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Abstract. Spectral unmixing is a useful technique in fluorescence im-
aging for reducing the effects of native tissue autofluorescence and
separating multiple fluorescence probes. While spectral unmixing
methods are well established in fluorescence microscopy, they typi-
cally rely on precharacterized in-vitro spectra for each fluorophore.
However, there are unique challenges for in-vivo applications, since
the tissue absorption and scattering can have a significant impact on
the measured spectrum of the fluorophore, and therefore make the
in-vivo spectra substantially different to that of in vitro. In this work,
we introduce a spectral unmixing algorithm tailored for in-vivo opti-
cal imaging that does not rely on precharacterized spectral libraries. It
is derived from a multivariate curve resolution �MCR� method, which
has been widely used in studies of chemometrics and gene expres-
sion. Given multispectral images and a few straightforward constraints
such as non-negativity, the algorithm automatically finds the signal
distribution and the pure spectrum of each component. Signal distri-
bution maps help separate autofluorescence from other probes in the
raw images and hence provide better quantification and localization
for each probe. The algorithm is demonstrated with an extensive set of
in-vivo experiments using near-infrared dyes and quantum dots in
both epi-illumination and transillumination geometries. © 2009 Society of
Photo-Optical Instrumentation Engineers. �DOI: 10.1117/1.3258838�
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Introduction
n-vivo molecular imaging is a rapidly growing research area
hat provides a translational bridge from in-vitro research to
linical applications, and serves as an important tool for drug
iscovery and development.1–4 Despite the limited penetration
epth in tissue, optical methods are a powerful technique for
abeling and tracking cells and/or disease in tissues, and offer
dvantages in throughput, ease of use, temporal resolution,
nd cost effectiveness over other imaging modalities like
agnetic resonance imaging, thus finding increased use on

mall animals. Bioluminescent and fluorescent proteins are
idely used for tracking cell growth and monitory gene ex-
ression in small animals. A broad range of targeted and ac-
ivatable fluorescent probes are being developed for use in

ultiple disease areas, showing promise for moving into
linical settings. Fluorescent proteins, dyes, and nanoparticles
re all being engineered toward emission in the red to near-
nfrared wavelength range where tissue absorption is lower
nd endogenous tissue autofluorescence is reduced. Distinct
pectral responses and a large number of wavelength choices
llow multiplexing of several probes.

ddress all correspondence to: Heng Xu, PhD, Caliper Life Sciences, Inc., 2061
hallenger Drive, Alameda, California 94501. Tel: 510-291-6241; Fax: 510-
91-6232; E-mail: heng.xu@caliperls.com
ournal of Biomedical Optics 064011-
These recent developments are driving imaging technology
toward multispectral fluorescence detection capability, along
with a concurrent evolution of software tools for separating,
or unmixing, multiple probes based on spectral signature.
Both bioluminescent and fluorescent reporters can be un-
mixed based on spectral features.5,6 Fluorescence imaging has
unique challenges due to the presence of tissue autofluores-
cence generated by excitation light. Spectral unmixing can
improve contrast and sensitivity by separating a fluorescent
probe of interest from background autofluorescence.7,8 By
scanning the excitation or emission filters, images collected at
different wavelengths can be processed to separate multiple
fluorophores, including the autofluorescence component,
based on their distinct spectral signatures.

Spectral unmixing is a well established technique that is
utilized in many fields such as remote sensing,9

chemometrics,10,11 microarray technology,12 etc. It has also
been applied to fluorescence microscopy, which uses acquisi-
tion systems similar to in-vivo fluorescence imaging but
works on a microscopic scale.

In general, techniques available for fluorescence micros-
copy can be divided into two categories:13 1. classification-
based algorithms, including supervised classification analysis,
unsupervised clustering analysis, and principal component

1083-3668/2009/14�6�/064011/9/$25.00 © 2009 SPIE
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nalysis;14 and 2. linear unmixing.5,15–19 Classification-based
ethods assume each pixel only contains one label and thus

re not suitable for the quantitative analysis of pixels with
ossibly colocalized labels. Linear unmixing is the most com-
only used method to analyze the image with mixed contri-

utions from colocalized labels. A fundamental assumption
or linear unmixing is that the spectroscopic measurement in a
ixel D��� is the linear combination of individual fluoro-
hores’ pure spectra S��� scaled by the concentration C in
hat pixel plus some residue E���, i.e., D���=�CS���
E���.

Consider a multispectral imaging problem that can be dis-
retized to a matrix form

D = CS + R , �1�

here D is the spectral data matrix with m rows correspond-
ng to m pixels in the image and n columns corresponding to

different wavelengths �i.e., bandpass filters�; C is the m by
concentration profile where each row represents the compo-

ition of the mixed fluorophores at the corresponding pixel; S
s the k by n spectra matrix where each row is the pure spec-
rum of the corresponding fluorophore measured at these
avelengths; and R is the m by n matrix of residual not

xplained by the model, and ideally should be close to the
xperimental error. Equation �1� is often recognized as a bi-
inear model, where D is a linear function of both C and S. To
ccurately solve for the concentration profile, several criteria
ave to be met. First, fluorophores considered in the model
ave to account for all the significant signals present in the
cene. Secondly, the number of wavelengths should at least
qual the number of fluorophores required to resolve, i.e., n

k. Lastly, the pure spectra S of those fluorophores should be
-priori determined, either measured individually or interac-
ively picked from a pure pixel with signal from only one
uorophore. Finally, C can be determined by solving a least-
quare problem that minimizes:

e2 = �D − CS�2. �2�

on-negativity constraints are commonly applied, since the
ontribution of fluorophores cannot physically be negative.

