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Abstract. Analytic formulas for spherical nanoshell (Au/silica) resonance wavelength and 
refractive index sensitivity were derived and compared with a numerical nonlinear theory. A 
universal scaling law was deduced in terms of a normalized thickness defined by the ratio of 
the shell thickness and its core diameter. The calculated figure of merit shows a maximum at 
an optimal value of the resonance wavelength and normalized thickness. The nonlinear theory 
of nanoshells improves the accuracy of the linear theory in the short wavelength regime (500 
to 650 nm). 
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1 INTRODUCTION 
Bioimaging, biosensing, drug delivery, diagnostics, and selective phototherapeutics have been 
the focus of applications of metal nanoparticles in biomedicine [1-4]. Various nanoparticles 
have been explored for the use of surface plasmon resonance (SPR), including shapes in 
spheres, rods, boxes, cages, and shells [4-8]. By changing the shape of nanoparticles from 
spheres to nanorods, the absorption and scattering peaks change from visible to the near-
infrared (NIR) regime. Compared to visible light, light in the NIR regime offers the 
advantages of larger absorption and scattering cross sections, and much deeper penetration 
depth in tissues [1-5]. The red-shift of the absorption peak in nanorods is governed by the 
aspect ratio (defined as the ratio of the length to the cross sectional diameter), whereas it is  
governed by the shell thickness in nanoshells [6]. 

The performance of nanosensors is characterized by not only the index sensitivity (M), 
but more importantly, the figure of merit FOM = M/FWHM, where FWHM is the full width 
at half maximum of the extinction profiles of the nanoparticles. The index sensitivity defined 
by the red-shift of the absorption peak per unit change of the refractive index of the sensing 
medium has been studied for nanoparticles of various shapes [9,10].  

This work presents the nonlinear theory for the resonance wavelength, which is 
numerically solved as a function of the core and shell diameter ratio (r/R), and the refractive 
index of the core and sensing medium. Compared to the nonlinear theory, the previous linear 
theory [3,4,6,9,10] suffers large errors, particularly for short wavelengths (<650 nm) and/or 
large ratios, r/R>0.3. A scaling law based on a universal parameter defined by a normalized 
thickness of the shell is introduced. Finally, the sensitivity and the FOM are calculated, 
showing an optimum normalized thickness. 

2 THEORY 
As shown in Fig. 1, a spherical nanoshell is defined by its core diameter (r), outer diameter 
(R) coated by a thin gold layer with a thickness t = R-r, the refractive index of the core (n1), 
and the medium (n). Application of the quasistatic approximation (for nanoshells with 
diameters less than about 50 nm) to the Lorenz-Mie scattering theory indicates that the 
resonance wavelength ( ) is the solution of [5,6]  
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1 31 1/T ( a / b )−= + − ,     (1) 
2 2
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where a universal parameter, given by the normalized thickness T = t/r, is introduced. The 
prior scaling equation, however, shows that T is a nonlinear function of the resonance 
wavelength ( ). An explicit scaling equation of the resonance wavelength as a function of T 
will be found. In general, Eq. (1) is good for metallic shells. This study focuses on the gold 
nanoshell. 

 
 

Fig. 1 The geometry of a nanoshell defined by its core inner (r) and outer 
diameter (R) coated by a thin layer of gold with thickness t = R-r. Also shown 
are the refractive index of the core (n1) and the medium (n). 

 
The real ( 'ε ) and imaginary part ( ''ε ) of gold relative permittivity, reported by Johnson 

and Christy [7], can be fit to the following nonlinear equations: 
212 5 0 02 0 0000333( ) . . .ε λ λ λ= − − , for wavelength range of (550 to 2000) nm,  

20 00005 0 071 25 65''( ) . . . ,ε λ λ λ= − +  for short wavelength range of (500 to 700) nm, 
20 000011 0 0127 4 6''( ) . . .ε λ λ λ= − + , for long wavelength >700 nm. 

As described by Eq. (1), the resonance wavelength ( ) is highly nonlinear and can only be 
solved numerically. An analytic formula is available only if one ignores the ( ''ε )2 term in Eq. 
(3). This linear approximation was used in earlier work [3,6] that suffers errors, particularly 
for short wavelengths (<650 nm) and/or large T>0.3, in which the contribution from ( ''ε )2 

cannot be ignored. 
Given the scaling equation for the resonance wavelength as a function of the sensing 

medium refractive index (n) and T, one can calculate the sensitivity function by its red-shift 
rate per unit change of  n, defined by M = d  /dn. 

