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Abstract. We theoretically investigate the effect of noise on frequency-domain heterodyne and/or homodyne mea-
surements of intensity-modulated beams propagating through diffusive media, such as a photon density wave. We
assumed that the attenuated amplitude and delayed phase are estimated by taking the Fourier transform of the noisy,
modulated output data. We show that the estimated amplitude and phase are biased when the number of output
photons is small. We also show that the use of image intensifiers for photon amplification in heterodyne or homo-
dyne measurements increases the amount of biases. Especially, it turns out that the biased estimation is independent
of AC-dependent noise in sinusoidal heterodyne or homodyne outputs. Finally, the developed theory indicates
that the previously known variance model of modulation amplitude and phase is not valid in low light situations.
Monte-Carlo simulations with varied numbers of input photons verify our theoretical trends of the bias. © 2012 Society
of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.1.016010]
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1 Introduction
Medical imaging in the regime of visual wavelengths, such as
diffuse optical tomography (DOT) or fluorescence lifetime
imaging (FLI), has emerged as a non-invasive, safe, and cost-
effective method to investigate physiologic and/or biological
quantities in tissues.1,2 Frequency- or time-domain measure-
ments are widely used data-acquisition methods to improve
the system performance in diffusive imaging. These methods
measure the frequency-response of diffusive media in addition
to the steady-state response (DC). The additional information
measured from frequency- or time-domain measurements gen-
erally alleviates disadvantages inherent in DC-based diffusive
imaging.1,3 For example, the crosstalk between scattering (μs)
and absorption (μa) coefficients of reconstructed functional
images of tissues in DOT can be dramatically reduced by
employing frequency-domain measurement.4,5 Also, the pro-
blem of ill-posedness and non-unique solutions typically hap-
pens in reconstruction algorithms of tomographic diffusive
imaging, which can be effectively managed using frequency-
or time-domain measurements.1,6

In addition to acquiring various types of data, such as a
frequency-response of tissue, collecting large datasets also
enhances system performance in both optical tomography and
topography imaging.2 Researchers have considered collecting
large datasets using imaging systems with detector arrays,
such as charge-coupled device (CCD) or complementary metal-
oxide-semiconductor (CMOS) detectors, in diffusive imaging
as opposed to conventional fiber-based systems that collect
data at relatively a few measurement points.7 It is demonstrated
that DC data measured by a CCD can relieve the ill-posedness
and improve the resolution of reconstructed images in DOT.8

As another example, a CCD-based DOT system operating at
up to 1 GHz frequency of intensity modulation was built for
investigating small tissue volume.9 It is also reported that
the reconstructed images from fluorescent optical tomography
was improved by large DC datasets.10 Recently, the Hotelling
observer performance for frequency-domain phased array
systems with a detector array is investigated showing that sta-
ble and high detectability is achieved at very low modulation
frequencies.11

For frequency-domain systems, the intensity of an incident
beam is modulated at, typically, hundreds of MHz. The modula-
tion amplitude and phase of an output modulation beam from a
tissue are attenuated and delayed due to scattering and absorp-
tion characteristics of the tissue. Since the typical modulation
frequency in diffusive imaging is usually higher than the achiev-
able sampling rates of current CCD or CMOS detectors, a gain-
modulated image intensifier is used to make the modulation
amplitude and phase of the output measurable. There are two
methods of the gain-modulation measurement: the heterodyne
and homodyne methods.3 The heterodyne method makes the
output modulate at a beat frequency, that is the difference
between source and gain-modulation frequencies. The beat
frequency is selected from the purpose of diffusive imaging
considering the maximum frame rate of the CCD or CMOS
detectors. The homodyne method is conceptually the same as
the heterodyne in that a beat frequency output is detected,
but the output beam intensity is varied along the beat frequency
trajectory by changing the relative phase between gain and
source modulations. For this case, the output images are stable
in time, so it is easier to average multiple images to reduce mea-
surement noise. The measurement speed of the homodyne
method is, however, limited due to instrumentation required
to change the modulation phase, which indicates that homodyne
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measurements might not be appropriate for very fast dynamic
diffusive imaging, where heterodyne measurements operating
at up to a few kHz beat frequency have the potential to monitor
the dynamic variations of biological quantities.12,13

Time-domain systems are conceptually similar to frequency-
domain systems. The impulse response function is attenuated
and distorted by scattering and absorption in a tissue, which
contains the frequency-response information of attenuated
amplitude and delayed phase. The time-domain approach has
the benefit that one can estimate the frequency-response of
tissue for a wide range of frequencies from a single measure-
ment. Furthermore, for very thick tissues, where it is hard in
a frequency-domain measurement to extract meaningful data
due to very small number of output photons, an impulse
response function can be measured by the time correlated single
photon counting (TCSPC) method.5,14 However, the instrumen-
tation for time-domain systems is usually more complicated
and costly than that of frequency-domain systems. More discus-
sion for the comparison between frequency- and time-domain
measurements can be found in Refs. 1 and 3.

For both frequency- and time-domain measurements, the
estimated DC, amplitude, and phase are random variables due
to measurement noise. The randomness of these quantities det-
rimentally affects tomographic reconstructions employing these
quantities as well as biological parameters estimated from these
quantities. Therefore, it is important to investigate the statistical
characteristics of the frequency-response quantities with an
appropriate noise model. V. Toronov et al.15 theoretically
derived variances of modulation amplitude and phase in a fre-
quency-domain DOT by Fourier transforming heterodyne out-
puts with quantum shot noise. These analytic expressions of
amplitude and phase variances have been used to investigate
optimized modulation frequencies for small volume tissues and
to evaluate a CCD-based phased array system in DOT.11,16 In
another study, the influence of system parameters on amplitude
and phase signal-to-noise ratios (SNRs) was analyzed.17 The
statistical characteristics of the frequency-response quantities
also play an important role in FLI, where the fluorescent lifetime
of fluorophores, an indicator of biological characteristics of tis-
sues, is estimated. Instead of directly measuring the lifetime,
which is typically a few or tens of nanoseconds, the frequency-
response of fluorophores is measured using intensify-
modulated beams. In FLI, the effect of Poisson noise might
be significant because the number of fluorescent output photons
is occasionally very small (∼several hundreds).18,19 E. Gratton
et al.20 simulated the disagreement of modulation amplitudes
and phases between frequency- and time-domain measurements
in accordance with output photon counts in FLI. J. Philip and
K. Carlsson19 theoretically studied the effect of photon noise on
the fluorescent lifetime SNR estimated from various methods,
such as lock-in amplifiers, frequency-domain measurements,
and demodulation. A. Esposito et al.21 investigated photon econ-
omy and acquisition speed in various FLI detection techniques
using Monte-Carlo simulations, where they observed that when
the number of detected photons is small, the algorithm for esti-
mating the florescent lifetime converges to incorrect values.
Recently, Y. Lin and A. Gmitro22 theoretically found out that
fluorescent lifetimes estimated by a lock-in amplifier method
are biased in the situation of the low number of detected fluo-
rescent photons because of Poisson photon noise.

