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Processing, Violinista Vellsolà 37, Terrassa, Barcelona 08222 Spain
bAcademy of Sciences of the Czech Republic, Institute of Information Theory and Automation, Pod Vodárenskou věžı́
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Abstract. Retinal imaging plays a key role in the diagnosis and management of ophthalmologic disorders, such as
diabetic retinopathy, glaucoma, and age-related macular degeneration. Because of the acquisition process, retinal
images often suffer from blurring and uneven illumination. This problem may seriously affect disease diagnosis and
progression assessment. Here we present a method for color retinal image restoration by means of multichannel
blind deconvolution. The method is applied to a pair of retinal images acquired within a lapse of time, ranging from
several minutes to months. It consists of a series of preprocessing steps to adjust the images so they comply with
the considered degradation model, followed by the estimation of the point-spread function and, ultimately, image
deconvolution. The preprocessing is mainly composed of image registration, uneven illumination compensation,
and segmentation of areas with structural changes. In addition, we have developed a procedure for the detection
and visualization of structural changes. This enables the identification of subtle developments in the retina not
caused by variation in illumination or blur. The method was tested on synthetic and real images. Encouraging
experimental results show that the method is capable of significant restoration of degraded retinal images. C©2011
Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3652709]
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1 Introduction
A fundus imaging device or retinal camera is a specialized low-
power microscope with an attached camera designed to pho-
tograph the interior of the eye in association with the optical
system of the eye. Retinal imaging is acknowledged to be an
important tool for both detection and monitoring the progres-
sion of diseases affecting the eye, such as diabetic retinopathy,
glaucoma, and age-related macular degeneration.1 The digital
format provides a permanent record of the appearance of the
retina at any point in time.2

The imaging procedure is usually carried in two separate
steps: Image acquisition and diagnostic interpretation. Image
quality is subjectively evaluated by the person capturing the im-
ages, and they can sometimes mistakenly accept a low-quality
image.3 Low-quality image occurrence rate has been reported
at 3.7–19.7% in clinical studies,4–6 which is not a minor fact. A
recent study by Abràmoff et al.7 using an automated system for
detection of diabetic retinopathy found that from 10,000 exams
23% had insufficient image quality. A major source of retinal
image quality degradation are aberrations of the human eye, im-
perfections in the fundus camera optics, and improper camera
adjustment, flash lighting, or focusing during the exam.8 More-
over, regardless of how well controlled the aforementioned pa-
rameters are, in practice it may not always be possible to obtain
good enough image quality as a result of additional factors such
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as lens opacities in the examined eye, scattering, insufficient
pupil dilation or patient difficulty in steady fixating a target in
the camera (such as in patients suffering from amblyopia).3 Out
of all possible retinal image degradations, some can be properly
compensated via enhancement or restoration techniques (e.g.,
low-contrast, nonuniform illumination, noise, and blur).2 How-
ever, this compensation is also dependent on the extent of the
degradation. Regarding retinal image blurring, its main causes
are relative camera-eye motion, inherent optical aberrations in
the eye, and improper focusing.

In the past decade, many wavefront technologies—with its
origins in astronomy—such as adaptive optics (AO)9 and de-
convolution from wavefront sensing (DWFS),10 gave rise to the
correction of monochromatic aberrations of the eye and also cre-
ated new opportunities to image the retina at unprecedented spa-
tial resolution. However, AO-corrected and DWFS-based fundus
imagers usually aim at resolving details at the level of individual
photoreceptors, thus have a field of view (FOV) of a couple de-
grees and a high resolution on the order of 1 or 2 μm.11 Greater
FOVs can be achieved (∼5 deg)12, 13 with additional hardware
constraints, beside the fact that diffraction limited imaging is not
guaranteed due to an increase in aberrations.14 Nevertheless, it
is still a considerably narrow FOV and a major disadvantage
with clinical subjects because of the need to examine larger ar-
eas of the retina. On the other hand, regular non-AO corrected
fundus imagers used for routine checkups have a large FOV (typ-
ically, 30 deg) at the expense of lower spatial resolution, but still
sufficient for practical detection and progression of observable
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Fig. 1 Block diagram illustrating the proposed method. z̆i are the unregistered degraded input images, and ûi are their restored versions. The other
variables are intermediate outputs of every stage; their meaning is given in the text.

clinical signs, such as microaneurysms, dot and blot hemor-
rhages, and exudates, among others. Consequently, large FOV
fundus imagers are the major imaging modality available to pa-
tients visiting an eye-care clinic. The method proposed herein
aims to restore images from conventional large FOV fundus
imagers.

