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Abstract. The sensitivity and specificity of in vivo magnetic resonance (MR) imaging is compared with production
of protoporphyrin IX (PplX), determined ex vivo, in a diffusely infiltrating glioma. A human glioma transfected with
green fluorescent protein, displaying diffuse, infiltrative growth, was implanted intracranially in athymic nude
mice. Image contrast from corresponding regions of interest (ROls) in in vivo MR and ex vivo fluorescence images
was quantified. It was found that all tumor groups had statistically significant PpIX fluorescence contrast and that
PplIX contrast demonstrated the best predictive power for tumor presence. Contrast from gadolinium enhanced
T1-weighted (TTW + Gd) and absolute T2 images positively predicted the presence of a tumor, confirmed by the
GFP positive (GFP +) and hematoxylin and eosin positive (H&E +) ROls. However, only the absolute T2 images
had predictive power from controls in ROIs that were GFP + but H&E negative. Additionally, PpIX fluorescence
and TTW + Gd image contrast were linearly correlated in both the GFP+ (r = 0.79, p<1x10~8) and H&E+ (r
= 0.74, p<0.003) ROIs. The trace diffusion images did not have predictive power or significance from controls.
This study indicates that gadolinium contrast enhanced MR images can predict the presence of diffuse tumors,

but PpIX fluorescence is a better predictor regardless of tumor vascularity. ©2011 Society of Photo-Optical Instrumentation
Engineers (SPIE). [DOI: 10.1117/1.3622754]
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1 Introduction

High-grade gliomas are aggressive tumors that are difficult to
fully resect due to their infiltrative nature and diffuse tumor
margins. The introduction of the aminolevulinic acid (ALA)-
protoporphyrin IX (PpIX) system has found great success
clinically in fluorescence guided resection (FGR) for minimiz-
ing the amount of malignant glioma tissue remaining in the
patient post-surgical resection in Germany,'~® and is ongoing in
clinical trials in the United States’~'® and Switzerland.'! Current
standard of care for brain cancer patients undergoing surgery
includes magnetic resonance (MR) imaging prior to surgery
to map tumor extent, surgical resection, and post-surgical MR
imaging to determine if any contrast-enhancing tumor region
remains. However, tumor margins determined from conven-
tional MR imaging [gadolinium (Gd) enhanced T1-weighted]
and PpIX fluorescence often do not agree,' even with advanced
algorithms to account for brain deformation during the surgical
intervention.® This paper evaluates the correlation between
tissue contrast from PpIX fluorescence and Gd-enhanced
T1-weighted, absolute T2, and diffusion MR images using a
highly infiltrative human glioma in a murine model.
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The ALA—PpIX system provides tumor to normal tissue con-
trast through production of PpIX in malignant tissues following
ALA administration by overwhelming the heme biosynthesis
pathway, found in all mammalian cells.'”> Glioma tissues pro-
duce higher levels of PpIX as compared to normal brain tis-
sues for a range of reasons, including increased vascular per-
meability, increased cellular metabolism, and a modified tumor
microenvironment.'? It is not well established what level of
compromise to the blood-brain-barrier (BBB) will lead to ALA
infiltration; however, it is well known that the highest levels of
PpIX are found within glioma tissue, regions of inflammation,
and structures not associated with the BBB (i.e., meninges and
choroid plexus).'?

Surgical resection of gliomas is based on tumor boundaries
determined by conventional Gd contrast enhanced (MR) imag-
ing. However, intratumoral heterogeneity, including solid tu-
mor, necrosis, tumor infiltration, and edema, of glioma tumors
is not always recognizable in conventional MR imaging.'* Tn
an initial FGR study Stummer et al.! noted that residual PpIX
fluorescence after FGR was observed in 35 patients, suggesting
unresected tumor had been left; yet 17 of these patients were de-
void of Gd contrast enhancement in post-operative T1 weighted
MR images. The discrepancy between tumor margins in MR
imaging and PpIX fluorescence has also been noted before by
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Gibbs-Strauss et al.!> in the tumor-line U251-GFP (green fluo-
rescent protein), which grows in a highly diffusive and scattered
morphology. It was demonstrated in a U251-GFP murine model
that MR image contrast from gliomas depended on the pattern of
tumor growth. Diffusely growing tumors did not have as high,
if any, image contrast in Gd enhanced MR images. A recent
pilot study in two human cases® comparing pre-operative MRI
to intrasurgical FGR fluorescence using a method to spatially
register them, showed that there was synergy in using both meth-
ods to identify the diseased regions for resection, as assessed by
sensitivity and specificity of detection.