The discrete-Fourier transform is widely used to estimate the
attenuated amplitude and delayed phase of the measured hetero-
dyne or homodyne or impulse time response outputs, since it is
simple and fast.7,9,14,19–21 In this paper, we derive expressions for
means and variances of modulation amplitude and phase that are
estimated by Fourier transforming noisy sinusoidal measure-
ments from heterodyne or homodyne methods. Other methods,
such as data fitting or maximum-likelihood estimation can be
used to extract the frequency-response information, but they
generally require more computation time than Fourier analy-
sis.23 When collecting large datasets in diffusive imaging, the
computational advantage of Fourier methods over other fitting
methods becomes enormous, because the number of detector
pixels is very large. Although the kind of methods to estimate
modulation amplitudes and phases from measured noisy data
might affect the statistics of these quantities, the result of the
developed theory in this paper provides insights about the effect
of noise on a frequency-domain measurement.

The theoretical derivation of the mean and variance of a
modulation amplitude and phase is described in Sec. 2. We
first develop the theory by considering that sinusoidal outputs
are contaminated by temporally uncorrelated noise. Then the
derived noise model of heterodyne outputs is applied to the
developed results. We theoretically observed that estimated
modulation amplitude and phase are severely biased from the
actual values, when the number of output photons is small.
Furthermore, the amplitude and phase SNRs show large discre-
pancies from the previously known SNR model of V. Toronov’s
et al.15 Sec. 3 shows computational results based on the devel-
oped theory. Monte-Carlo simulations are also presented, which
verify the characteristics of biases. Extending the developed
theory is briefly discussed in Sec. 4 along with conclusions.

2 Theory Development
By Fourier transforming noisy heterodyne/homodyne measure-
ments, we can estimate the modulation amplitude and phase. We
denote the true amplitude and phase as A and φ, and estimates of
them as Â and φ̂, respectively. To describe the estimation pro-
cess, we first describe the Fourier transform of the noisy data
evaluated at the beat frequency Ω via

X̂ ¼
Z

T∕2

−T∕2
iðtÞ expð−j2πΩtÞdt ¼ X̂R þ jX̂I ; (1)

where iðtÞ is the noisy photocurrent rate at a detector pixel,
which is linearly related to the sinusoidal photon arriving
rate apðtÞ [used in Eq. (3)]. T is the total measurement
time which is usually a multiple of the sinusoidal output
period. Increasing T implies that more data are used to esti-
mate Â and φ̂. Actually, the photocurrent iðtÞ is measured at
discrete, short-interval time points, and the discrete-Fourier
transform is employed instead of the continuous transform
shown in Eq. (1). Although not shown here, we verified
that the theoretical results derived using the continuous
transform are equivalent to that of the discrete transform.
Thus, we discuss the theory with the continuous Fourier
transform for simplicity. As mentioned in the previous
section, V. Toronov et al. mathematically derived standard

deviations of Â ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X̂2
R þ X̂2

I

q
and φ̂ ¼ tan−1ðX̂I∕X̂RÞ
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considering a shot noise model for the statistics of iðtÞ in
Eq. (1). They found that the standard deviation of Â and
φ̂ to be

σtA ¼ β
ffiffiffiffi
D

p
and σtφ ¼ σtA∕A; (2)

where D and A indicate actual DC and AC means of the
measured heterodyne output and β is a detector-related
parameter which is inversely proportional to T . The detail
expression for β is shown in the reference.15 The superscript
t is used to differentiate standard deviations derived by Tor-
onov et al. from those derived in this paper. The significance
of Eq. (2) is that the variances of modulation amplitude and
phase can be given by means. However, only a few series
terms are considered for the derivation of Eq. (2) assuming
Â ¼ A and φ̂ ¼ φ, which are not generally true, as shown in
this paper.

Assuming temporally uncorrelated noise for iðtÞ in Eq. (1),
the mean and covariance for iðtÞ can be written as

hiðtÞi ¼ qβmapðtÞ Kðt; t 0Þ ¼ q2β2cσ2pðtÞδðt − t 0Þ; (3)

where

apðtÞ ¼ aDC þ aAC exp½ jðΔωt þ φÞ� and

σ2pðtÞ ¼ σ2DC þ σ2AC exp½ jðΔωt þ φÞ�:
(4)

In Eq. (3), q is the electron charge and βm and βc are coeffi-
cients related to the conversion of incident photons to output
(i.e., current or voltage) in a detector, where the units of βm
and βc are the same.24 The terms apðtÞ and σ2pðtÞ in Eq. (4)
indicate the mean and variance of the noisy sinusoidal
photon rate, respectively, which oscillate at Δω∕2π, as
shown in Eq. (4). For the heterodyne measurement, Δω∕2π
is a heterodyne beat frequency and φ indicates the shift of
the sinusoidal output from the origin. It is noted that σ2pðtÞ
in Eq. (4) becomes constant in time, like the case of thermal
noise, when σ2AC ¼ 0. The terms aDC, aAC, σ2DC, and σ2AC in
Eq. (4) will be specified later from the known noise model
for heterodyne outputs. For mathematical simplicity, expo-
nential functions are considered in the mean and variance
of Eq. (4) instead of the co-sinusoidal functions; the final
result is unaffected by this consideration.