Among the normal retinal features, the blood vessel distri-
bution exhibits a unique pattern in each individual and is highly
stable in time. It is quite difficult to forge, and most common
diseases do not change the pattern in a way that its topology
is affected. For that reason, much effort has been put into the
development of security systems based on the blood vessel distri-
bution as a biometric signal for authentication purposes.15 From
this consideration, it is reasonable to assume the hypothesis that
a pair of fundus images of the same retina, taken at different mo-
ments in time, contain enough common information to restore
any of them by existing multichannel deconvolution techniques.
We will demonstrate this fact later.

1.1 Overview of Proposed Approach
In this paper, we propose a new strategy for retinal image de-
blurring where we consider the most general image degradation
case: blurred retinal images acquired in different moments in
time, ranging from minutes to months; hence, disease progres-
sion is also considered. The main reason for this general image
degradation case that considers long time lapses comes from the
potential need to restore a degraded image acquired in the past
being the only one available at that stage of the disease. This
problem arises quite often in clinical practice. A correct assess-
ment of a patient’s state evolution requires sharp images from
all moments in time; the method proposed here enables such
opportunity. Disease progression characterization is embedded
in the algorithm with the identification of areas of structural
change (see Sec. 3.3).

Our restoration method is based on a technique called blind
deconvolution (BD).16, 17 The goal of BD is to recover the orig-
inal scene from a single image or a set of blurred images in
the presence of a poorly determined or unknown point-spread
function (PSF). The main assumption is that the blur can be
described by a convolution of a sharp image with the unknown
PSF. Restoration by deconvolution improves contrast and reso-
lution of digital images (i.e., it is easier to resolve and distin-
guish features in the restored image). To avoid confusion with
super-resolution, we briefly describe what we mean by reso-
lution improvement. Digital deconvolution can be described as

any scheme that sharpens up the PSF, while the spatial frequency
bandwidth remains unchanged. This means that the spatial fre-
quency response and the two-point resolution is improved, but
the cutoff frequency is unchanged;18 in the super-resolution con-
text, the goal is to increase the cutoff frequency.

BD algorithms can be of single input [single-image blind de-
convolution (SBD)] or of multiple images [multichannel blind
deconvolution (MBD)]. Despite the fact that SBD is one of
the most ill-posed problems, there are several reliable SBD
algorithms,19 although most of them require that the blurred
image be governed by relatively strong edges, which is not case
here. In Sec. 4.1 we compare our approach to a recent state-of-
the-art SBD method.20 The computational overhead from MBD
(all of the preprocessing to adjust the time-sequence of images)
in comparison to SBD is practically negligible, and the robust-
ness of MBD is far superior and worth applying because SBD
fails to produce a valid restoration. By the same token, the addi-
tional processing enables the identification of structural changes
in the retina over time—a central task in medical practice. As a
result, we have chosen a multichannel approach for the restora-
tion of blurred retinal images.

An overview of the proposed approach is described in
Fig. 1. We consider as input two-color retinal images acquired
with a conventional fundus camera within a time lapse that
can span from several minutes to months given by routine pa-
tient checkups. The images correspond to the same retina but
can differ with respect to illumination distribution, blur, and
local structural changes given by pathological developments.
These differences cannot solely be accounted for by the convo-
lutional model described in Sec. 2. For that reason, the images
must be preprocessed before the blind deconvolution stage can
take place. We register the images and compensate for inter-
image illumination variation and structural changes. In fact,
this preprocessing work becomes a great opportunity to meet
one of the main concerns of ophthalmologists when they vi-
sually compare fundus images of the same retina over time:
To identify true structural or morphological changes pertaining
to possible pathological damage and, consequently, disregard-
ing other changes merely caused by variation of illumination
or blur. Ours is a two-stage blind deconvolution strategy. The
first stage consists in the estimation of the PSFs following a
multichannel scheme, and the second stage is the image decon-
volution, where we restore every image with its corresponding
PSF, independently. This has several advantages that will be ex-
plained in detail Sec. 3.5. The multichannel scheme is based on
the method described in Ref. 21, which has proved to work well
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in practice with sufficient experimental data. It is an alternating
minimization scheme based on a maximum a posteriori (MAP)
estimation, with a priori distribution of blurs derived from the
multichannel framework and a priori distribution of the ideal
sharp image defined by regularization with the total variation
of the image.22 MAP is formulated as an optimization problem,
where regularization terms are directly related to priors. Reg-
ularization involves the introduction of additional information
in order to solve an ill-posed problem in the form of a penalty
or restriction in the minimization routine (see Sec. 3.4). This
provides good quality of restoration—significantly better than,
for example, Lucy–Richardson algorithm,23 still widely used
in biomedical applications. We have modified the algorithm in
Ref. 21 to leave out regions where the eye fundus has struc-
turally changed (it only takes into account one image in these
regions) with the use of a masking operator, similarly to the so-
lution proposed in Ref. 24 within the super-resolution context.
This enabled us to restore both degraded input images.