While this approach works well for microscopy, is not
deal for in-vivo fluorescence imaging due to the inherent dif-
erences in the two imaging techniques. In fluorescence mi-
roscopy, samples are diluted in a thin transparent solution or
ollected directly from a very thin focus plane; in-vivo imag-
ng measures the diffuse radiance from the surface of scatter-
ng animal tissue, and thus a fluorophore might make a sig-
ificant contribution to a cloud of surrounding pixels instead
f only the pixel geometrically associated with it. Thus, the
uantity C in Eq. �1� has to be considered as the signal dis-
ribution of fluorophores instead of the concentrations of fluo-
ophores in the pixel. Furthermore, photons from a fluoro-
hore located inside the animal may be heavily attenuated
efore reaching the surface due to light scattering and absorp-
ion. Such attenuation varies with depth, tissue type, and
avelength, so the emitted fluorescence spectrum can be con-

iderably shifted relative to the in-vitro spectrum. Exact mod-
ling of the spatial distribution of fluorophores and the spec-
ral response of light in tissue requires a rigorous 3-D
ournal of Biomedical Optics 064011-
diffusion model, but our purpose in this work is to develop a
significantly improved spectral unmixing relative to using the
measured in-vitro spectra based on a first-order 2-D approxi-
mation to the complex 3-D problem. Such an algorithm
should not rely on a-priori knowledge of in-vitro spectra, but
ideally would automatically solve for the in-vivo spectral
components as well as the signal distribution for each fluoro-
phore.

Spectral unmixing methods have been successfully used
for in-vivo fluorescence imaging6 by Mansfield et al. using
liquid crystal tunable filters, but details of the unmixing algo-
rithm are unpublished to the best of our knowledge. Recent
progress in chemometrics suggests that a method called the
multivariate curve resolution alternating least-square method
�MCR-ALS� would be suitable for our purpose. It was devel-
oped to extract simultaneously pure concentration and spec-
tral profiles from spectroscopic data gathered during chemical
process monitoring,10,11 and has been successfully applied to
other applications that are based on the same bilinear model
described in Eq. �1�, such as microarray technology12 and im-
aging spectroscopy.20

We present our spectral unmixing algorithm for in-vivo
imaging based on MCR-ALS, including the general MCR-
ALS framework and the necessary adaptation to fit the in-vivo
imaging application. The image acquisition system used for
the study is described, which operates in both reflectance and
transillumination geometries. Experimental results are pre-
sented to examine the performance of the algorithm. Data
were collected on a mouse phantom and live mouse models
with varying depth and concentration of fluorescent labels
such as dyes and nanoparticles.

2 Methods and Materials
2.1 Multispectral Imaging System
The images in this study were acquired using an IVIS® Spec-
trum Imaging System �Caliper Life Sciences/Xenogen,
Alameda, California� as shown in Fig. 1. It supports in-vivo
spectral imaging for both fluorescent and bioluminescent
probes. This instrument uses a 2048�2048 pixel,
26-mm-wide, high-sensitivity back-thinned charge coupled
device �CCD� camera thermoelectrically cooled to −90 °C to

Fig. 1 Illustration of the IVIS Spectrum imaging system.
November/December 2009 � Vol. 14�6�2
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inimize the dark current and the associated thermal noise.
he CCD has high quantum efficiency in the range of
00 to 950 nm and thus covers the visible �VIS� and near-
nfrared �NIR� range of interest of optical imaging. Light col-
ection is accomplished with an f/1 lens with 6� zoom capa-
ility. The minimum detectable radiance for the system is
pecified at less than 70 photons /sec /cm2 /sr, enabling detec-
ion of weak signals from deep tissue.

For fluorescence imaging, the instrument uses a 150-W
uartz tungsten halogen lamp with broadband emission from
00 to 1000 nm. The lamp output is delivered to a 12-
osition excitation filter wheel using a fiber optic bundle. The
xcitation wheel includes ten 30-nm bandpass filters spaced
very 35 nm from 430 to 745 nm. The emission light is fo-
used on the CCD through the lens system with an integrated
4-position emission filter wheel. The emission wheel is in-
talled with 18 20-nm bandpass filters spaced every 20 nm
rom 500 to 840 nm. The spacing and bandwidth of excita-
ion and emission filters are chosen at a medium level to
chieve a reasonable spectral resolvability without sacrificing
ignal per channel and spectral range. More than one hundred
xcitation and emission filter combinations are available in
he VIS and NIR range for spectral unmixing.