For the statistics of Â and φ̂, the statistics of X̂ considering
Eqs. (3) and (4) should be investigated first. The mean of X̂ is
derived as

hX̂ðΩÞi¼ qβm

Z
∞

−∞
apðtÞΠ

�
t
T

�
expð−j2πΩtÞdt

¼ qβm

Z
∞

−∞
faDC þ aAC exp½iðΔωtþφÞ�gΠ

�
t
T

�

×expð−j2πΩtÞdt

¼ qβmT

�
aDC sincðTΩÞþaACeiφ sinc

�
T

�
Ω−

Δω
2π

���
;

(5)

where ΠðxÞ and sincðxÞ are rect and sinc functions, respec-
tively. For a period function, such as Eq. (4), usually
T ¼ n∕Ω, where Ω ¼ Ωo ¼ Δω∕2π and n is an integer.

Resulting from this, Eq. (5) can be simplified, where
means of X̂R and X̂I are

hX̂RðΩoÞi ¼ qβmTaAC cosφ and

hX̂IðΩoÞi ¼ qβmTaAC sinφ;
(6)

respectively. In order to derive the variances of X̂R and X̂I ,
second moments, hX̂ðΩÞX̂�ðΩÞi and hX̂2ðΩÞi should be cal-
culated. The mathematical procedure for hX̂ðΩÞX̂�ðΩÞi with
Eqs. (1), (3), and (4) is

hX̂ðΩÞX̂�ðΩÞi

¼
ZZ

∞
fq2β2cσ2pðtÞδðt − t 0Þ þ q2β2mapðtÞapðt 0Þg

× Π
�
t
T

�
Π
�
t 0

T

�
expð−j2πΩtÞ expðj2πΩt 0Þdtdt 0

¼ q2β2c

Z
∞
σ2pðtÞΠ

�
t
T

�
dt

þ q2β2m

����
Z
∞
apðtÞΠ

�
t
T

�
expð−j2πΩtÞdt

����
2

¼ q2β2cTσ2DC þ q2β2mT2

����aDC sincðTΩÞ
þ aACeiφ sinc

�
T

�
Ω −

ω

2π

������
2

¼ q2β2cTσ2DC þ q2β2mT2a2AC; (7)

where the conditions for T and Ω used for deriving means of
Eq. (6) are applied to the last step of Eq. (7). Similarly, the
result of hX̂2ðΩoÞi can be derived as

hX2ðΩoÞi ¼ q2β2mT2a2ACe
i2φ: (8)

From Eqs. (7) and (8), the second moments and correlations
of X̂R and X̂I are

hX̂2
RðΩoÞi ¼

q2

2
fβ2cTσ2DC þ β2mT2a2AC½1þ cosð2φÞ�g;

hX̂2
I ðΩoÞi ¼

q2

2
fβ2cTσ2DC þ β2mT2a2AC½1 − cosð2φÞ�g;

(9)

and

hX̂RðΩoÞX̂IðΩoÞi ¼ hX̂IðΩoÞX̂RðΩoÞi

¼ 1

2
q2β2mT2a2AC sinð2φÞ; (10)

respectively. When trigonometric identities are applied to
Eqs. (6), (9), and (10), the variances (σ2R and σ2I ) and cross
covariance of X̂R and X̂I can be derived as

σ2R ¼ σ2I ¼
q2

2
β2cTσ2DC ¼ σ2 and

hX̂RðΩoÞX̂IðΩoÞi − hX̂RðΩoÞihX̂IðΩoÞi ¼ 0;

(11)

respectively. It is noted that all derived results are for
Ωo ¼ Δω∕2π, because the heterodyne output iðtÞ modulates
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at Δω∕2π indicating statistical characteristics of Â and φ̂ at
Ωo are our only concerns.

It is reasonable to consider X̂ in Eq. (1) is complex multivari-
ate Gaussian from the central limit theorem, because all points
of the noisy signal iðtÞ are weighted and summed to form X̂.
Considering Eqs. (6) and (11), the random variable transform-
ing25 from ðX̂R; X̂IÞ of the multivariate Gaussian to ðÂ; φ̂Þ gen-
erates probability density functions (PDF) for Â and φ̂ as

prÂðÂÞ ¼
Â
σ2

exp

�
−

Â2

2σ2
− 2γ

�
I0

�
2Â

ffiffiffi
γ

p
σ

�
; (12)

and

prφ̂ðφ̂Þ ¼
1

2π
expð−2γÞ þ

ffiffiffiffiffiffi
γ

2π

r
cosðφ − φ̂Þ

× exp½−2γ sinðφ − φ̂Þ�
× f1þ erf½

ffiffiffiffiffi
2γ

p
cosðφ − φ̂Þ�g; (13)

respectively, where

γ ¼ A2

4σ2
¼ Tβ2ma2AC

2β2cσ
2
DC

; (14)

and InðxÞ and erfðxÞ indicate a n’th order modified Bessel
function of the first kind and an error function, respectively.
It is noted that A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hXRi2 þ hXIi2

p
¼ qβmTaAC is the

actual mean of the amplitude of iðtÞ at Ω0. Separable PDFs
of Â and φ̂, as shown in Eqs. (12) and (13) indicate that
these random variables are independent each other. Equa-
tions (12–14) imply that γ plays a critical role for the PDFs
of Â and φ̂, which will be investigated in simulation in the
next section. Interestingly, γ is not affected by σ2AC and aDC in
Eq. (4). Expressions similar to Eqs. (12) and (13) were
previously reported by S. Morgan.26 However, he did not
specify the detailed form and physical meaning of γ because
he derived them from a simple Gaussian noise model.

The mean and variance of Â can be analytically calculated
from Eq. (12), which are

Ā ¼
ffiffiffiffiffiffiffi
π

8σ2

r
expð−γÞfA2½I0ðγÞ þ I1ðγÞ� þ 2σ2I0ðγÞg; (15)

and

σ2A ¼ A2 − Ā2 þ 2σ2; (16)

respectively. The amplitude mean and variance of Gaussian
speckle are equivalently expressed as Eqs. (15) and (16),
although physical meanings of speckle are different from
the frequency-domain measurement.25 Equations (11) and
(16) show that σ2A becomes the previously known Toronov
model of Eq. (2), only when Ā ¼ A, which is not generally
acceptable, as indicated from Eq. (15). Equation (15) shows
that Ā, the mean of Â estimated from noisy sinusoidal outputs
is biased and the amount of bias depends on σ2 and γ in
Eqs. (11) and (14). There are no analytic solutions for the
moments of φ̂, but they can be numerically calculated
from Eq. (13). As shown in the next section, φ̄ calculated

from Eq. (13) is also different from φ and the bias depends
on σ2 and γ.