The goal of this study was to examine this result in a murine
model, and determine if there was a direct correlation be-
tween the image contrast produced by a variety of conventional
(gadolinium enhanced) and nonconventional (absolute T2 and
diffusion) MR images as compared to ex vivo fluorescence im-
age contrast from PpIX. Additionally, furthering this goal was to
determine whether PpIX had a higher positive predictive value
than MR imaging for diffuse gliomas. The glioma model used is
a U251-GFP cell line that was created in house, !> and resulted in
the creation of a cell line that exhibits growth patterns atypical
of the parent U251 cell line.

2 Materials and Methods
2.1 Animals

All animals were used in accordance with the policies and an
approved protocol of the Institutional Animal Care and Use
Committee at Dartmouth College. Fifteen 6-week-old, male
NCR athymic nude mice were obtained from the National Can-
cer Institute—Frederick Animal Production Program (Frederick,
Maryland) and used in this study. There were 12 mice (9 tu-
mor implanted, 3 sham surgery controls) that underwent MRI
and PpIX study only, while an additional 3 mice were used for
fluorescence staining.

2.2 Cell Culture and Murine Orthotopic
Glioma Model

U251-GFP was used for implantation.'> The U251-GFP cells
were cultured in Dulbecco’s Modification of Eagle’s Medium
(DMEM, Mediatech, Inc., Herndon, Virginia) supplemented
with 10% fetal bovine serum (FBS, Mediatech, Inc.) and 1%
penicillin-streptomycin (Mediatech, Inc.). The cells were incu-
bated in a humidified environment at 37 °C with 95% air and
5% carbon dioxide. In preparation for injection, the cells were
trypsinized, live cell count performed on a hemocytometer with
Trypan blue to stain the dead or damaged cells, and then were
subsequently suspended in phosphate buffer saline (PBS) for
implantation at the appropriate concentration.

The procedure for orthotopic brain tumor implantation
has been described previously, but is described briefly here.
Mice were anesthetized by interperitoneal (i.p.) injection with
ketamine-xylazine (90:10 mg/kg) and a small incision was
created on the left side of the head exposing the skull landmarks.
A small hole was created 2 mm behind the bregma and 2 mm
to the left of the midline using a 1 mm rotary drill. A Hamilton
syringe (Hamilton Company, Reno, Nevada) was placed 2-mm
deep into the brain tissue and 1x 10° cells in 10 u1 was injected
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over a 5 minute period, followed by a slow retraction of the
needle to prevent cell leakage. The control mice received the
same treatment, but were injected with 10 ul of PBS only.
The hole in the skull was closed using bone wax (Ethicon,
Inc., Piscataway, New Jersey) and the incision closed with
Vetbond (J. A. Webster, Inc., Sterling, Massachusetts). All mice
implanted with U251-GFP cells displayed tumor cell growth,
although tumor size varied considerably due to the diffuse and
infiltrative nature of the cell line as previously reported.'>!®
Mice were imaged 10 to 16 days post-implantation when they
displayed clinical signs of tumor growth.