For fluorescence imaging, the instrument can switch be-
ween reflectance and transillumination modes by rotating a

irror, as illustrated in Fig. 1. Reflectance mode refers to the
onventional modality �epifluorescence mode� that the excita-
ion light is projected to the top surface of the object, where
he emitted fluorescence light is collected. Reflectance mode
avors the reporters near the surface, since the relative strong
utofluorescence background generated from the top surface
an overwhelm the fluorescent signals of the deeper reporters.
n transillumination mode, the excitation light is delivered to
n x-y translation assembly under the stage and focused to the
ottom side of the object. An anodized aluminum plate with a
-mm grid of 2-mm holes is used to hold the object and guide

he light through. The autofluorescence contribution is often
educed, since most autofluorescence is generated from the
ottom surface and is absorbed as it travels to the top surface.
hen imaging a fluorophore located at the center of the sub-

ect, illuminating from the bottom would create the same
mount of fluorophore signal to the detector as illuminating
rom the top, generating much less autofluorescence contribu-
ion. Therefore, the transillumination mode offers improved
ccess to the deep fluorophores during in-vivo imaging.

To provide a consistent measurement against different im-
ging conditions so that signals are traceable over time and on
ifferent instruments, the imaging system is absolutely cali-
rated for spectral radiance traceable to the National Institute
f Standards and Technology �NIST�.7,21 This calibration pro-
ides the conversion of CCD electron counts to isotropic ra-
iance on the object surface by taking into account losses
hrough the optics and aperture �f-stop�, field of view �FOV�,
nd camera settings. For epifluorescence imaging particularly,
he power and distribution of the excitation light are recorded
o that measurements can be normalized to the incident exci-
ation intensity profile to report how efficiently the target
ields the fluorescence. Instrument calibration is critical to the
uantification of images with different imaging conditions, as
s typically encountered during longitudinal studies.
ournal of Biomedical Optics 064011-
2.2 Multivariate Curve Resolution Algorithm

2.2.1 General Multivariate Curve Resolution
Alternating Least-Square Scheme

The basic framework of MCR-ALS is shown in Fig. 2. Ini-
tially the number of spectral components �number of fluoro-
phores� k is specified to determine the size of the bilinear
problem, and an initial estimate for either C or S in Eq. �1� is
made. We then employ an iterative method for solving two
alternating least-square problems, i.e., minimization of Eq. �2�
over S for given C, and minimization of Eq. �2� over C for
given S. To help converge to a unique and realistic solution,
additional constraints can be added during iterations. These
constraints come from knowledge about the spectra such as
nonnegativity or low and high pass filters to force the spectra
to zero at certain wavelengths. Constraints reduce the solution
space by enforcing some boundaries and help solve the rota-
tion and scaling ambiguity inherent in the bilinear model.
Here, the rotation and scaling ambiguity refers to the fact that
any arbitrary k by k orthogonal matrix Q �QTQ=I, where I is
identity matrix� can result in another suitable solution CQT

and QS for the bilinear model. A special case of such an
orthogonal matrix Q is a diagonal matrix often known as the
intensity ambiguity. Usually this cannot be solved by setting
the constraints, and thus a normalization procedure should be
enforced on either C or S throughout the iteration. The con-
vergence is achieved when the absolute change of the residual
norm e2 is below a threshold �typically 0.1%�. After conver-
gence, both C and S are determined.

In some cases, the number of spectral components is not
known. To determine the number of spectral components, one
approach is based on the principal component analysis �PCA�,
i.e., examining the variance of data explained by a selected
number of principal components.11,22 Since principal compo-
nents are sorted in terms of the variance they explain, when an
additional principal component only affects a small margin of
the total explained variance, the selected principal compo-
nents have accounted for the majority signals and the rest
mainly contribute to the random noise. Principal components
are orthogonal to each other, and though they have no biologi-
cal meanings, they imply the independent components present
in the data.

Fig. 2 Flowchart of MCR-ALS for in-vivo fluorescence imaging
November/December 2009 � Vol. 14�6�3
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.2.2 Initial Estimates
he selection of initial estimate �S0� may influence the final
olution, mainly because there are multiple local minimums in
he solution space for problems with many degrees of
reedom.12 There are several approaches to choosing the ini-
ial estimate. Using uniformly distributed positive random
umbers or random samples of the raw data to build S0 is the
imple and less biased method, but the resulting estimate is
ither too far away from the desired solution or numerically
nstable, and therefore provides inconsistent solutions.12

ome systematic methods such as evolving factor analysis
EFA�11 and simple-to-use self-modeling mixture
nalysis�SIMPLISMA�20 have been developed to extract the
ure component spectra, but they are generally more suitable
or data containing the pure state of each component than the
ighly mixed in-vivo fluorescence data.

To make the best initial estimate, our approach is based on
tatistical data analysis using the k-means clustering method.
he idea is to partition the dataset into k groups on some
easure of distance between samples, and then use the cen-

roids of these groups as the initial estimate. An important
tep is to select a distance measure, which will determine how
he similarity of two samples is calculated. The correlation
istance measure is chosen because it emphasizes the shape of
he spectrum and is not affected by the scaling due to the
oncentration. Alternatively, the initial estimate can be loaded
priori from a spectral library or selected spectra from a

egion of interest �ROI� on the image. This option gives more
ontrol of the unmixing algorithm, especially for in-vitro im-
ging where pure components are relatively easy to deter-
ine.