With the similar mathematical procedure for calculating
moments of X̂RðΩ0Þ and X̂IðΩ0Þ, the mean and variance for esti-
mated DC D̂ can be derived from that Ω ¼ 0 is substituted to
Eqs. (5), (7), and (8), instead of considering Ω ¼ Ωo. The con-
dition of Ω ¼ 0 generates hX̂Rð0Þi ¼ qβmTaDC, hX̂Ið0Þi ¼ 0,
σ2R ¼ q2β2cTσ2DC, and σ2I ¼ 0, which denotes the PDF of D̂ is
univariate Gaussian. Notice that the variance of D̂, q2β2cTσ2DC
is the same as σ2A in Eq. (16) only if Ā ¼ A. We will observe
in simulation that Ā is generally greater than A, unless the
number of measured photons is very large, so it can be stated
that the amplitude variance is generally smaller than the DC var-
iance in frequency-domain measurements. Since D̂ is univariate
Gaussian, it is not difficult to show that D̄ is unbiased.

Equations (12)–(16) are generally applied for estimating the
amplitude and phase of any sinusoidal signal having the noise
property of Eq. (3). Recently, the covariance of a heterodyne
and/or homodyne output was theoretically derived from the
random amplification of a temporal point process.27 The model
of covariance implies that the variance of heterodyne outputs
can be expressed as the form of σ2pðtÞ in Eq. (4) and both
σ2DC and σ2AC are affected by a Fano factor F24 of image inten-
sifiers, which is experimentally verified. A Fano factor is
defined by the variance divided by the mean of amplified (sec-
ondary) photons per input (primary) photon in image intensi-
fiers. If the gain of an image intensifier in the heterodyne
measurement is assumed to be high, and the spatial variation
of the amount of primary photons incident on the image inten-
sifier is not abruptly changed, the covariance model specifies
aAC and σ2DC in Eq. (14) as27

aAC ¼ cpc0k̄In
mpmg¼1

2
; (17)

and

σ2DC ¼ cpc0k̄In

�
F þ c0k̄In

�
1þ 1

2

X∞
g¼1

m2
g

��
; (18)

respectively. Terms cp and mp are the DC photon rate and the
modulation depth of modulating primary photons incident
onto an image intensifier. The modulated gain in the image
intensifier is generally non-sinusoidal, which can be
expanded to Fourier cosine terms of amplitude c0mg.

28

The subscript g in Eqs. (17) and (18) is an integer and
c0mg¼1 indicates the amplitude for the main frequency of
the modulated gain. The term k̄In is the gain achieved on
the micro channel plate (MCP) of image intensifiers, which
separately functions from the DC cathode gain c0. Therefore,
c0k̄In indicates the overall image intensifier’s gain. Substitut-
ing aAC and σ2DC of Eqs. (17) and (18) to Eq. (14) produces γ
for the case of heterodyne measurements, which is

γ ¼ Tcp
β2m
β2c

m2
pm2

g¼1

8

�
1þ F

c0k̄In
þ 1

2

X∞
g¼1

m2
g

� : (19)

The term Tcp in Eq. (19) indicates the number of primary
photons incident into the image intensifier during T , which
determines the unit of γ; it is unitless.
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3 Simulation Results and Discussion
Figures 1(a) and 1(b) show some examples of prÂðÂÞ and prφ̂ðφ̂Þ
for arbitrarily chosen values of γ, A, and φ, respectively, to inves-
tigate characteristics of these PDFs. The values of βm and βc in
Eq. (3) are also arbitrarily chosen as 0.5 and 0.6, respectively,
which will be maintained for all simulations in this paper.
Having βm, βc < 1 indicates the conversion loss from photons
to photoelectrons without an electronic gain in the CCD or
CMOS detectors. As expected from the definition of PDF, all
PDFs plotted in Fig. 1 are non-negative functions. Although
all PDFs appear Gaussian shaped, they are actually not, as math-
ematically verified from Eqs. (12) and (13). Figure 1 indicates
that the asymmetry in both prÂðÂÞ and prφ̂ðφ̂Þ increases as γ
decreases, which results in biased means. From characteristics
of prÂðÂÞ shown in Fig. 1(a), it is expected that Ā is higher than
A for the smaller value of γ. Oppositely, the behavior of prφ̂ðφ̂Þ
in Fig. 1(b) shows that φ̄ is smaller than φ because the value of
prφ̂ðφ̂Þ is increased around −π as γ decreases. From other simu-
lation results, we confirmed that when φ is negative, prφ̂ðφ̂Þ
around π starts increasing as γ decreases. Therefore, it can be
stated that φ̄ is always under-estimated regardless of its actual
mean. Similarly, we observed that Ā is always over-estimated. It
can be also conjectured from Fig. 1 that the amount of bias for
both Â and φ̂ is dependent on their actual mean values. Further-
more, it can be expected that smaller γ increases the bias of
Ā and φ̄ as well as the standard deviations of Â and φ̂.

Since it is definite that γ is critical for statistics of Â and φ̂,
as observed in Fig. 1, it is worth to briefly discuss the effect of
heterodyne measurement parameters on γ in Eqs. (14) and (19).
It is clear from Fig. 1 that higher γ is generally better to correctly
estimate Â and φ̂, which is achieved by the larger amount of
primary photon, Tcp in Eq. (19). If modulating primary photons
are assumed to be directly detected without heterodyne and/or
homodyne processes, it is reasonable to consider that the main
noise for the primary is Poisson. For Poisson photon noise,
σ2DC ¼ cp and aAC ¼ cpmp in Eq. (14), so γ is

γ ¼ Tcp
β2m
β2c

m2
p: (20)

It is straightforward that γ in Eq. (20) is always larger than
that in Eq. (19). This indicates that even though the image
intensifier in heterodyne processes amplifies primaries to
increase the number of detected secondary photons, the esti-
mation for Â and φ̂ is worse because the Poisson noise is also
amplified. For Eq. (19), γ can be increased asmp and/or mg¼1

increase. As the gain-modulation deviates from a perfect
sinusoidal function,

P∞
g¼1 m

2
g in the denominator is more

rapidly increased thanm2
g¼1 in the numerator, hence reducing

γ. The term F∕c0k̄In in Eq. (19) is equivalent to the Noise
Factor NF, when primary photons are assumed as Poisson.27

Therefore, NF, commonly used in noise analyses for photon
amplifiers, affects γ profoundly. It is known that NF can be
minimized with a very high image intensifier gain, which is
3.5 to 4.2 and 1.6 to 2.2 for second- and third-generation
image intensifiers, respectively.29 Since NF is increased as
the gain decreases, γ becomes small at low-gain situations.