In this work, our novel contributions to the retinal image pro-
cessing task are twofold. First, we propose a degradation model
for time-series retinal images, which captures the underlying
distortions resulting from instrument limitations and changes
between patient visits; we are also able to identify and highlight
such changes. Second, we propose a restoration strategy based
on blind deconvolution that is able to obtain image enhancement
and resolution improvement using inexpensive digital methods
applied to images acquired with a conventional fundus camera.

2 Mathematical Model of Image Degradation
The unregistered input images, as shown in Fig. 1, are z̆1 and
z̆2. After registration, we obtain two degraded registered images
z1 and z2, which we model as originating from an ideal sharp
image u. Mathematically, the degradation model is stated as

z1 = u ∗ h1 + n1,

z2 = (uk−1) ∗ h2 + n2 , (1)

where the asterisk is the standard convolution, hi are called con-
volution kernels or PSFs, and k is a function accounting for
relative local illumination change between images z1 and z2. For
pixels where no illumination changes occur, k ≈ 1. The noise ni

is assumed Gaussian additive with zero mean in both images. In
our case, the PSFs and k comprise all radiometric degradations
described above except structural changes in the eye, which is
treated in Sec. 3.3. Despite the fact that we consider the PSFs
to vary in time between the two image acquisitions, we assume
them to be spatially invariant within each image. Because the
FOV is of 30 deg or less, this assumption can be accepted in the
first approach. This ideal sharp image u is actually unknown,
and its estimation is the purpose of this paper. Thus to avoid
confusion, the estimated (restored) image is denoted by û. In
Sec. 4.1, we test the performance of our method with syntheti-
cally degraded images, which means that we know u.

3 Description of the Method
In this section, we describe every stage of the proposed method.
To illustrate each stage we use the images shown in Fig. 2. They
were acquired using a nonmydriatic digital fundus camera sys-

Fig. 2 Color fundus images of a human eye affected by age-related
macular degeneration. Images (a) and (b) were captured within a seven-
month time lapse, and (a) was captured before (b).

tem with conventional xenon flash lighting source (in the visible
spectrum). The fundus images are from a patient that suffered
from age-related macular degeneration and were captured within
a seven-month time lapse. They are color RGB 24 bit-depth fun-
dus images of size 1500 × 1200 digitized in TIFF format. This is
a general example where both images do not correspond exactly
to the same object field, the illumination distribution across both
images is not exactly the same, and there are some structural dif-
ferences between them given by the pathological development
in the macula (centered yellowish region).

3.1 Image Registration
Image registration is a procedure that consists of spatial align-
ment of two or more images. General and application-specific
image registration, such as in retinal imaging, has been inves-
tigated from the beginning of image-processing research. The
interested reader is referred to the image registration review
of Zitová and Flusser25 and the recent work by Lee et al.26

for objective validation of several retinal image registration
algorithms. Image-registration techniques are usually divided
into two groups: intensity-based and feature-based methods.
Intensity-based methods have the drawback of poor performance
under varying illumination conditions. Feature-based methods
are robust to such effects but rely on accurate and repeatable
extraction of the features. The retinal vasculature is known to
provide a stable set of features for registration.

For registering the images, we use the robust dual-bootstrap
iterative closest-point algorithm. We briefly describe it here; for
a full description, of the method the reader is referred to Ref. 27.
The vasculature from each image is automatically traced; start-
ing from initial seed points extracted from a 1-D edge detection
and, later, recursively tracking the vessels using directional tem-
plates. The vessel branching and crossover points are used as
landmarks to register the images to subpixel accuracy. The reg-
istration algorithm starts from initial low-order estimates that
are accurate only in small image regions called bootstrap re-
gions. The transformation is then refined using constraints in
the region, and the bootstrap region is expanded iteratively. The
algorithm stops when the bootstrap region expands to cover the
overlap between the images, and uses 12-dimensional quadratic
mapping. This transformation model includes rotation, scale,
translation, a shearing term, and a quadratic term that describes
the spherical shape of the retina. We refer the interested reader to
Ref. 28 for details on the model derivation. This registration al-
gorithm is very robust to local changes and low overlap between
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Fig. 3 Registration of images from Fig. 2 in checkerboard representa-
tion. (a) Before and (b) after registration.

images as demonstrated by its high success rate on test images
with at least one common landmark point and overlaps even as
low as 35%.27 Even though the reported accuracy in Ref. 27 is
of subpixel accuracy, in our case of degraded images this can
be slightly worse without compromising the outcome. Minor
local misregistration errors may occur when landmark points do
not match precisely, but they will not be taken into account in
the restoration because they will be masked out before the PSF
estimation and image deconvolution stages (see Sec. 3.3).

To confirm the registration outcome, the pair of images before
and after registration are shown in Fig. 3 in checkerboard repre-
sentation, where the images are merged together in a chesslike
pattern, where each square alternates information from one im-
age to the other. Note how after registration the images have
been correctly aligned, especially the blood vessel distribution.