.2.3 Constraints
onstraints during the ALS are critical for MCR-ALS to gen-
rate a meaningful solution. In chemometrics, several types of
onstraints have been introduced,11,23 and they are non-
egativity �both concentrations and spectra cannot have nega-
ive values�, unimodality �concentration of temporal profiles
r pure spectra only have one peak/maxima�, and equality �the
ossibility to fix known values in the concentration profiles or
n the spectra during optimization�. These constraints need to
e adapted and translated to use in in-vivo fluorescence imag-
ng.

Non-negativity constraints are very straightforward and are
pplied after each calculation for S or C using least-squares
ethod S= �CTC�−1CTD or CT= �SST�−1SDT. Instead of set-

ing negative elements to zero, a more rigorous method of
on-negative least squares �NNLS�24 is used to recalculate the
olution at the columns of S or the rows of C that comprise
egative elements rather than the whole matrix. Unimodality
onstraints are suitable for fluorescence spectra since fluoro-
hores usually only have single excitation or emission peaks
ut are not applicable to the signal distribution matrix C �con-
entration profiles in chemometrics�. To ensure only one peak
n the spectrum during the ALS optimization, the secondary
eak is either cut vertically or horizontally,25 or corrected by
veraging similarly to unimodal least-squares algorithms.26

Equality constraints refer to the linear constraints that can
e added to the least-square problems based on the informa-
ion about the spectra or concentration profiles. The full ma-
ournal of Biomedical Optics 064011-
trices discussed earlier in Eq. �2� are actually performed one
wavelength at a time or one pixel at a time. Incorporating the
equality constraints, the ALS problem for spectral unmixing
can be rewritten as two constrained least-squares problems:

min
sj

�dj − Csj�2 subject to E jsj = bj , �3�

min
ci

�di
T − Sci

T�2 subject to Ei�ci
T = bi�, �4�

where j represents the j’th wavelength, i represents the i’th
pixel, dj and di are the j’th column and the i’th row of the
spectral data matrix D, sj is the j’th column of the spectral
matrix S, ci is the i’th row of the concentration matrix C, E j
is the h�k constraint matrix that selects the constrained com-
ponents in sj, bj is the h�1 vector that contains the fixed
spectra for the selected components at the j’th wavelength, E j�
is the l�k constraint matrix that selects the constrained com-
ponents in ci, and bj� is the l�1 vector that contains the fixed
concentration for the selected components at the i’th pixel.
Equality constraints can be used to improve the wellness of
least-squares problem and help reduce the cross talk between
components. In chemometrics, equality constraints are used to
incorporate information such as closure �the sum of the con-
centration is constant�, zero concentration �set the concentra-
tion to zero for species known to be absent in a mixture�, and
selectivity �specify a portion of the data that only contains
contribution from a single component�.27 For in-vivo fluores-
cence imaging, similar information can be incorporated as
equality constraints as well. In some situations when the
probe being used is known, a portion of its spectrum may be
predefined. For example, the emission spectrum of most fluo-
rophores has a sharp increase from the shorter wavelength
range to its emission peak, and then decreases relatively
slowly toward longer wavelengths. Such characteristics are
observed for both in-vitro and in-vivo imaging. If the rising
edge of one fluorophore is known, it is relatively safe to set its
spectra to zero at wavelengths lower than this edge. We call
this equality constraint a high pass filter because it is similar
to adding a high pass filter to filter out the unwanted spec-
trum. Similarly, the low pass filter can be used to define the
falling edge to eliminate the unwanted spectrum at the longer
wavelengths. High pass and low pass constraints are effective
to separate colocalized fluorophores that have different emis-
sion peaks. Similar to the concepts of zero concentration and
selectivity, pure mask and ROI mask can be used to define
equality constraints for the distribution maps. Pure mask as-
signed to a component determines a region in the image that
only contains this component, in other words, the contribution
of other components in this mask is zero. ROI mask associ-
ated with a component determines a region in the image
where this component might exist, in other words, outside of
this mask the contribution of this component is zero.

2.2.4 Sorting
An underlying question rarely addressed is how to apply the
variety of constraints to the intended component. For ex-
ample, assuming there are two spectral components, one is the
tissue autofluorescence with a broad spectrum and the other is
a red fluorescent dye with a sharp spectrum, if we want to
November/December 2009 � Vol. 14�6�4
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pply the unimodality constraint or high pass constraint to the
uorophore, how do we ensure the constraint is applied to the
ye not the autofluorescence? This reflects the component-
ise rotation ambiguity and the mismatch between the initial

stimate and its constraints. To disentangle such ambiguity,
pectra are sorted in ascending order of their center wave-
engths �intensity weighed average�, i.e., by the color of the
uorophores. Therefore in this case, the red fluorescent dye is

agged next to the yellowish autofluorescence, and the con-
traints can be applied accordingly.

In addition to the sorting, the topology of the excitation
nd emission wavelengths is recorded to handle scans of the
xcitation filters, or emission filters, or both sets. It can also
nmix multiple bioluminescent signals, where there is no ex-
itation light. The wavelength topology can guide the algo-
ithm to parse each spectrum to multiple sections so that the
pectral constraints can still be applied.

Experiments and Results
or the in-vivo experiments discussed in this section, athymic
ude �nu/nu� mice were anesthetized using 1.5 to 2% isofluo-
ane through a nose cone system during image acquisition.
he animals were fed with a low-chlorophyll food to reduce
utofluorescence in the intestinal region. Images shown in this
ection are cropped from full size ones to save space.