We assumed an image intensifier’s gain is large enough to
validate Eqs. (17) and (18), so NF ¼ 4 is selected for simula-
tions. Figure 2 shows percent differences between actual and
estimated means for Â and φ̂, respectively, with parameters
of mg¼1 ¼ 1.3, and

P∞
g¼1 m

2
g ¼ 1.5 × m2

1 for γ in Eq. (19). A
value of 1.3 for mg¼1 is considered from the experimental
result27 and

P∞
g¼1 m

2
g ¼ 1.5 × m2

1 indicates the summation of
m2

g≠1 is assumed to be 50% of m2
1. Considering the typical quan-

tum efficiency of a photocathode in image intensifiers, c0 in γ is
set to 0.3. The larger value among estimated and actual means is
used as a denominator to set the percent difference within
�100%. Since T is usually much longer than the modulation
period of the primary, T · cp in x-axes of Fig. 2 can be consid-
ered as the average primary photons during T . For frequency-
domain diffusive imaging, mp is largely varied across a phantom
exit surface. Thus, Ā and φ̄ in Fig. 2 are simulated for three dif-
ferent mp values. As shown in Fig. 2, both Ā and φ̄ are severely
biased when the number of primary photons from a phantom is
small, where Ā and φ̄ show over- and under-estimations, respec-
tively, as expected from the results in Fig. 1. It is verified from
other additional simulations that φ̄ always approaches zero as
the primary photon number decreases. Furthermore, Fig. 2(b)

Fig. 1 Some examples of PDFs of the modulation amplitude and phase are plotted with arbitrary parameters. Notice that these PDFs deviate from the
symmetry as γ is decreased.
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indicates the amount of bias for φ̄ is strongly dependent on φ,
which is consistent with the behavior of prφ̂ðφ̂Þ in Fig. 1(b). It
should be noticed that the typical range of c0k̄In is from hundreds
up to ten thousands, so the number of secondary photons for the
primaries in Fig. 2 is actually very large. Figure 2 implies that
for the diffusive imaging, where the number of output photons
from a phantom is small, tomographic functional images or
biological quantities estimated from Â and φ̂ may be highly
inaccurate.

Figure 3 shows percent differences between SNR calculated
from the derived theory in this paper and SNR (SNRt) from
the previously known model of Eq. (2) for the same parameters
as Fig. 2. For SNRt, Ā and φ̄ are assumed to be correct, A and
φ, respectively. Like Fig. 2, the larger one between SNR and
SNRt is used as a denominator for calculating these percent
differences. There is a good agreement between SNR and SNRt

when the primary photon number from a phantom is relatively

large. However, the agreement starts deviating as primary
photon number is decreased, where SNRA and SNRφ are larger
and smaller than SNRt

A and SNRt
φ, respectively. For SNRφ,

especially, the primary photon number starting the discrepancy
and the amount of the percent difference are magnificently
increased, compared with the bias of φ̄ in Fig. 2. Figure 3
shows that it is not appropriate to estimate system performance
based on the previously known noise model for frequency-
domain diffusive imaging systems with the small output photon
numbers, such as the system observing dynamic variation of
biological quantities or FLI.

We examine the estimated means and their characteristics
using brute-force and Monte-Carlo simulations. For brute-force
simulations, we generate sinusoidal signals of one period with
known D and A, where white Gaussian noise is added. Fourier
transforming the noise-contaminated signals determines D̂
and Â that are random. Averaging these random variables by

Fig. 2 Percent differences between actual and estimated means for (a) Â and (b) φ̂ are plotted as a function of primary photon number of the output
beam from a diffusive medium. The terms mp and φ indicate an actual modulation depth and phase of the output beam, respectively.

Fig. 3 Percent differences between SNR calculated from the theory and SNR from the previously known model for (a) Â and (b) φ̂ are plotted as a
function of primary photon number of the output beam from a diffusive medium.mp and φ indicate an actual modulation depth and phase of the output
beam, respectively.
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repeating brute-force simulations can estimate D̄ and Ā.
Figure 4(a) shows one example of the noisy sinusoidal signal
that mimics a heterodyne or homodyne output. The standard
deviation of the noisy data is 10 and the solid line indicates
the mean sinusoidal signal. D̄ and Ā estimated from the ensem-
ble of the noisy signals are shown in Fig. 4(b) as increasing the
standard deviation from 0 to 30. As theoretically investigated, D̄
is unbiased for the entire range of the noise level. However, Ā
shows the bias estimation, the amount of which is increased as
the noise level increases—over-estimated. In order to investigate
biased estimations in the situation similar to diffusive imaging,
Monte-Carlo simulations are conducted using tMCimg30 for a
62 × 62 × 30 mm3 homogeneous phantom of μs ¼ 5 mm−1 and
μa ¼ 0.005 mm−1. The tMCimg simulator is widely used in
diffusive imaging Monte-Carlo simulations, where the Henyey-
Greenstein phase function is assumed for scattering. The aniso-
tropy parameter for the Henyey-Greenstein phase function is set
to 0.8 in this simulation. The source of a 2 mm diameter injects
photons to the phantom, of which number is varied from 0.5 ×
108 to 4 × 108, as shown in Fig. 4. The degree of noise on output
photons are decreased as the total photon number increases,