3  RESULTS AND DISCUSSIONS 
3.1 Resonance wavelength 

The resonance wavelength ( ) is calculated by the numerical solution of Eq. (1) and is shown 
in Fig. 2 as a function of the diameter ratio (r/R) for various sensing medium refractive 
indices of n = 1.33 to 1.50. These curves show that the resonance wavelength red-shift 
increases for  larger r/R ratios, or thinner shells. Furthermore, for a given r/R ratio, the 
resonance wavelength is also red-shifted for a larger sensing medium refractive index (n). 
Figure 2 is plotted from Eq. (1), noting that r/R = 1/(1+T).  
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Fig. 2 The resonance wavelength ( ) versus the diameter ratio (r/R) for various 
sensing medium refractive indices n = 1.33, 1.40, and 1.50, for a gold 
nanoshell with a silica core (with n1  = 1.45). 

 
3.2 Error of linear approximation 

As mentioned earlier, the imaginary part ( ''ε ) of Eq. (3) was ignored in the linear 
approximation used by earlier work [3], and errors occur particularly for short wavelengths 
(<650 nm) and/or large T>0.3. Examples are shown in Figs. 3 and 4 comparing our exact 
nonlinear calculations (solid curves) and the linear approximation (dashed curves), which is 
valid only in small T< 0.3. 

                   
Fig. 3 The resonance wavelength versus 
the normalized thickness T for nanoshell 
Au/silica in water medium (n = 1.33), 
where the solid curve is the exact and the 
dashed is the approximate. 

 Fig. 4 The sensitivity function (M) 
defined by the slope of the curves 
in Fig. 3. 

 
3.3 Scaling law 

As defined earlier, a universal parameter is given by the normalized thickness T = t/r. This 
definition is based on the fact that, as shown by Eq. (1), the resonance wavelength is solely 
related to the ratio of T = t/r rather than the individual values of r, R, or the thickness (t). 
Universal scaling was also presented by Jain and El-Sayed [3] in 2007 based on their 
numerical fit. However, their claimed new discovery can be readily seen just by Eq. (1), 
which was explored much early in 1999 [6]. In addition, their fit equation based on a linear 
approximation will suffer errors for the regime of T>0.3, as shown by Figs. 3 and 4. All the 
calculations in this study are based on the exact nonlinear equation of Eq. (1). 

It is worthy to note that the concept of a scaling law governed by a universal parameter 
in general could be applied to various nanoparticle structures. For nanoshells, it is defined as 
the normalized thickness T = t/r; for nanorods, it is given by the aspect ratio (length/width); 
and in nanofibers, it is defined as the ratio of fiber length and its core diameter. 
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Figure 5 shows the strong dependence of the resonance wavelength on both the shell 
thickness (t) and its size (R), if one plots the curves against t or R. However, as shown in Fig. 
6, the resonance wavelength curves are universally scaled by the normalized parameter T = t/r. 
In contrast to Fig. 5, the resonance wavelength curves in Fig. 6 are not influenced by the 
individual values of r and R, but only depend on their ratio r/R. Figure 6 can be also compared 
with Fig. 2, noting that T = R/r-1. 
        For silica-core (n1 = 1.45) gold shells in water medium (n = 1.33), the curve in Fig. 6 can 
be fit to an exponential decay scaling law as follows:  
 

 exp( / )a b T cλ = + − ,   (4) 
 

with a = 568.2, b = 761.5, and c = 0.11117, which is more accurate than that of Jain and 
El-Sayed [3] ignoring the nonlinear term in Eq. (3). It should be noted that the scaling fit 
coefficients (a,b,c) are slightly influenced by the refractive index of the core and the sensing 
medium, as shown by Fig. 6. 

         
Fig. 5 Shell thickness (t) versus 
resonance wavelength for various shell 
sizes R= (40,60,80,100) nm in Au/silica 
with sensing medium refractive index  
n = 1.33. 

 Fig. 6 Shell normalized thickness (T) 
versus resonance wavelength for various 
medium refractive index  n = (1.33, 1.4, 
1.5). 