3.2 Compensation of Uneven Illumination
Despite controlled conditions in retinal image acquisition, such
as optical stops to prevent glares and provide a diffuse illumi-
nation, there are many patient-dependent aspects that are dif-
ficult to control and mainly affect the illumination component
with gradual nonuniform spatial variations. Some of the con-
tributing factors are (i) the curved surface of the retina (as a
consequence, all regions cannot be illuminated uniformly); (ii)
imaging requires either a naturally or an artificially dilated pupil
(The degree of dilation is highly variable across patients); (iii)
unexpected movements of the patient’s eye; and (iv) presence
of diseases. This nonuniform illumination across the image re-

sults in shading artifacts and vignetting. This effect hinders both
quantitative image analysis and the reliable operation of subse-
quent global operators.

In our model, described by Eq. (1), the relative changes in
intensity between the two fundus images cannot be described
exclusively by convolution with different PSFs and must be
compensated by k. A number of general-purpose techniques
have been investigated to attenuate the variation of illumination.
However, most techniques are oriented toward single-image
compensation,2 for instance, using the red channel to estimate
background illumination.29 Therefore, no consistency between
two images is guaranteed. For our case, this uneven illumination
can be compensated by properly adjusting the intensity values
on one image to approximately match that of the other while sat-
isfying a predetermined illumination model. This can be carried
out if the blurring is not too large and the illumination changes
smoothly, which is usually the case for fundus images. This
assumption can be expressed mathematically as

(k−1 · u) ∗ h ≈ k−1(u ∗ h).

The illumination of the fundus is formed by a slowly varying
light field over a smooth surface, thus it can be modeled by a
low-order parametric surface. In Ref. 30 they used a fourth-order
polynomial to effectively model the light pattern formed by an
illumination source passing through the attenuating ocular me-
dia. Here, we use a similar approach, but fitting the surface with
respect to both images. The parametric surface fitting equation
can then be formulated as

arg min
k

‖z1(x, y) − k(x, y)z2(x, y)‖, (2)

where k(x, y) = α15y4 + α14y3x + ·· · + α2y + α1, and z1,
z2 are the registered fundus images. We minimize Eq. (2) in the
least-squares sense to estimate the 15 parameters. This proce-
dure can be both carried out using the luminance channel or the
green channel as usual in retinal image processing.31 Here, we
have used the green channel. Owing to the fact that the illumina-
tion can be compensated globally by the polynomial function k,
it is important to realize that the structural changes remain unaf-
fected. The interpretation of k from Eq. (2) is straightforward. If
the registered images z1 and z2 had neither illumination changes
nor structural changes, then k ≈ 1 throughout the common object
field. In Fig. 4, we show the resulting k(x, y) for the images in
Fig. 2. The different shades of gray indicate the average contrast
and intensity difference between the two images. From the im-
age, it can be seen that most areas have similar intensity values
except for the upper left part (dark region).

3.3 Segmentation of Areas with Structural Changes
The pathological region is actually a structural change and can-
not be taken as a variation of illumination. Image change analysis
is of interest in various fields and many algorithms have been
developed for change detection.32, 33 A survey of change detec-
tion methods can be found in Ref. 34. An initial step in order
to identify these changes comes from computing the differ-
ence from the two registered images including the illumination
compensation as

�z(x, y) = z1(x, y) − k(x, y)z2(x, y) . (3)
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Fig. 4 Illumination compensation function k(x, y).

The difference image is shown in absolute value Fig. 5(a).
To better understand this result, in Fig. 5(b) we show one of the
retinal images in gray scale, where the pixels related to structural
changes are highlighted in pseudocolor. This image constitutes
an important output of our algorithm. The structural changes can
now be visualized and detected from the difference image �z(x,
y) by taking a statistical significance test, in the same fashion
as in Ref. 30. First, structural changes are often associated with
a group of pixels; thus, the change decision at a given pixel j
should be based on a small block of pixels in the neighborhood
of j denoted as wj. Second, in the absence of any change, the
difference can be assumed to be due to noise alone. Therefore,
the decision as to whether or not a change has occurred corre-
sponds to choosing one of two competing hypothesis: the null
hypothesis H0 or the alternative hypothesis H1, correspond-
ing to no-change and change decisions, respectively. Assuming
a Gaussian distribution for the difference values, the changes
can be identified by comparing the normalized sum square of
the differences within the neighborhood wj to a predetermined
threshold τ as described by Aach and Kaup.32 The test is carried
out as follows:

� j = 1

σ 2
n

∑
(x,y)∈w j

�z(x, y)2
H1

≷
H0

τ, (4)

where σ n is the noise standard deviation of the difference in the
no-change regions. The threshold τ is derived from the fact that
�j follows a χ2 distribution with N degrees of freedom, where N
is the number of pixels in the window wj. It can be obtained for a
particular false-positive rate α from the χ2 tables. The choice of

an appropriate α is both guided by mathematical considerations
(a 5% level for statistical significance is commonplace35) and
the consequences that false alarms and misses might have. In
this case, the effect of false alarms is unimportant because there
would still be a large number of remaining pixels from where
to compute the PSFs. On the other hand, misses do have a
considerable impact in view of the fact that these pixels do not
fulfill the convolutional model. As a result, α values of <0.05
might yield a more accurate change detection at the expense
of possible undesirable misses. For all experiments, we use a
3 × 3 window (N = 9) and set α = 0.05. The parameter σ n

was estimated by manually picking out no-change regions from
a training set of images, computing Eq. (3) and the standard
deviation inside these regions. Using Eq. (4) at each pixel, we
can determine a change mask between the images or conversely
a no-change mask. Given that, for the MBD procedure, we are
interested in estimating the PSF from the no-change regions,
the masking function m is obtained directly from the no-change
mask of the significance test. The mask is shown in Fig 5(c).
Note that the pathological region is the main cause of structural
changes.

3.4 Point-Spread Function Estimation
In this section, we describe the basic principles of the blind
deconvolution method used for the estimation of the PSFs.
For this purpose, we have chosen one of the best working
MBD methods.21 MATLAB implementation of this method is
available on the web of the authors.36 The algorithm can be
viewed as a Bayesian MAP estimation of the most probable
sharp image and blur kernels. For our purposes, we used a
modification of the original method that ignores regions af-
fected by structural changes, which improves stability and preci-
sion of the computation. Without this modification, represented
by the mask m in Eq. (5), the algorithm does not work reli-
ably. The algorithm can be described as a minimization of the
functional

arg min
u,h1,h2

(
1

2
‖u ∗ h1 − z1‖2 + 1

2
‖m(u ∗ h2 − kz2)‖2

+ λu

∫
|∇u| dx dy + λh‖m(z1 ∗ h2 − kz2 ∗ h1)‖2

)
,

h1, h2 ≥ 0, (5)
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Fig. 5 Intermediate outputs from the algorithm: (a) image difference �z(x, y) in absolute value, (b) image difference in pseudocolor on top of
gray-scale fundus image, and (c) mask m for avoiding areas with structural changes.
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Fig. 6 (a, b) Degraded images (BSNR = 40 dB) and (c, d) PSFs.

with respect to the latent image u and blur kernels h1 and h2.
The first and second terms measure the difference between the
input blurred images and the searched image u blurred by ker-
nels h1 and h2. The size of this difference is measured by L2

norm ‖.‖ and should be small for the correct solution; ideally,
it should correspond to the noise variance in the given image.
Function k compensates for uneven illumination as described
in Sec. 3.2. The value of the masking function m is 1 in the
valid points [white in Fig. 5(c)] and 0 in the pixels where the
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Fig. 7 (a) Restored image (ISNR = 4.45 dB) and (b) Estimated PSFs.

eye fundus has structurally changed. Any of the first two terms
could be masked, but not both at the same time. This is be-
cause the latent image u cannot have pixels with no value at
all; hence, these pixels must take values from any of the two
images. In this case, z2 is masked. As a result, these pixels take
values from the first term. The two remaining terms are reg-
ularization terms with positive weighting constants λu and λh.
The third term is nothing else than the total variation of im-
age u. It improves stability of the minimization and from the
statistical viewpoint incorporates prior knowledge about the so-
lution. The last term is a condition linking the PSFs h1 and h2 of
both images, which also improves the numerical stability of the
minimization.

The functional is alternately minimized in the subspaces cor-
responding to the image and the PSFs. The advantage of this
scheme lies in its simplicity, this alternating minimization ap-
proach is actually a variation of the steepest-descent algorithm.
The minimization in the PSF subspace is equivalent to the so-
lution of a system of linear equations in the least-squares sense
with the non-negativity constraint, in our implementation solved
by the MATLAB fmincon function. The nonblind deconvolution
realized by the minimization in the image subspace, is solved
by half-quadratic iterative scheme,37 replacing the total varia-
tion by

∫ √
|∇u|2 + ε2, where ε is an auxiliary variable in the

(a () b () c)

Fig. 8 Details from (a) degraded image, (b) restored image, and (c) original image.
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(a () b)

Fig. 9 (a) Original image and (b) geometrically distorted image.

range 0 < ε 	 1. It is a small relaxation parameter that makes
total variation differentiable around zero. A typical value for ε

is 10− 1.
The main difference with respect to the original method21

is the introduction of the masking function m, which is
computed in the beginning of the algorithm as described in
Sec. 3.3. During the minimization, the multiplication by m is
included in the operator corresponding to the convolution with
u (in the PSF minimization step) and in the operator corre-
sponding to the convolution with h2 (in the image minimization

step). Because of the simplicity of this masking operation, the
speed is practically the same as the speed of the original al-
gorithm. In addition, even though we work with a complicated
set of pixels, we can use the standard operation of convolution,
which can eventually be speeded up using Fast Fourier transform
(FFT).