.1 In-Vitro Experiments
he ability to separate multiple fluorophores, especially when

hey have significant spectral overlap, was tested in an in-vitro
xperiment. Two fluorescent dyes, Alexa Fluor®�AF� 680 and
50 and two quantum dots �QD� 700 and 800 �Invitrogen,
arlsban, California�, were diluted and placed in a 96-well
late. Each fluorophore occupied one well. Raw images were
aken using ten emission filters from 660 to 840 nm, spaced
very 20 nm, and excited in reflectance mode at 605 nm. The
mage overlays where fluorescent radiance images are super-
mposed on background grayscale photographs using rainbow
seudocolor are shown in Fig. 3�a�. From the top row to the
ottom row, the fluorophores are AF680, QD700, QD800, and
F750, respectively. Four components were chosen to unmix,

ince the autofluorescence background was at a negligible
evel and signals were mostly contributed by four fluoro-
hores. Spectral unmixing was performed with default set-
ings that include non-negativity constraints.

Unmixed distribution maps are shown in Fig. 3�b�, where
ach column is displayed with its own pseudocolor scale; the
nmixed images can be quantified to obtain the signal distri-
ution of the fluorophore in the raw image. A composite im-
ge is also created to better visualize unmixed fluorophores in
single RGB color image. In this case, the distribution maps

f AF680, QD700, QD800, and AF750 are combined to create
false color image shown as the last image in Fig. 3�b� by

utting them into green, blue, magenta, and red channels, re-
pectively. Figure 3�b� indicates that four fluorophores are
uccessfully separated from the raw images where signals
how a significant overlap. Improved contrast and clarity are
btained in the individual distribution maps. The unmixed
pectra are shown in Fig. 3�c� and are similar to the published
pectra for these fluorophores. Quantum dots and Alexa
ournal of Biomedical Optics 064011-
Fluor® dyes can be differentiated even though they have simi-
lar peak emission wavelengths.

3.2 Multiple Reporters in Vivo
This experiment gives an example of multispectral imaging of
a mouse containing subcutaneous injections of
1014 molecules of two fluorescence probes, AF680 and
AF750, using IVIS Spectrum. AF680 was injected near the
neck and AF750 was injected at the lower body. Figure 4�a�
shows the raw spectral images in units of efficiency acquired
using ten emission filters from 660 to 840 nm and excited in
the reflectance mode at 605 nm. Clearly tissue autofluores-
cence contributed substantial signals in addition to the dyes.
We assume the tissue autofluorescence is a single spectral
component, and therefore selected three components to un-
mix. The unimodality constraint was used on the AF750 to
guide the unmixing. Figure 4�b� shows the unmixed distribu-
tion maps for three components, i.e., autofluorescence,
AF680, and AF750. Figure 4�c� shows the unmixed in-vivo

Fig. 3 AF680, QD700, AF750, and Q800 in a well plate. Each fluo-
rophore occupies one well. �a� Fluorescent images from
660 to 840 nm every 20 nm excited at 605 nm. �b� Unmixed distri-
bution maps for AF680, QD700, AF750, and QD800, respectively.
The last column is a composite RGB image where four fluorophores
are represented in green, blue, magenta, and red color channels, re-
spectively. �c� Unmixed spectra for AF680, QD700, AF750, and
QD800.
November/December 2009 � Vol. 14�6�5
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pectra for these components. The composite image is shown
s the last image in Fig. 4�b�. Compared to the in-vitro spectra
f AF680 �cyan line� and AF750 �magenta line�, the in-vivo
F680 spectrum �blue line� shows more significant red shift

han that of AF750, which can be explained by the steeper
bsorption gradient with respect to wavelength in the shorter
avelength range. To demonstrate the benefit of our approach

ig. 4 Subcutaneous injection of AF680 �top� and AF750 �bottom�
yes. �a� Raw fluorescent images from 660 to 840 nm every 20 nm
xcited at 605 nm. �b� Unmixed distribution maps for autofluores-
ence, AF680 and AF750, respectively, and the composite image
here autofluorescence, AF680 and AF750, are shown in green, blue,
nd red channels respectively. �c� Unmixed spectra for autofluores-
ence �green�, AF680 �blue�, and AF750 �red�. In-vitro emission spec-
ra of AF680 �cyan� and AF750 �magenta� are plotted in comparison
o demonstrate in-vivo spectral shift due to the tissue absorption and
cattering. �d� Linear decomposition results of unmixed autofluores-
ence, AF680 and AF750, respectively, if using in-vitro emission spec-
ra of AF680 �cyan� and AF750 �magenta�.
ournal of Biomedical Optics 064011-
over the conventional method using the in-vitro spectral li-
brary, we used the in-vitro spectra of AF680 and AF750 to-
gether with the autofluorescence spectrum to perform the lin-
ear decomposition. The results are shown in Fig. 4�d�. It is
clear that directly using the in-vitro spectra leads to severe
cross talk among components in this experiment.