because the increased photon number is achieved by summing
independently simulated outputs. For example, the output from
4 × 108 of total photon number is the summation of eight out-
puts of 0.5 × 108 source photons. The 40 × 40 mm2 detector
array with 1 × 1 mm2 pixels on the exit side of the phantom
collects simulated output photons. Different from brute-force
simulations in Figs. 4(a) and (b), temporal functions of output
photons on each detector pixel are Fourier transformed to cal-
culate D̂, Â, and φ̂. Since it is obvious that D̄ is unbiased from
the developed theory and brute-force simulation, the term m̄p is
investigated instead of Ā to minimize the numerical error of the
Monte-Carlo simulations, such as photon number mismatching.
Figures 4(c) and 4(d) show the averaged modulation depth
(m̄p ¼ Ā∕D̄) and φ̄ from the entire detector pixels at fixed mod-
ulation frequencies (f m). Averaging from the entire pixels avoids
a heavy computational load because enormous number of simu-
lations is required to calculate means for one detector pixel.
Although actual means mp and φ are different for different
detector pixels, PDFs of m̂p and φ̂ are the same (with different
means), as shown in Eqs. (12) and (13), respectively. Therefore,
biased estimations would be clearly observed for m̄p and φ̄

Fig. 4 Estimated mean DC and AC, D̄ and Ā are calculated from sinusoidal signals with white Gaussian noise of increased standard deviations. It is
clear that D̄ and Ā are unbiased and over-estimated, respectively, in (b). In (c) and (d), Monte-Carlo simulated means are shown as a function of
simulated photons, where the relative amount of noise is decreased as the number of incident photons is increased. Estimated means of (c) mp
and (d) φ̂ from simulations are over- and under-estimated, respectively.
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averaged from all detector pixels if the theoretical results derived
in Sec. 2 are valid. For the comparison, all curves calculated at a
fixed f m are scaled for both m̄p and φ̄ to make the values of the
photon number of 0.5 × 108 are the same. Figures 4(c) and (d)
show that m̄p and φ̄ are decreased and increased, respectively,
as the number of simulated photons increases, which indicates
that m̄p and φ̄ are over- and under-estimated. Furthermore, it is
observed that the degree of bias is worse for higher f m, where the
number of output photons contributing to the calculation for m̄p

and φ̄ is smaller. It is well known that m̄p and φ̄ are decreased
and increased, respectively, as f m increases, which shows the
validity of the Monte-Carlo simulations. Although other sys-
tematic factors in heterodyne or homodyne measurements,
such as a photon amplifier, signal and noise amplification,
and photon losses in these brute-force and Monte-Carlo simula-
tions, Fig. 4 clearly shows that characteristics of estimated quan-
tities from simulations are coincident with what expected from
the developed theory.

As shown from the theory and simulation, increasing the out-
put photon number from a phantom can definitely remedy the
bias estimation and make the simplified noise model of Eq. (2)
acceptable. This is definitely achieved by increasing the total
measurement time T which indicates that quite a number of het-
erodyne and/or homodyne output periods are acquired to esti-
mate Â and φ̂. However, increasing measurement time is not
allowed or difficult in some situations, where, for example,
the imaging purpose is to observe the dynamic variation of bio-
logical quantities, such as hemodynamic changes.31 Alterna-
tively, increasing the DC primary photon rate cp decreases
the amount of bias estimations with a fixed T . Because the
photoelectron capacity of CCD or CMOS detector pixels is
usually limited, however, the gain of image intensifier should
be decreased to avoid the saturation of detector outputs for
this increased cp. The lower gain indicates the noise factor
NF of the image intensifier should be increased. Resulting
from this, γ in Eq. (19) might not be increased enough to dimin-
ish the bias even for the increased amount of primary photons.

Percent differences for Ā and φ̄ with increased NFs are
shown in Figs. 5(a) and 5(b), respectively, where NF ranges

4 to 10 and 4 to 16. It was experimentally shown that these
NF ranges are easily achieved in common image intensifiers
of decreased gain.29 For comparison, results of NF ¼ 4 in Fig. 2
are repeatedly presented in Fig. 5. We assume NF linearly
increases for decreasing the MCP gain k̄In that makes the number
of secondary photons constant for the increased primary photons
in Fig. 5. This implies σ2DC of Eq. (18) is increased by the
increased NF. Other simulation parameters in Fig. 5 are the
same as Fig. 2. As shown in Fig. 5, the degree of bias is
worse than the results in Fig. 2, which is caused by increased
NF. Interestingly, the detrimental effect of increased NF is much
more significant for Ā than φ̄. It is observed in Fig. 5(b) that the
effect of increased NF is almost ignorable for cases of φ smaller
than 3π∕4. Higher NF indicates smaller SNR of secondary
photons for given SNR of primary photons, which physically
means the secondary photons are more random. Figure 5 indi-
cates that estimating modulation amplitude is much more
sensitive to the randomness of output photons than phase.

4 Further Discussion and Conclusion
We observed that modulation amplitude and phase Â and φ̂ are
biased when they are estimated by Fourier transforming the
noisy heterodyne outputs. Furthermore, the previously known
SNR model for Â and φ̂ is not valid when the number of output
photons from a phantom is small. It is known that a very high
modulation frequency is required to achieve high SNRs for φ̂ in
diffusive imaging for small volume phantoms9,16 because a high
modulation frequency increases φ in Eq. (4). However, the the-
oretical result in this paper shows that high φ (i.e., the large
amount of phase delay of the modulated incident beam to a
phantom) deteriorates the reliability of the estimated phase φ̂.
Furthermore, the modulation depth mp in Eqs. (17) and (19)
is dramatically decreased as the modulation frequency increases,
which further degrades the estimation for φ̂. Although recently
developed noise models for heterodyne and homodyne measure-
ments indicate that small mp reduces σ2AC in Eq. (4),27 the
decreased σ2AC does not improve the estimation for φ̂ because
γ in Eq. (14) depends on only aAC and σ2DC. Therefore, it can

Fig. 5 Percent differences between actual and estimated means for (a) amplitudes and (b) phases are plotted. For the increasing primary photon
number, NF is linearly increased with ranges of 4 ∼ 10 and 4 ∼ 16.
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be importantly noticed that increasing SNR for φ̂ does not
always reduce the degree of bias estimation.