2.3 MRI

All MR experiments were performed on a 7T/21cm magnet
(Magnex Scientific, Abingdon, United Kingdom) equipped with
an imaging gradient set (Resonance Research Inc, Billerica,
Massachusetts), interfaced to a Varian UNITY-INOVA console
(Varian Inc., Walnut Creek, California). A Litz coil of 20-mm
diameter (Doty Scientific Inc, Columbia, South Carolina) was
used in transmit/receive mode. The mice were anesthetized with
isoflurane (1 to 1.5 vol.% in 70:30 O,:N,) with a nose cone,
and an animal torso was placed on a thermostated water circu-
lating heating element at 37 °C for the duration of MR scans
to maintain body temperature. Pre- and post-contrast T} MR
images were acquired with a standard spin echo sequence using
the following acquisition parameters: TR = 700 ms, TE = 9 ms,
matrix size = 128 x 128, field of view (FOV) = 30 x 30 mm,
2 signal averages, slice thickness = 0.75 mm, number of slices
= 20, total acquisition time = 3 min 3 s. For post-contrast T},
Magnevist (0.2 mmol/kg) was injected i.p. 10 min before acqui-
sition of T; MRI. A multiecho, multislice spin echo sequence
was used to acquire absolute T, MR images with parameters as
follows: TR = 3 s, TE = 20 ms, number of echoes = 4, 2 signal
averages, matrix size = 128 x 128, FOV = 30 x 30 mm, slice
thickness = 0.75 mm, number of slices = 20, total acquisition
time = 12 min 55 s. The trace of the diffusion images (D,,) was
acquired using the sequence described by Mori and van Zijl'”
with acquisition parameters as follows: TR = 1.5's, TE = 55 ms,
matrix size = 128 x64, FOV = 30x30 mm, 2 signal averages,
slice thickness = 0.75 mm, number of slices = 15 to 20, three
b-values = 0, 496.6 and 1056.7 s/mm?, total acquisition time
=9 min 41 s. The Aedes routine (http://aedes.uku.fi) performed
under a MATLAB platform (Mathworks Inc, Bolder, Colorado)
was used to compute both absolute T, and D,, images from the
acquired data sets.

2.4 Exvivo Frozen Tissue Fluorescence Imaging
and Histology

Post-MR imaging, the mice were administered 100 mg/kg ALA
dissolved in PBS by i.p. injection. Two hours post-ALA injec-
tion, the mice were sacrificed; the brains were extracted and
sectioned in the coronal plane into four pieces, ensuring that
one slice was made directly through the needle track to opti-
mize tumor detection. The sections were laid cut face down on
a glass slide and were imaged on a fluorescence plate scanner
(Typhoon 9410, GE Healthcare Life Sciences) for both PpIX
(633-nm excitation, 650-nm LP emission) and GFP (488-nm
excitation, 526-nm BP emission) fluorescence. Following
fluorescence imaging the brain slices were sent to pathology
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for routine H&E staining on 4 pm tissue slices. Routinely, the
surface slice was kept for each tissue section and subsequent
slices were taken every 100 wm throughout the entirety of the
tissue. The tissue between each H&E slice was discarded at the
time of preparation.

Additional fluorescence imaging on frozen sections was per-
formed in three mice to verify compromised vasculature and
blood-brain barrier breakdown as a mode of ALA delivery. In
addition to the ALA administered 2 h prior to sacrifice, the
mice were i.v. injected with the vascular marker Hoechst 33258
(15 mg/kg in PBS) via the tail vein 1 min prior to sacrifice. The
brains were removed, submerged in Tissue Tek® Optimum
Cutting Temperature medium, and flash frozen in a mixture of
methylbutane and dry ice. The frozen brain samples were stored
short term at — 20 °C and long term at — 80 °C. Ten microme-
ter thick frozen tissue sections were made on a cryotome (CM
1850, Leica Biosystems). Two consecutive slices were made
every 100 um throughout the entirety of the brain sample. The
first slice was used for fluorescence imaging and the second slice
was sent for routine H&E staining to confirm tumor location.
Fluorescence imaging was performed on a Nikon DIAPHOT-
TMD inverted fluorescence microscope with a QColor3 CCD
camera and QCapture Suite imaging software (QImaging, Sur-
rey, BC, Canada). GFP (ex: 470 to 490 nm, em: 520 to 560 nm;
DM510, BIE filter cube, Nikon, Garden City, New York), PpIX
(ex: 445 nm, em: 685 to 715 nm; 560DCXR, C36848; Chroma
Technology Corp., Rockingham, Vermont), and Hoechst 33258
(ex: 360 to 370 nm, em: 425 to 475, HQ450/50m dichroic;
Chroma Technology Corp.) were imaged in the same field of
view for fluorescence correlation. The GFP fluorescence over-
laps with Hoechst 33258 fluorescence in the 520 to 560 nm
range; however, the Hoechst 33258 fluorescence could be sepa-
rated using the shorter wavelength filter cube.