3.3 Colocalized Reporters
In certain animal experiments, reporters can be physically
colocalized, so it is important to examine the efficacy of the
unmixing algorithm in such a situation. In this experiment,
two polyethylene tubes containing Alexa Fluor® dyes �left
side: a mixture of 1015 AF680 and 1015 AF750; right side:
1015 AF680� were implanted next to the kidneys in a mouse.
Figure 5�a� shows the raw spectral images in units of effi-
ciency acquired using eight emission filters from
700 to 840 nm using two excitation filters. The first four im-
ages were excited at 640 nm, but the last four images were
excited at 710 nm to improve the AF750 signals. Since tissue
autofluorescence was not significant, only two components
were selected to unmix. A high pass filter at 700 nm was used
for AF750 to help the unmixing. Figure 5�b� shows the un-
mixed distribution maps for AF680 and AF750. The result
matched the expectation, in that AF680 was resolved on both
sides of the mouse but AF750 only appeared on right side.
The yellowish mixture in the composite image corresponds to
the mixing of green and red channels representing AF680 and
AF750, respectively. Unmixed spectra in Fig. 5�c� shows well
separated two spectral profiles.

3.4 Transillumination
This experiment gives an example of the multispectral imag-
ing of a mouse implanted with a polyethylene tube containing
1014 quantum dots �QD� 805 in the transillumination mode.
The tube was placed near the left kidney and the transillumi-
nation source was positioned approximately below the tube.
Figure 6�a� shows the raw spectral images in units of radiance
acquired using six emission filters from 720 to 820 nm and
excited at 675 nm. In the first few images when QD800 has
low emission, tissue autofluorescence is strong. Figure 6�b�
shows the unmixed distribution maps for two components,
i.e., autofluorescence and QD800. The unmixed autofluores-
cence pattern is similar to the light transmission. After unmix-
ing, QD800 is successfully isolated. Figure 6�c� shows the
unmixed in-vivo spectra for autofluorescence and QD800.

3.5 Weak Sources
In previous examples, fluorophores of interest are relatively
strong compared to tissue autofluorescence. Figure 7 gives an
example to test the situation when tissue autofluorescence
dominates. 4.8�1012 molecules AF680 were sealed in the tip
of a 1 /8 in.-diam rod and the rod was placed about 11 mm
deep underneath the low back of a phantom mouse �Caliper
Life Sciences, Alameda, California�. The phantom mouse was
imaged using six emission filters from 640 to 740 nm and
excited in the reflectance mode at 605 nm. The dye barely can
be distinguished from the raw images shown in Fig. 7�a�, but
is clearly separated in the unmixed maps shown in Fig. 7�b�.
Here a high pass filter at 640 nm for AF680 was applied to
guide the unmixing algorithm.
November/December 2009 � Vol. 14�6�6
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Discussion
.1 Quantification

pectral unmixing outputs the distribution maps and the com-
onent spectra. To use the unmixing results to quantify the
uorophores, one should first understand the meaning of those
utputs. Unmixing mathematically is a decomposition process
s

ig. 5 Implants of tubes containing 1015 molecules of AF680 �right
nd left kidney� and AF750 �right kidney�. �a� Raw fluorescent images
rom 700 to 840 nm every 20 nm. The first four images were excited
t 640 nm and the last four images were excited at 710 nm. �b� Un-
ixed distribution maps for AF680 and AF750, respectively, and the

omposite image where AF680 and AF750 are shown in green and
ed channels, respectively. �c� Unmixed spectra for AF680 and AF750.
ournal of Biomedical Optics 064011-
Dj = �
i=1

k

dij ,

where Dj denotes the measured image at the j’th wavelength
and dij represents the decomposed image containing the sig-
nal only contributed by the i’th spectral component. With re-
spect to Eq. �2�, dij =cisij, where ci is the distribution map of
the i’th component and sij is the spectral intensity of the i’th
component at the j’th wavelength. In our algorithm, since
each spectrum is normalized by its peak value, sij becomes
unity at the peak wavelength, and thus ci indeed represents the
measured signal of the component at its peak wavelength, and
the spectrum si implies the proportional distribution at other
wavelengths. As long as the peak wavelength is included in
multispectral analysis, the distribution map provides a consis-
tent measure of the fluorophore signal, regardless of how
many filters are used to unmix. Alternately, it has been sug-
gested to use the integrated signal over all the wavelengths to
quantify13 so that higher readings are achieved, but it makes it
difficult to compare results between analyses done with dif-
ferent filter setups.

It also should be recognized that the signal distribution
map bears a complex relationship to the fluorophore concen-

Fig. 6 �a� Raw fluorescent images of QD800 tube implant from
720 to 820 nm every 20 nm excited at 675 nm in transillumination
mode. The position of the transillumination source is marked by a
cross. �b� Unmixed distribution maps for autofluorescence and
QD800, respectively, and the composite image where autofluores-
cence and QD800 are shown in green and red channels, respectively.
�c� Unmixed spectra for autofluorescence and QD800.
November/December 2009 � Vol. 14�6�7
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ration map, not just because the fluorescence yield varies
ith excitation and emission wavelength, but also because the

ight transport is determined by the surrounding tissue. It is
ossible to correct the quantum yield with calibration, but
ccounting for the light transport is much more challenging
nd usually requires solving a complex 3-D model for photon
iffusion. Therefore, the distribution map should not be re-
arded as a measure of absolute fluorophore concentration,
ut as a tool to compare fluorescence sources at similar im-
ging conditions and comparable depth.