In frequency-domain diffusive imaging with a detector array,
increasing detecting points usually accompanies decreasing the
detector pixel size, which reduces the measured primary photons
per pixel. Furthermore, for detector pixels far away from the inci-
dent source, the modulation depth mp as well as the DC photon
rate cp are decreased because of increased scattering and absorb-
ing in the diffusive medium. Therefore, the bias in Â and φ̂ is
substantially increased for high-dimensional frequency-domain
diffusive imaging. Additionally, the typical loss of photons in
heterodyne and/or homodyne frequency-domain measurements
makes the photon number necessary for correctly estimating
Â and φ̂ increased. For example, in some types of systems,
where the phosphor of an image intensifier is imaged onto a
CCD by an imaging system, the amount of photon loss due
to the imaging system is usually significant. This loss of photons
is equivalent to decreasing primary photons.

Although the theory in this paper is derived from Fourier
analysis of a noisy sinusoidal signal, it can be expanded for
time-domain measurements. In fact, it is reported elsewhere
that φ̂ estimated by Fourier transforming simulated impulse
outputs from TCSPC in FLI are under-estimated as compared
to the exact values, where the amount of under-estimation
becomes larger for a higher modulation frequency.20 Similarly,
the Monte-Carlo simulation results in Fig. 4 are calculated by
Fourier transforming impulse response functions of output pho-
tons at each detector pixel. As long as Â and φ̂ are estimated
by Fourier transforming a temporal impulse function that is
contaminated by temporally uncorrelated noise, the theoretical
analysis and characteristics for the statistics of Â and φ̂ is very
similar with what is observed in this paper. For example, if the
impulse output aðiÞp ðtÞ is measured without amplification, σ2DC in
Eq. (4) can be considered as ∫ T∕2

−T∕2a
ðiÞ
p ðtÞ∕T based on that the

variance of shot noise induced by a time-variant signal is
described by time-averaging the signal.32.

The theoretical procedure in this paper is based on a hetero-
dyne measurement, but the similar results can be derived for
a homodyne measurement. The lock-in amplifier method is
widely used for estimating fluorescent lifetimes in FLI, where
two (or more) co-sinusoidal signals are multiplied to measured
modulated fluorescent outputs. The relative phases between
modulation outputs and multiplied signals are set to be different
like in a homodyne method. Therefore, the concept of lock-in
amplifier is very similar with that of heterodyne measurement
except the photon amplification process in a homodyne method,
which is optional in lock-in amplifiers. We expect that this simi-
larity is the reason that fluorescent lifetimes estimated from a
lock-in amplifier show bias, when the detected fluorescent
photons are small.19,22 Although the theoretical approach22 to
show the biased fluorescent lifetime is different from what is
presented in this paper, we consider the origin of the phenom-
enon is conceptually similar with what we have observed in
this paper.

The effect of noise on modulation amplitude and phase in
frequency-domain diffusive imaging was investigated. It was
theoretically derived that the Fourier analysis for a noisy sinu-
soidal signal induces the estimated amplitude and phase to be
biased from actual values when the detected photon number
is small. By combining the developed theory with the known

noise model of heterodyne and/or homodyne outputs, the degree
of bias was measured as a function of the number of diffused
photons exiting the phantom. Furthermore, physical insight
including the effect of heterodyne and/or homodyne measure-
ment parameters on the bias was elucidated. Especially, we
showed that the amplitude and phase biases are deteriorated
by the increased noise factor of image intensifiers, which is
common for heterodyne and homodyne measurements with
low-gain image intensifiers. It is interesting that the noise
depending on output signal variation (i.e., AC variance on
noisy sinusoidal signals) does not affect the estimation of mod-
ulation amplitude and phase. Finally, we pointed out that the
previously known noise model for the modulation amplitude
and phase is not valid for the situation of small output photons.
Therefore, considering the known noise model should be careful
because, for many frequency-domain diffusive imaging situa-
tions, output photon counts are low. In the near future, experi-
mentally measuring the bias for the estimated amplitude and
phase will be investigated. Also, it is worth assessing the per-
formance of frequency-domain diffusive imaging systems in
photon-limited situations based on statistical properties of the
estimated amplitude and phase developed in this paper.

References
1. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in

diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).
2. B. W. Pogue et al., “Image analysis methods for diffuse optical tomog-

raphy,” J. Biomed. Opt. 11, 033001 (2006).
3. B. Chance et al., “Phase measurement of light absorption and scatter in

human tissue,” Rev. Sci. Instrum. 69, 3457–3481 (1998).
4. T. O. McBride et al., “Separation of absorption and scattering hetero-

geneities in NIR tomographic imaging of tissue,” in Biomedical Topi-
cal Meetings, OSA Technical Digest, Optical Society of America,
Washington, D. C., pp. 339–341 (2000).

5. G. Xu, D. Piao, C. F. Bunting, and H. Dehghani, “Direct-current-
based image reconstruction versus direct-current included or excluded
frequency-domain reconstruction in diffuse optical tomography,” Appl.
Opt. 49, 3059–3070 (2010).

6. S. R. Arridge and W. R. B. Lionheart, “Nonuniqueness in diffusion-
based optical tomography,” Opt. Lett. 23, 882–884 (1998).

7. A. B. Thompson and E. M. Sevick-Murace, “Near-infrared fluorescence
contrast-enhanced imaging with intensified charge-coupled device
homodyne detection: measurement precision and accuracy,” J. Biomed.
Opt. 8, 111–120 (2003).

8. Z. M. Wang et al., “Experimental demonstration of an analytic method
for image reconstruction in optical diffusion tomography with large data
sets,” Opt. Lett. 30, 3338–3340 (2005).

9. U. J. Netz, J. Beuthan, and A. H. Hielscher, “Multipixel system for giga-
hertz frequency-domain optical imaging of finger joints,” Rev. Sci.
Instrum. 79, 034301 (2008).

10. G. Y. Panasyuk et al., “Fluorescent optical tomography with large data
sets,” Opt. Lett. 33, 1744–1746 (2008).

11. D. Kang and M. A. Kupinski, “Signal detectability in diffusive media
using phased arrays in conjunction with detector arrays,” Opt. Express
19, 12261–12274 (2011).