 
3.4 Sensitivity 
To calculate the sensitivity function (M) defined by M = d λ /dn, one needs to calculate the 
resonance wavelength versus the sensing medium (n), which is calculated from Eq (1) and 
shown in  Fig. 7 for various normalized thicknesses (T). The curves for M versus the 
resonance wavelength, shown by Fig. 8, are calculated from the slopes of Fig. 7. It should be 
noted that higher sensitivity is available for smaller T, or thinner shells for a given shell size 
(R). However, a thin shell alone does not guarantee higher sensitivity. For example, (t,r) = 
(0.05, 25), (0.1,50), and (0.2,100) all have the same M value according to our scaling law, 
since they have the same ratio T = (t/r) = 0.02.  

For the special case of hollow shells, with n1 = n = 1.0, or with index-matched interior 
and exterior n1 = n, the analytic formula for M is available under the linear approximation of 
Eq. (1) 'ε  = -2Xn2, where X is a shape-dependent factor given by X = (1-L)/L, and the shape 
parameter L equals 1/3 for a sphere [5]. By further using the linear relation for gold relative 
permittivity [8], 0 071 33 05' . .ε λ= − + , the M function for hollow shells is analytically given 
by (2 / )( 465.5)M n λ= − , which shows that M is linearly proportional to the resonance 
wavelength ( ) and inversely proportional to the medium refractive index, but independent to 
the shell structure (thickness or size) and its core refractive index. 
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Fig. 7 Resonance wavelength versus 
sensing medium refractive index (n) for 
various normalized thicknesses (0.1, 0.2, 
0.3, 0.4, 0.5). 

 Fig. 8 The sensitivity function (M) versus 
resonance wavelength calculated from the slopes 
of the curves in Fig. 8. 

 
However, for spherical nanoshells, in general, the T-dependence of M can be fit to an 
exponential decaying function   

' 'exp( / ')M a b T c= + − ,    (5) 
where 'a  = 127.68, 'b  = 596.18, and 'c  = 0.1023 for a silica core (n1 = 1.45) in water 
medium (n = 1.33). One can also derive Eq. (5) from the derivative of Eq (4) with respect to 
the medium refractive index (n) evaluated at n=1.33. 

For resonance wavelength range in the near-infrared of (700 to 1000) nm, M = (250 to 
400) (nm/RUI) in Au/silica nanoshells, as shown by Fig. 8. This calculated sensitivity of 
nanoshells is comparable to that of gold nanorods (300 to 600) (nm/RIU) [8]. 
 
3.5 Figure of merit 

The figure of merit (FOM) for a nanoshell is defined by its sensitivity divided by its spectral 
broadening, the FWMH, or FOM = M/FWHM. Using the FWHM of gold, the FOM versus T 
is shown in Fig. 9, which indicates a maximum at an optimal diameter ratio (r/R) around 0.85, 
corresponding to the resonance wavelength around 800 nm and the normalized thickness (T ) 
around 0.1. It is worthy to note that the optimal feature of FOM in nanoshells is also found in 
gold nanorods [8] with an optimal aspect ratio (defined by its length and width) of (3.5 to 4.0). 
Combining the calculated data shown by the curves of Figs. 6 and 10, a high FOM of (6.0 to 
8.0) is achievable in biosensors using a NIR laser of (700 to 900 nm). In comparison, lasers in 
the visible spectrum of 550 to 700 nm, have lower FOM of 3.0 to 4.0. The NIR lasers are also 
better candidates for biosensnors and selective phototherapeutics when deep tissue penetration 
is required.  

 
Fig. 9 Figure of merit (FOM) versus the nanoshell normalized thickness 
(T  =  t/r) for a silica core (n1 = 1.45) and in water medium (n = 1.33). 

 
4  CONCLUSION 
Scaling laws in Eqs. (4) and (5) for resonance wavelength and refractive index sensitivity, 
respectively, are derived based on a nonlinear theory and are fit to the numerical results. A 
normalized thickness (T) defined by the ratio of the shell thickness and its core diameter is 
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introduced. The calculated figure of merit shows a maximum at an optimal value of the 
resonance wavelength (around 800 nm), diameter ratio (r/R) around 0.85, and T around 0.1. It 
is predicted by this study that the high figure of merit (FOM) and deep tissue penetration of 
NIR lasers offer many advantages over visible lasers.  
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