2.5 Contrast Analysis

Corresponding regions of interest (ROIs) for the fluorescence
and MR images were produced to compare the contrast be-
tween image types. ROIs were created using /mageJ (Rasband,
W.S., ImageJ, U.S. National Institutes of Health, Bethesda,
Maryland, http://rsb.info.nih.gov/ij/, 1997 to 2005) from the
GFP-fluorescence images and were copied to the PpIX images
and the correlating MR image slices. The tumor location was
confirmed in the H&E slices, and the ROIs were divided into two
groups based on the GFP fluorescence: H&E positive (H&E + )
and negative (H&E —) ROIs. The image contrast was deter-
mined using the following formula:
Iror — IBkgd

(1

Contrast =
IConLra - IBkgd

where Iy is the average pixel intensity in the region of interest,
Icontra 18 the average pixel intensity in the contralateral region
of the brain, and Ipygq is the average pixel intensity in the back-
ground of the image. Thus, Contrast = 1 indicates that there is
no difference between the ROI and its contralateral region, while
Contrast > 1 and Contrast < 1 signifies a signal enhancement
or depression, respectively, within the tumor region of interest.
Student’s t-test statistics with unequal variance and Pearson’s
correlation coefficient calculations were used to analyze the
data, performed using OriginPro 8 (OriginLab, Northhampton,
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Massachusetts). A variety of diagnostic tests were calculated for
each imaging contrast type and ROI group, including: sensitivity,
specificity, positive predictive value (PPV), negative predictive
value (NPV), and diagnostic accuracy.

3 Results
3.1 Regions of Interest

The H&E slices were used to guide the location of the tumors in
the GFP fluorescence images for the initial ROI determination.
There were 36 ROIs that displayed GFP fluorescence (GFP + ).
It was readily noted that within these 36 ROIs there were distinct
regions that displayed GFP fluorescence (i.e., U251-GFP cells)
in the thick tissue sections used for fluorescence imaging that
did not appear in the 4 um surface H&E sections. Therefore, the
paraffin embedded tissue blocks were further sectioned by taking
a4 pmslice every 100 wm for the entirety of the tissue. Although
this increased the number of correlating GFP fluorescence and
tumor H&E positive ROIs, there were still many that could not
be correlated with H&E stained tissues. Therefore, the GFP
+ ROIs were further divided into two categories: H&E positive
(H&E + ) and H&E negative (H&E — ); although the latter group
is designated H&E —, it is believed that the GFP fluorescence
indicates the presence of tumor. There were 36 GFP + ROIs
noted in 9 mice, with 14 of those ROIs H&E + and 22 H&E
negative (H&E — ). Twenty-four ROIs were created for three
sham surgery control mice.

Figure 1 demonstrates a complete set of images for one rep-
resentative mouse in the study. The regions of interest within
the brain are denoted with arrows. Note that there are three
H&E + ROIs in this particular mouse. The corresponding
ROIs in the GFP and PpIX fluorescence images are shown in