12. H. M. Watzman et al., “Arterial and venous contributions to near-
infrared cerebral oximetry,” Anesthesiology 93, 947–953 (2000).

13. M. Atlan et al., “Cortical blood flow assessment with frequency-
domain laser Doppler microscopy,” J. Biomed. Opt. 12, 024019
(2007).

14. H. E. Grecco, P. Roda-Navarro, and P. J. Verveer, “Global analysis of
time correlated single photon counting FRET-FLIM data,” Opt. Express
17, 6493–6508 (2009).

15. V. Toronov et al., “Optimization of the signal-to-noise ratio of
frequency-domain instrumentation for near-infrared spectro-imaging
of the human brain,” Opt. Express 11, 2717–2729 (2003).

Kang and Kupinski: Effect of noise on modulation amplitude and phase in frequency-domain diffusive imaging

Journal of Biomedical Optics 016010-9 January 2012 • Vol. 17(1)

http://dx.doi.org/10.1088/0031-9155/50/4/R01
http://dx.doi.org/10.1117/1.2209908
http://dx.doi.org/10.1063/1.1149123
http://dx.doi.org/10.1364/AO.49.003059
http://dx.doi.org/10.1364/AO.49.003059
http://dx.doi.org/10.1364/OL.23.000882
http://dx.doi.org/10.1117/1.1528205
http://dx.doi.org/10.1117/1.1528205
http://dx.doi.org/10.1364/OL.30.003338
http://dx.doi.org/10.1063/1.2840344
http://dx.doi.org/10.1063/1.2840344
http://dx.doi.org/10.1364/OL.33.001744
http://dx.doi.org/10.1364/OE.19.012261
http://dx.doi.org/10.1097/00000542-200010000-00012
http://dx.doi.org/10.1117/1.2715184
http://dx.doi.org/10.1364/OE.17.006493
http://dx.doi.org/10.1364/OE.11.002717


16. H. K. Kim et al., “Optimal source-modulation frequencies for transport-
theory-based optical tomography of small-tissue volumes,” Opt.
Express 16, 18082–18101 (2008).

17. T. Tu et al., “Analysis on performance and optimization of frequency-
domain near-infrared instruments,” J. Biomed. Opt. 7, 643–649 (2002).

18. M. Kollner and J. Wolfrum, “How many photons are necessary for
fluorescence-lifetime measurements?,” Chem. Phys. Lett. 200, 199–204
(1992).

19. J. Philip and K. Carlsson, “Theoretical investigation of the signal-to-
noise ratio in fluorescence lifetime imaging,” J. Opt. Soc. Am. A 20,
368–379 (2003).

20. E. Gratton et al., “Fluorescence lifetime imaging for the two-photon
microscope: time-domain and frequency-domain methods,” J. Biomed.
Opt. 8, 381–390 (2003).

21. A. Esposito, H. C. Gerritsen, and F. S. Wouters, “Optimizing frequency-
domain fluorescence lifetime sensing for high-throughput applications:
photon economy and acquisition speed,” J. Opt. Soc. Am. A 24,
3261–3273 (2007).

22. Y. Lin and A. F. Gmitro, “Statistical analysis and optimization of
frequency- domain fluorescence lifetime imaging microscopy using
homodyne lock-in detection,” J. Opt. Soc. Am. A 27, 1145–1155
(2010).

23. A. Elder, S. Schlachter, and C. F. Kaminski, “Theoretical investi-
gation of the photon efficiency in frequency-domain fluorescence

lifetime imaging microscopy,” J. Opt. Soc. Am. A 25, 452–462
(2008).

24. H. H. Barrett and K. J. Myers, Foundations of Image Science, John
Wiley & Sons, Inc., Hoboken, New Jersey (2004).

25. J. W. Goodman, Chap. 2 in Speckle Phenomena in Optics, Theory and
Applications, Roberts & Company, Englewood, Colorado (2006).

26. S. P. Morgan, “Detection performance of a diffusive wave phased array,”
Appl. Opt. 43, 2071–2078 (2004).

27. D. Kang and M. A. Kupinski, “Noise characteristics of heterodyne/
homodyne frequency-domain measurements,” J. Biomed. Opt. 17(1),
015002 (2012).

28. B. Q. Spring and R. M. Clegg, “Image analysis for denoising full-field
frequency-domain fluorescence lifetime images,” J. Microscopy 235,
221–237 (2009).

29. S. E. Moran et al., “Intensified CCD (ICCD) dynamic range and noise
performance,” Proc. SPIE 3173, 430–457 (1997).

30. D. A. Boas et al., “Three dimensional Monte Carlo code for photon
migration through complex heterogeneous media including the adult
human head,” Opt. Express 10, 159–170 (2002).

31. T. Durduran et al., “Optical measurement of cerebral hemodynamics
and oxygen metabolism in neonates with congenital heart defects,”
J. Biomed. Opt. 15, 037004 (2010).

32. P. J. Winzer, “Shot-noise formula for time-varying photon rates: a
general derivation,” J. Opt. Soc. Am. B 14, 2424–2428 (1997).

Kang and Kupinski: Effect of noise on modulation amplitude and phase in frequency-domain diffusive imaging

Journal of Biomedical Optics 016010-10 January 2012 • Vol. 17(1)

http://dx.doi.org/10.1364/OE.16.018082
http://dx.doi.org/10.1364/OE.16.018082
http://dx.doi.org/10.1117/1.1501562
http://dx.doi.org/10.1016/0009-2614(92)87068-Z
http://dx.doi.org/10.1364/JOSAA.20.000368
http://dx.doi.org/10.1117/1.1586704
http://dx.doi.org/10.1117/1.1586704
http://dx.doi.org/10.1364/JOSAA.24.003261
http://dx.doi.org/10.1364/JOSAA.27.001145
http://dx.doi.org/10.1364/JOSAA.25.000452
http://dx.doi.org/10.1364/AO.43.002071
http://dx.doi.org/10.1117/1.JBO.17.1.015002
http://dx.doi.org/10.1111/jmi.2009.235.issue-2
http://dx.doi.org/10.1117/12.294535
http://dx.doi.org/10.1117/1.3425884
http://dx.doi.org/10.1364/JOSAB.14.002424