3.5 Image Restoration
The aim of our algorithm is to restore both images as much
as possible. Note that from Eq. (5) the restored version of z1

(û1) is obtained because z2 is masked; û2 could be obtained by
minimizing Eq. (5) again with fixed PSFs and masking z1. This
procedure has the disadvantage that both images are restored
only within the common object field. Therefore, an appropriate
solution is to restore each image zi via single-channel decon-
volution with their corresponding PSF hi (estimated from the
previous step) by the minimization of the functional

arg min
ui

(
‖ui ∗ hi − zi‖2 + λu

∫
|∇ui | dx dy

)
. (6)

This approach provides a further advantage in that the PSF es-
timation can be computed from a relatively small area of the
common object field, provided that there are retinal structures
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Fig. 10 Image restoration from degraded and geometrically distorted images: (a) restored image by the proposed method (ISNR = 4.11 dB);
(b) estimated PSFs; and (c) image detail, restored image by the method in Ref. 20 (ISNR = − 0.72 dB); and (d) image detail.
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within, thus greatly reducing the computational cost of the com-
bined PSF estimation plus image deconvolution.

Finally, it should also be noted that the whole process of PSF
estimation plus deconvolution can be computed for every chan-
nel of the RGB fundus image. However, in spite of the increase
in computational burden, tests showed no real advantage to es-
timate the PSF for each channel. Moreover, the most suitable
channel for PSF estimation is the green because it provides the
best contrast. Whereas the blue channel encompasses the wave-
lengths most scattered and absorbed by the optical media of the
eye; hence, the image has very low energy and a relatively high
level of noise. As a result, the RGB deconvolved fundus image
was computed by deconvolving every R, G, and B channel from
the green channel PSF.

4 Experiments and Results
4.1 Synthetic Images
In this section, we use synthetically degraded retinal images to
test the performance of the proposed method. We use blurred
signal-to-noise ratio (BSNR) to measure the noise contained in
the degraded image, and improvement in signal-to-noise ratio
(ISNR) to measure the quality of restored images.38 They are
defined as follows:

BSNR = 20 log10

( ‖z‖
‖n‖

)
,

ISNR = 20 log10

( ‖u − z‖
‖u − û‖

)
,

where u, z, û, and n are the original image, degraded image,
restored image, and noise vector, respectively. For ISNR, higher
means better restoration; whereas for BSNR, lower means nois-
ier degraded image. These metrics are mainly used to provide an
objective standard for comparison to other techniques and they
can only be used for simulated cases.

The first example is shown in Fig. 6, where the degraded
images are synthesized from a sharp real image and the ker-
nels shown in Fig. 6(c) and 6(d) plus Gaussian noise with zero
mean and variance σ 2 = 10− 6 (BSNR=40 dB). The recovered
image and PSFs are shown in Fig. 7. The restoration provides
an ISNR=4.45 dB. In this case, for synthetically degraded im-
ages the masking operation of Sec. 3.3 was not applied. Visual
inspection of the details shown in Fig. 8 clearly reveal the accu-
racy of the method. Under these circumstances, the algorithm is
able to produce a significant restoration of fine details like small
blood vessels around the optic disc.

To further test our approach under a more realistic degra-
dation, we produced an initial geometrical distortion, via a
quadratic model26, 28 as the one used for registration (Fig. 9).
After the geometric distortion, the degradation (blur plus noise)
is produced on both images (BSNR=40 dB). They are then
registered, and the restored image is recovered via MBD. The
restored image and the estimated PSFs are shown in Fig. 10.
The ISNR is slightly less (4.11 dB) than in the previous case,
but still sufficient to produce a significant restoration. To cor-
roborate our assumption that MBD methods seem better suited
for this type of images, we tried to restore the image with a
recent SBD method proposed in Ref. 20. The result is shown in
Fig. 10(e) and visually reveals that it does not follow the true

(a)

(b)

Fig. 11 Test on parameter setting (BSNR = 40 dB). Average ISNR with
respect to different initial values of (a) λu and (b) λh.

nature of the blurring with artifacts around the blood vessels,
thus being prone to produce a poor restoration evidenced by an
ISNR=− 0.72 dB.