X
&= GFP T1W+Gd
PpIX T1WCD)|

Fig. 1 The diffusely growing U251-GFP tumor images are shown using
ex vivo fluorescence, in vivo MR imaging, and ex vivo H&E staining.
(@) H&E staining of a mouse brain implanted with U251-GFP shows
three regions (black arrows — dotted, dashed, and solid) of diffusely
growing glioma cells. H&E was used as the gold standard for tumor
detection. (b) GFP fluorescence from thick tissue slices was used to
determine the ROls for fluorescence and MR imaging contrast anal-
ysis. The three ROlIs are circled with dotted, dashed, and solid lines
corresponding to the ROls indicated in (a). (c) PpIX fluorescence of the
same tissue slice was analyzed. The following MR imaging scans were
also analyzed for tumor contrast: (d) TTW without gadolinium contrast
[dotted, dashed, and solid circles correspond to GFP fluorescence ROIs
indicated in (b)], (e) TTW with gadolinium, (f) TTW contrast difference,
(g) T2, (h) absolute T2, (i) diffusion, and (j) D,, image. The ROls created
in the MR images corresponding to fluorescence and H&E images are
shown in the T1W without gadolinium image (d).
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Fig. 2 The comparison of MRI and fluorescence contrast (where contrast = [ROI] / [Contralateral ROI]) of the control mice (a), and the GFP 4+ ROls (b)
show that the TTW 4 Gd, absolute T2, and PplIX fluorescence are all significant (black asterisks) from the controls. The GFP + ROls are further broken
down into groups of H&E + ROls (c) and H&E — ROls (d) to illustrate the large variation between these two groups. The H&E positive ROls have
the same statistically significant groups as all tumor bearing mice, but the H&E negative ROls are only significant for PpIX fluorescence and T2 map.

Figs. 1(b) and 1(c), respectively, while the MR images are shown

in Figs. 1(d)-1(j).

3.2 PplX Fluorescence and MRI Contrast

Comparison

All ROIs were analyzed for PpIX fluorescence, and contrast
in the following MR images: TIW, TIW + Gd, TIWCD, T2,
T2 map, diffusion, and D,, map. The resultant image contrast
values are presented in box and whisker plots in Fig. 2. When
considering the GFP + ROIs [Fig. 2(b)] the PpIX fluorescence,

T1W 4 Gd, and T2 Map are all statistically significant from the
control ROIs [Fig. 2(a)] at p < 0.05. For the H&E + ROls,
the same three imaging types produce statistically significant
results as compared to the control (p < 0.05). However, when
considering only the H&E — ROlIs, the PpIX and T2 Map are
statistically significant from the control group (p < 0.05). The
diffusion and D,, map did not show any statistical significance
in any of the ROI groups.

ROC curves were created for the GFP+ and H&E
+ ROIs [Figs. 3(a) and 3(b), respectively] for PpIX fluo-
rescence, TIW + Gd and T2 Image. The receiver operating

GFP+ ROls
1.0
= — — o b -
- e -oa
- e e
2 2
Z =z
= =
w @
s g
== =PplX Fluorescence v
= TIW + Gd
- == « T2 Map
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0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

1-Specificity

L0
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== =PplX Fluorescence
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Fig. 3 The ROC curves for the GFP + ROls (left) and the H&E + ROls (right) show that PplX fluorescence has the highest specificity and sensitivity,
perfect in the H&E + ROls case, as compared to the other imaging techniques. The TTW + Gd image contrast is significantly better in the H&E
+ case, while the T2 map image contrast is relatively similar in both the GFP 4+ and H&E + ROls. The AUC for each of the image-ROI combination

is summarized in Table 1.
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Table 1 Diagnostic test results for the three ROI analysis groups: All ROIs, H&E + ROIls and H&E — ROls.

Type of imaging contrast

All ROIs H&E + ROIs H&E — ROIs

Diagnostic tests PpIX TIW +Gd T2 map PpIX TIW +Gd T2 map PpIX TIW +Gd T2 map
AUC® 0.95 0.69 0.84 1 0.88 0.91 0.91 0.55 0.79

(+£0.04) (+£0.07) (+£0.05) (£0) (+£0.05) (+£0.05) (+£0.05) (£0.09) (£0.07)
Sensitivity 0.89 0.28 0.64 1 0.57 0.71 0.82 0.09 0.59
Specificity 1 1 0.85 1 1 0.85 1 1 0.85
PPVe 1 1 0.81 1 1 0.82 1 1 0.79
NPve 0.90 0.58 0.70 1 0.70 0.75 0.85 0.52 0.67
Diag. Acc.? 0.94 0.64 0.74 1 0.79 0.78 0.91 0.55 0.72