.2 Scanning Excitation Filters
ost typically, emission filters are used to scan through the

mission peaks of multiple fluorophores when performing
pectral unmixing. All the previous examples shown in this
ork utilize emission filter scans primarily. However, the

hoice of scanning emission filters is relatively arbitrary.
here may be situations where scanning excitation filters, or
canning both excitation and emission filters, is desirable. One
xample would be separating quantum dots from an organic
ye with a similar emission spectrum. Since the quantum dots
nd organic dyes have very different excitation spectra, it
ould be preferable to scan excitation filters over emission
lters. An example of unmixing using excitation filters is

ig. 7 1012 molecules of AF680 implanteed 11 mm deep. �a� Raw
uorescence images from 640 to 740 nm every 20 nm excited at
05 nm. �b� The unmixed distribution maps for autofluorescence and
F680, and the composite image where autofluorescence and AF680
re shown in green and red channels, respectively. �c� Unmixed spec-
ra for autofluorescence and AF680.
ournal of Biomedical Optics 064011-
shown in Fig. 8, where we unmix the same target used in Fig.
7 and achieve similar results.

5 Conclusion
In-vivo molecular imaging of bioluminescent or fluorescent
reporters and probes has become a standard tool in academic
laboratories and drug discovery companies, based on low
cost, ease of use, and high throughput. However, due to the
scattering and absorption of photons in tissue, and the pres-
ence of tissue autofluorescence, interpretation of images can
be challenging.

Spectral unmixing is a powerful tool for reducing the ef-
fects of background autofluorescence and separating multiple
probes or reporters. By separating the different spectral com-
ponents and visualizing their distribution, users obtain im-
proved clarity in interpreting their experimental results. We

Fig. 8 Phantom model from Fig. 7 with an excitation filter scan. �a�
Raw fluorescence images at 720 nm excited from 570 to 675 nm ev-
ery 35 nm. �b� The unmixed distribution maps for autofluorescence
and AF680, and the composite image where autofluorescence and
AF680 are shown in green and red channels, respectively. �c� Un-
mixed excitation spectra for autofluorescence and AF680.
November/December 2009 � Vol. 14�6�8
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ntroduced a powerful and flexible spectral unmixing algo-
ithm based on the multivariate curve resolution method that
upports both epi- and transillumination fluorescence configu-
ations, allows both excitation and emission filter scans, and
lso enables unmixing of bioluminescent sources. By option-
lly adding spectral constraints such as a unimodality or low/
igh-pass filters, the unmixing problem is further constrained,
eading to improved robustness. The algorithm also supports
he unmixing of unknown spectra, which is encountered fre-
uently in animal models because tissue absorption can shift
he spectrum by an unknown amount. Region of interest
ROI� tools are available to quantify unmixed probe distribu-
ions, and pseudocolor renderings are available for visualiza-
ion of distribution maps. The algorithm is successfully dem-
nstrated on numerous subjects including in-vitro well plates,
hantom devices, and live animal models.

cknowledgments
he authors would like to acknowledge Tamara Troy and
ing Zhang for their generous help in obtaining animal ex-
eriment data.

eferences
1. P. R. Contag, “Whole-animal cellular and molecular imaging to ac-

celerate drug development,” Drug Discovery Today 7, 555–562
�2002�.

2. B. Ballou, L. A. Ernst, and A. S. Waggoner, “Fluorescence imaging
of tumors in vivo,” Curr. Med. Chem. 12, 795–805 �2005�.

3. V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, “Look-
ing and listening to light: the evolution of whole-body photonic im-
aging,” Nat. Biotechnol. 23, 313–320 �2005�.

4. R. Weissleder and U. Mahmood, “Molecular imaging,” Radiology
219, 316–333 �2001�.

5. S. T. M. Gammon, W. M. Leevy, S. Gross, G. W. Gokel, and D.
Piwnica-Worms, “Spectral unmixing of multicolored biolumines-
cence emitted from heterogeneous biological sources,” Anal. Chem.
78, 1520–1527 �2006�.

6. J. R. Mansfield, K. W. Gossage, C. C. Hoyt, and R. M. Levenson,
“Autofluorescence removal, multiplexing, and automated analysis
methods for in-vivo fluorescence imaging,” J. Biomed. Opt. 10�21�,
041207 �2005�.

7. T. Troy, D. Jekic-McMullen, L. Sambucetti, and B. Rice, “Quantita-
tive comparison of the sensitivity of detection of fluorescent and bi-
oluminescent reporters in animal models,” Mol. Imaging 3, 9–23
�2004�.

8. M. Gao, G. Lewis, G. M. Turner, A. Soubret, and V. Ntziachristos,
“Effects of background fluorescence in fluorescence molecular to-
mography,” Appl. Opt. 44, 5468–5474 �2005�.

9. N. Keshava and J. F. Mustard, “Spectral unmixing,” IEEE Signal
Process. Mag. 19, 44–57 �2002�.

0. J. H. Jiang and Y. Ozaki, “Self-modeling curve resolution �SMCR�:
principles, techniques, and applications,” Appl. Spectrosc. Rev. 37,
ournal of Biomedical Optics 064011-
321–345 �2002�.
11. R. Tauler, B. Kowalski, and S. Fleming, “Multivariate curve reso-

lution applied to spectral data from multiple runs of an industrial-
process,” Anal. Chem. 65, 2040–2047 �1993�.