Concerning parameter setting, in Fig. 11 we show the sensi-
tivity of the two parameters λu and λh for the minimization of
Eq. (5) in ISNR of the restored images. In Fig. 11(a), we fix the
value of λh to 10 and check the ISNR of the restored images for
different initial values of λu = {100, 101, 102, 103, 104, 105}.
The best restoration is obtained with λu = 103; thus, in Fig. 11(b)
we carried out the same procedure by fixing the value of λu to
103 and checking the ISNR of the restored image for different
values of λh = {1, 10, 20, 30, 40, 50}. The best restoration was
obtained with an initial value of λh = 30. For this type of image,
when scaled to the interval 〈0, 1〉, we find 20 < λh < 40 to be a
suitable range to produce an optimal restoration.

4.2 Real Images
The experiments shown in this section aim to demonstrate the
applicability of the proposed method for retinal image de-
blurring in real scenarios. Three different cases are shown in
Fig. 12, including the retinal images that were used to illustrate
the method (Fig. 2). The estimated PSFs are shown at the bottom
of the restored images. All images contain some pathological
damage and have been acquired within considerable lapses of
time (several months). In all examples, the resolution improve-
ment can be visually assessed by the clear distinction of de-
tails, such as small blood vessels or the increase in sharpness
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z1 û1 z2 û2

(a)

(b)

(c)

Fig. 12 Original and restored color retinal images; (a–c) indicate three separate cases arranged from left to right following our notation for degraded
(zi) and restored (ûi ) images. The images are cropped to represent the region of interest given by the pathological area. The estimated PSF is shown
at the bottom of the restored image. Video files are also included for change detection in cases (a) and (b). (Video 1, Quicktime, 0.5 MB) [URL:
http://dx.doi.org/10.1117/1.3652709.1]; (Video 2, Quicktime, 0.4 MB) [URL: http://dx.doi.org/10.1117/1.3652709.2]

)c()b()a(

Fig. 13 Visualization of structural changes in pseudo-color for the images of Fig. 12.
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of edges, especially in the pathological areas. We emphasize
the fact that these images correspond to real routine patient
follow-up and were not intentionally degraded. From a clini-
cal viewpoint, the enhancement can be used for a more precise
assessment of a patient’s state. Likewise, the images are more
suitable for subsequent processing such as for the detection of
retinal pathology.29, 39

In Fig. 13, the same images are shown but in gray scale to
highlight the areas of structural change in pseudocolor. As men-
tioned earlier, this is an important result for its potential impact
in medical practice. Subtle changes can be identified by this
approach, such as the ones in Fig. 13(b) and the hemorrhage
in the region of the optic disk in Fig. 13(c). Another technique
to rapidly identify changes from the two images is by alternat-
ing both restored images in a video sequence. Videos 1 and 2
(Fig. 12) correspond to the first two real cases.

5 Conclusion
The main purpose of this paper has been to investigate a new ap-
proach for retinal image restoration based on multichannel blind
deconvolution. In addition, we developed a strategy for identi-
fying and highlighting areas of structural change with possible
relation to pathological damage. We have verified that fundus
images of the same retina over time contain enough common in-
formation to be restored with the proposed method. The method
consists of a series of preprocessing steps to adjust the images
so they comply with the convolutional model, followed by the
final stages of PSF estimation and deconvolution. The syntheti-
cally degraded images enabled us to test the performance of the
proposed approach and also to compare with a state-of-the-art
single-channel blind deconvolution method. Results showed a
remarkable enhancement evidenced by the increased visibility
of details such as small blood vessels or pathological areas. The
proposed method provides a novel practical approach for retinal
image enhancement and, equally important the analysis of reti-
nal changes over time. Central to the task of determining disease
progression is the distinction of true change from variability.

The results of this study open several new avenues for re-
search and applications. A possible application is found in the
restoration of stereo retinal images for depth estimation. Most
stereo images do not satisfy the brightness constancy assump-
tion along with the expected blurring of some parts of the im-
ages because photographers find it difficult to focus two images
simultaneously. Finally, research can also be conducted to com-
pare to deconvolution from wavefront-sensing fundus imagers
to determine if our method could be a suitable and inexpensive
alternative.
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25. B. Zitová and J. Flusser, “Image registration methods: a survey,” Image
Vis. Comput. 11(21), 977–1000 (2003).