9AUC = area under the curve (refers to ROC curves in Figure 3), PPV = positive predictive value, NPV = negative predictive value, Diag. Acc. = diagnostic accuracy.

characteristic (ROC) curves demonstrate the relationship
between the false positive fraction and the true positive fraction
based on the image contrast, as compared to the contrast in the
control mice. PpIX fluorescence image contrast displays the
highest sensitivity and specificity of the three imaging types in
both GFP + and H&E + ROI groups, with perfect scoring for
the H&E + ROIs. TIW 4 Gd image contrast displays higher
sensitivity in the H&E + ROI group than that in the GFP +
ROI group and has similar specificities. The T2 map exhibits
similar sensitivity and specificity in both GFP + and H&E +
ROI groups.

The area under the curve (AUC) for each ROC curve image
type is summarized in Table 1 and describes how accurately the
tumor can be differentiated from the control; where an area of
1 indicates 100% sensitivity and specificity, while an area of
0.5 is indicative of 50% sensitivity and specificity, or random
guessing. The AUCs for the H&E + ROI group are all higher
than the AUCs for the GFP + ROI group, although the individ-
ual imaging contrast types all show the same trends with PpIX
fluorescence > absolute T2 > TIW + Gd. The H&E — ROI
group shows a high level of false positives for the PpIX fluo-
rescence and absolute T2, while the T1W + Gd is close to the
control group.

A complete summary of diagnostic tests is provided in
Table 1. The results of the diagnostic tests demonstrate the
same basic trends as seen for the AUC. PpIX image contrast
is consistently higher in sensitivity, NPV, and diagnostic accu-
racy for all three ROI groups. TIW 4 Gd image contrast also
shows perfect specificity and PPV for all three ROI groups; how-
ever, T1W + Gd has lower NPV and diagnostic accuracy values
than PpIX. In fact, TIW + Gd has lower sensitivity, NPV, and
diagnostic accuracy values than T2 Map.

Correlations between PpIX fluorescence and both TIWCD
and T2 maps were identified. Pearson’s correlation coefficients
were 0.79 (p < 1 x 107%) and 0.74 (p < 0.003) for PpIX
fluorescence and T1W + Gd image contrast for the GFP +
and the H&E + ROlIs, respectively, demonstrating highly sig-
nificant positive linear correlation between PpIX fluorescence
and gadolinium enhancement. The Pearson’s correlation coef-
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ficient for PpIX fluorescence and absolute T2 image was 0.34
(p < 0.05) for the GFP 4 ROI group, indicating a weak positive
correlation. No correlation was found between PpIX fluores-
cence and absolute T2 image in the H&E 4 ROI group, and no
significance was found between PpIX fluorescence and any MR
image type in the H&E — ROI group.

3.3 Exvivo Fluorescence Imaging of frozen Tissue

Ex vivo fluorescence imaging of frozen brain tissue sections
displayed co-localized regions of GFP, Hoechst 33258, and
PpIX fluorescence (Fig. 4). The GFP fluorescence channel had
some bleed through of the Hoechst 33258 due to the overlapping
spectra in the 480 to 560 nm region. Therefore, the GFP and
Hoechst 33258 fluorescence images were overlaid and regions
of overlap were indicated to distinguish Hoechst 33258. The
PpIX fluorescence corresponded well with both the tumor cells
(GFP fluorescence) and with perfusing vasculature (Hoechst
33258 fluorescence), but was not observed elsewhere in the
brain.

Hoechst & GFP

Fig. 4 Ex vivo fluorescence imaging of frozen tissue sections confirms
the co-localization of GFP (green, left image), perfusing blood vessels
(Hoechst, blue, left image), and PpIX fluorescence (red, right image).
Due to the nature of the filter, some Hoechst fluorescence leaked into
the GFP channel; therefore, these regions are marked with white arrows
and indicate areas that contain fluorescence from both the green and
blue fluorescence channels and can be attributed to perfusive blood
vessels. Scale bar = 200 um.
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4 Discussion

