig. 1 Cross-polarized image of demineralized slice of a human tooth.
ROI is 17�17 pixels.
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tical similarities with high correlation coefficients. Figure 2
demonstrates two images of correlation coefficients that were
obtained with respect to different ROIs. Generally, if subma-
trix A is correlated with submatrix B and submatrix B is also
correlated with submatrix C, then submatrix A may not be
correlated with submatrix C. Fortunately, due to the textural
characteristics of many tissues, submatrix A is often corre-
lated with submatrix C. This factual independence from the
ROI position choice enables us to plot regions of statistical
similarities of the biological tissue with correlation coeffi-
cients in a robust manner.

The size of the ROI should be optimized in accordance
with expected characteristic scales of the tissue structure. Ob-
viously, if the size of the ROI is too small, high levels of
random fluctuations throughout the correlation coefficient im-
age would not allow any structural features to be revealed. On
the other hand, since spatial correlations at scales smaller than
the ROI size are smoothed, the correlation coefficient would
be close to zero everywhere if the chosen ROI size is too
large. The influence of the ROI size on the information con-
tent of the image is illustrated in Fig. 3. This figure presents
correlation images obtained from the same raw data as in Fig.
2, but in Fig. 3�a� for smaller ROI size and in Fig. 3�b� for
larger ROI sizes, relative to the Fig. 2. Though some features
with characteristic scale close to the corresponding ROI size
seem clearly enhanced, in general, both correlation images
�Fig. 3� look less informative than that of Fig. 2. This may be
due to loss of information at the characteristic scales of the
sample structure, resulting either from less noise suppression
�Fig. 3�a�� or smoothing out by spatial averaging �Fig. 3�b��.
Ideally, the ROI size should be close to the size of the major
textural elements in question. In this letter, the optimal ROI
position and size were chosen from analysis of correlation
coefficient images obtained for different values of these pa-
rameters. A similar procedure can be easily implemented to
extract structure information for investigation of other par-
ticular images. We plan to develop an algorithm to realize the
automatic optimization of the ROI size for analysis of the
tissue texture using correlation coefficients.
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