Journal of Biomedical Optics November 2011 � Vol. 16(11)116016-10

http://dx.doi.org/10.1117/1.3652709.1
http://dx.doi.org/10.1117/1.3652709.2
http://dx.doi.org/10.1016/j.compmedimag.2009.06.003
http://dx.doi.org/10.1016/j.compmedimag.2009.06.003
http://dx.doi.org/10.1111/j.1755-3768.2008.01321.x
http://dx.doi.org/10.1046/j.1464-5491.2003.01032.x
http://dx.doi.org/10.1038/sj.eye.6700409
http://dx.doi.org/10.2337/dc07-1312
http://dx.doi.org/10.1117/12.427879
http://dx.doi.org/10.1117/12.427879
http://dx.doi.org/10.1364/JOSAA.21.001393
http://dx.doi.org/10.1364/JOSAA.7.001598
http://dx.doi.org/10.1364/JOSAA.19.001515
http://dx.doi.org/10.1117/12.807121
http://dx.doi.org/10.1364/JOSAA.24.001313
http://dx.doi.org/10.1117/1.2907211
http://dx.doi.org/10.1364/OL.31.000721
http://dx.doi.org/10.1109/79.489268
http://dx.doi.org/10.1109/79.489268
http://dx.doi.org/10.1016/j.micron.2006.07.012
http://dx.doi.org/10.1109/TIP.2005.849322
http://dx.doi.org/10.1016/0167-2789(92)90242-F
http://dx.doi.org/10.1364/JOSA.62.000055
http://dx.doi.org/10.1016/S0262-8856(03)00137-9
http://dx.doi.org/10.1016/S0262-8856(03)00137-9


Marrugo et al.: Retinal image restoration by means of blind deconvolution

26. S. Lee, J. Reinhardt, P. Cattin, and M. Abramoff, “Objective and
expert-independent validation of retinal image registration algorithms
by a projective imaging distortion model,” Med. Image Anal. 14(4),
539–549 (2010).

27. C. Stewart, C.-L. Tsai, and B. Roysam, “The dual-bootstrap iterative
closest point algorithm with application to retinal image registration,”
IEEE Trans. Med. Imaging 22(11), 1379–1394 (2003).

28. A. Can, C. Stewart, B. Roysam, and H. Tanenbaum, “A feature-
based, robust, hierarchical algorithm for registering pairs of images
of the curved human retina,” IEEE Trans. Pattern Anal. 24(3), 347–364
(2002).

29. C. Muramatsu, Y. Hayashi, A. Sawada, Y. Hatanaka, T. Hara, T.
Yamamoto, and H. Fujita, “Detection of retinal nerve fiber layer
defects on retinal fundus images for early diagnosis of glaucoma,”
J. Biomed. Opt. 15, 016021 (2010).

30. H. Narasimha-Iyer, A. Can, B. Roysam, C. Stewart, H. Tanenbaum,
A. Majerovics, and H. Singh, “Robust detection and classification of
longitudinal changes in color retinal fundus images for monitoring dia-
betic retinopathy,” IEEE Trans. Biomed. Eng. 53(6), 1084–1098 (2006).

31. M. Foracchia, E. Grisan, and A. Ruggeri, “Luminosity and contrast nor-
malization in retinal images,” Med. Image Anal. 9(3), 179–190 (2005).

32. T. Aach and A. Kaup, “Bayesian algorithms for change detection in
image sequences using markov random fields,” Signal Process. Image
Commun. 7, 147–160 (1995).

33. C.-C. Chang, T.-L. Chia, and C.-K. Yang, “Modified temporal
difference method for change detection,” Opt. Eng. 44, 027001
(2005).

34. R. Radke, S. Andra, O. Al-Kofahi, and B. Roysam, “Image change
detection algorithms: a systematic survey,” IEEE Trans. Image Process.
14(3), 294–307 (2005).

35. S. Stigler, “Fisher and the 5% level,” Chance 21, 12 (2008).
36. MATLAB application for multichannel blind deconvolution,

http://zoi.utia.cas.cz/download (2008).
37. A. Chambolle and P. Lions, “Image recovery via total variation

minimization and related problems,” Numer. Math. 76(2), 167–188
(1997).

38. Liyakathunisa and V. K. Ananthashayana, “Super resolution blind re-
construction of low resolution images using wavelets based fusion,”
World Acad. Sci. Eng. Technol. 40, 177–181 (2008).

39. L. Xu and S. Luo, “Optimal algorithm for automatic detection of microa-
neurysms based on receiver operating characteristic curve,” J. Biomed.
Opt. 15, 065004 (2010).

Journal of Biomedical Optics November 2011 � Vol. 16(11)116016-11

http://dx.doi.org/10.1016/j.media.2010.04.001
http://dx.doi.org/10.1109/TMI.2003.819276
http://dx.doi.org/10.1109/34.990136
http://dx.doi.org/10.1117/1.3322388
http://dx.doi.org/10.1109/TBME.2005.863971
http://dx.doi.org/10.1016/j.media.2004.07.001
http://dx.doi.org/10.1016/0923-5965(95)00003-F
http://dx.doi.org/10.1016/0923-5965(95)00003-F
http://dx.doi.org/10.1117/1.1839893
http://dx.doi.org/10.1109/TIP.2004.838698
http://dx.doi.org/10.1007/s00144-008-0033-3
http://zoi.utia.cas.cz/download
http://dx.doi.org/10.1007/s002110050258
http://dx.doi.org/10.1117/1.3523367
http://dx.doi.org/10.1117/1.3523367