Infiltrative tumors are difficult to detect in vivo using MR imag-
ing, especially at the tumor margins where extended growth
into normal tissue is occurring. A surgeon using ALA-PpIX
FGR needs to rely on the accuracy of the PpIX fluorescence
arising from outside of the tumor boundary determined by con-
ventional gadolinium enhanced MR imaging.” '* There arises a
need to study the correlation of PpIX fluorescence with contrast
enhanced MR imaging for the safe removal of all malignant tis-
sues. We have studied ex vivo PpIX fluorescence image contrast
in comparison to the gold-standard gadolinium enhanced in vivo
MR imaging, as well as commonly used endogenous MR con-
trasts in order to identify whether all observed PpIX fluorescence
can be classified as malignant tissue. In this case, a human glioma
cell line, transfected with green fluorescent protein, was used as
an infiltrative tumor model. This tumor line was established in
house and showed atypical diffuse, infiltrative morphology upon
orthotopic implantation as compared to the U251 parent line.!
The parent line displays typical glioma growth patterns in which
the tumor is observed as a solid ball within the normal brain tis-
sue. The diffusive nature of the U251-GFP tumor line behaves
similarly to the boundaries observed in the parent U251 tumor
(and typical of invasive gliomas) where there is a significant
amount of infiltrative tumor satellites within the normal tissue.

The diffuse nature of the U251-GFP tumor made it diffi-
cult to section successfully as there were many clusters of cells
throughout the brain tissue. Originally, a single 4-pum slice was
taken from the surface of the brain tissue sections that had been
subjected to fluorescence imaging. These H&E surface slices
did display tumor cells corresponding to the GFP fluorescence;
however, there were many regions that displayed GFP fluores-
cence that were not found in the surface H&E section. The
brain slices used for GFP fluorescence collection were several
millimeters thick, and were not accurately represented by the
surface H&E section as fluorescence imaging allows deeper
penetration of light into the tissue than the representative 4 um
H&E slice. Therefore, further tissue sections were taken every
100 pm throughout the entirety of the brain. Unfortunately, there
were still GFP + ROIs that were not identified in H&E; likely
there were small clusters of tumor cells in the 100 pwm of tissue
between H&E stained sections that were missed. The diffuse
nature of the U251-GFP tumor line often results in only a few
cells found in small satellites or clusters [Fig. 1(a)]. Addition-
ally, there were several GFP + ROIs that corresponded to the
ventricles or outer edges of the brain (i.e., in the cerebrospinal
fluid), and the U251-GFP cells were likely lost in the extraction,
washing, and fixation processes. The GFP + fluorescence arises
from a stably transfected U251 cell line; therefore, any observed
fluorescence is representative of the presence of the implanted
U251-GFP cells. Therefore, the data were analyzed based on all
the GFP + ROIs (n = 36), and then subdivided into H&E + (n
= 14) and H&E — (n = 22) ROIs for further investigation. The
H&E — group is analyzed and presented here for thoughtful
discussion only, but the results are not overly interpreted.

The results show that all groups (GFP+, H&E + and
H&E — ROIs) have significant PpIX fluorescence (p < 0.001)
and absolute T2 image (p < 0.01) contrast as compared to the
nontumor control groups, while only the GFP + ROIs and H&E
+ ROIs display significant TIW + Gd contrast (p < 0.01).
No other MR image type showed significant contrast when
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compared to the control using unequal variance two-tailed t-test.
PpIX image contrast provides the highest diagnostic accuracy
for all three of the ROI groups and displays perfect scores in all
diagnostic tests for the H&E + ROI group (Table 1). Although
TIW 4+ Gd shows perfect specificity and PPV but has the
lowest NPV for each ROI group, indicating that if used alone,
it would be a poor predictor of infilatrative glioma. T2 map has
lower specificity and PPV than TIW + Gd but displays higher
sensitivity and NPV, therefore providing higher diagnostic
accuracy.