12. P. D. Wentzell, T. K. Karakach, S. Roy, M. J. Martinez, C. P. Allen,
and M. Werner-Washburne, “Multivariate curve resolution of time
course microarray data,” BMC Bioinf. 7, 343 �2006�.

13. T. Zimmermann, “Spectral imaging and linear unmixing in light mi-
croscopy,” Microsc. Res. Tech. 95, 245–265 �2005�.

14. E. Schrock, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M.
A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenk-
sen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of hu-
man chromosomes,” Science 273, 494–497 �1996�.

15. R. Lansford, G. Bearman, and S. E. Fraser, “Resolution of multiple
green fluorescent protein color variants and dyes using two-photon
microscopy and imaging spectroscopy,” J. Biomed. Opt. 6�3�, 311–
318 �2001�.

16. E. Fux and C. Mazel, “Unmixing coral fluorescence emission spectra
and predicting new spectra under different excitation conditions,”
Appl. Opt. 38, 486–494 �1999�.

17. D. Chorvat, J. Kirchnerova, M. Cagalinec, J. Smolka, A. Mateasik,
and A. Chorvatova, “Spectral unmixing of flavin autofluorescence
components in cardiac myocytes,” Biophys. J. 89, L55–L57 �2005�.

18. H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T.
Shirai, “Seven-color fluorescence imaging of tissue samples based on
Fourier spectroscopy and singular value decomposition,” J. His-
tochem. Cytochem. 48, 653–662 �2000�.

19. F. Nadrigny, I. Rivals, P. G. Hirrlinger, A. Koulakoff, L. Personnaz,
M. Vernet, M. Allioux, M. Chaumeil, N. Ropert, C. Giaume, F.
Kirchhoff, and M. Oheim, “Detecting fluorescent protein expression
and co-localisation on single secretory vesicles with linear spectral
unmixing,” European Biophys. J. Biophys. Lett. 35, 533–547 �2006�.

20. L. Duponchel, W. Elmi-Rayaleh, C. Ruckebusch, and J. P. Huvenne,
“Multivariate curve resolution methods in imaging spectroscopy: in-
fluence of extraction methods and instrumental perturbations,” J.
Chem. Inf. Comput. Sci. 43, 2057–2067 �2003�.

21. B. W. Rice, M. D. Cable, and M. B. Nelson, “In vivo imaging of
light-emitting probes,” J. Biomed. Opt. 6�4�, 432–440 �2001�.

22. J. A. Timlin, D. M. Haaland, M. B. Sinclair, A. D. Aragon, M. J.
Martinez, and M. Werner-Washburne, “Hyperspectral microarray
scanning: impact on the accuracy and reliability of gene expression
data,” BMC Genomics 6, 72 �2005�.

23. J. Jaumot, R. Gargallo, A. de Juan, and R. Tauler, “A graphical user-
friendly interface for MCR-ALS: a new tool for multivariate curve
resolution in MATLAB,” Chemom. Intell. Lab. Syst. 76, 101–110
�2005�.

24. C. L. Lawson and R. J. Hanson, Solving Least-Squares Problems,
Prentice-Hall, Englewood Cliffs, NJ �1974�.

25. A. deJuan, Y. VanderHeyden, R. Tauler, and D. L. Massart, “Assess-
ment of new constraints applied to the alternating least squares
method,” Anal. Chim. Acta 346, 307–318 �1997�.

26. R. Bro and N. D. Sidiropoulos, “Least squares algorithms under uni-
modality and non-negativity constraints,” J. Chemom. 12, 223–247
�1998�.

27. M. H. Van Benthem, M. R. Keenan, and D. M. Haaland, “Application
of equality constraints on variables during alternating least squares
procedures,” J. Chemom. 16, 613–622 �2002�.
November/December 2009 � Vol. 14�6�9

http://dx.doi.org/10.1016/S1359-6446(02)02268-7
http://dx.doi.org/10.2174/0929867053507324
http://dx.doi.org/10.1038/nbt1074
http://dx.doi.org/10.1021/ac051999h
http://dx.doi.org/10.1117/1.2032458
http://dx.doi.org/10.1162/153535004773861688
http://dx.doi.org/10.1364/AO.44.005468
http://dx.doi.org/10.1109/79.974727
http://dx.doi.org/10.1109/79.974727
http://dx.doi.org/10.1081/ASR-120014359
http://dx.doi.org/10.1021/ac00063a019
http://dx.doi.org/10.1186/1471-2105-7-343
http://dx.doi.org/10.1126/science.273.5274.494
http://dx.doi.org/10.1117/1.1383780
http://dx.doi.org/10.1364/AO.38.000486
http://dx.doi.org/10.1529/biophysj.105.073866
http://dx.doi.org/10.1117/1.1413210
http://dx.doi.org/10.1186/1471-2164-6-72
http://dx.doi.org/10.1016/j.chemolab.2004.12.007
http://dx.doi.org/10.1016/S0003-2670(97)90069-6
http://dx.doi.org/10.1002/(SICI)1099-128X(199807/08)12:4<223::AID-CEM511>3.0.CO;2-2
http://dx.doi.org/10.1002/cem.761