Recently, Roberts et al.” published a study that compared
intraoperative PpIX fluorescence, preoperative MR image fea-
tures, and neuropathological parameters in glioblastoma multi-
form patients. It was found that tissues displaying PpIX fluo-
rescence observed by the surgeon had significantly higher Gd
enhancement (here called TIWCD) and normalized contrast
ratio (MCR = [Iror — Iconual/IBKed, Where each intensity rep-
resents the average voxel intensity of that region) values than
tissues without PpIX fluorescence. Although similar to our re-
sults, the TIWCD images in this study did not display a sta-
tistical difference from the control groups due to the very large
standard deviation in the results; however, it is important to note
that had an equal variance two-tailed t-test been performed, the
T1WCD image group would have been statistically significant
for the GFP 4+ and H&E + ROIs. Additionally, the calculation
for contrast that was used is slightly different but provides the
same result that the TIW + Gd image contrast is significant in
malignant gliomas.

A more recent publication from the same group'® demon-
strates that a surgeon’s ability to distinguish abnormal tissue
from normal based on PpIX fluorescence had a success rate of
0.73 (£ 0.03) based on AUC analysis, while true PpIX concen-
tration determined via spectroscopic analysis had a success rate
of 0.95 (£0.02) for all tissues, agreeing with our PpIX image
contrast that had an AUC of 0.95 (£ 0.04) for all GFP 4 ROls.
When we only look at H&E + ROlIs, the predictive power be-
comes 100%, with an AUC of 1.0, indicating that PpIX has a
very strong predictive power for malignant disease.

This study demonstrated a strong Pearson’s correlation co-
efficient, which describes the linearity between samples, when
comparing the T1W + Gd and PpIX image contrast within both
the GFP+ (0.79, p < 1 x 107%) and the H&E + (0.74 p
< 0.003) ROIs. There is a strong correlation between the amount
of gadolinium contrast enhancement in an MR image and the
concentration of PpIX produced by the same tissue. To the au-
thor’s knowledge, this is the first time this has been demonstrated
in a glioma model, and is likely due to the breakdown of the
BBB in the tumor region allowing high levels of accumulation
for both ALA and gadolinium. Tynninen et al.'® showed a cor-
relation between both microvessel density and histological cell
proliferation and increased enhancement in Gd-enhanced MR
imaging.

There was no significant difference of the TIW + Gd image
contrast for the H&E — groups, and therefore did not corre-
late with the observed PpIX production. This is likely due to
one of two things: 1. the size of the tumor satellite/clusters
were too small (hence, they were missed in the serial H&E
sections) and had not yet been vascularized; or 2. the PpIX aris-
ing from these ROIs cannot be attributed to malignant glioma
tissue. Magnevist®, the gadolinium contrast agent used here,
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is more than five times larger than ALA, limiting diffusion in
BBB protected areas. Olivo and Wilson also noted that ALA can
cross the BBB, so that PpIX accumulation in small tumor clus-
ters is a reasonable estimate of what occurred here.'> However,
the same authors also observed that PpIX production within the
brain could be from another source such as inflammation,? radi-
ation necrosis,'® and neurodegenerative disease associated with
inflammation.'® Since GFP fluorescence was observed in these
ROIs, it is possible that these were small U251-GFP clusters
with no, or very limited, BBB breakdown.

5 Conclusions

This study shows that both in vivo standard gadolinium contrast
enhanced and absolute T2 MR images can positively predict the
presence of diffuse gliomas; however, ex vivo PpIX fluorescence
accomplishes the same feat with higher sensitivity and diagnos-
tic accuracy. Although the PpIX concentration and gadolinium
enhancement are linearly correlated, there appears to be a limit
on the ability of MR to detect these diffuse gliomas, likely due
to tumor cell cluster size or amount of BBB breakdown. ALA-
PpIX-based FGR has great promise for complete a resection of
gliomas, especially if the surgeon is confident in the PpIX fluo-
rescence signal within tumor margins and in cases of diffusely
spread tumors. Thinking broadly about the variation in image
quality between systems and hospitals, it is always possible to
obtain sub-standard image quality; thus, having two systems that
work together to provide redundant and also synergistic data for
higher sensitivity and specificity will be critical. It seems likely
that the combined use of pre-operative MRI, together with flu-
orescence imaging during surgery, would be the most effective
way to guide glioma resection.
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