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Abstract. A new class of gradient refractive index (GRIN) lens is introduced and analyzed. The interior iso-indicial
contours mimic the external shape of the lens, which leads to an invariant geometry of the GRIN structure. The lens
model employs a conventional surface representation using a coincoid of revolution with a higher-order aspheric
term. This model has a unique feature, namely, it allows analytical paraxial ray tracing. The height and the angle of
an arbitrary incident ray can be found inside the lens in a closed-form expression, which is used to calculate the
main optical characteristics of the lens, including the optical power and third-order monochromatic aberration
coefficients. Moreover, due to strong coupling of the external surface shape to the GRIN structure, the proposed
GRIN lens is well suited for studying accommodation mechanism in the eye. To show the power of the model,
several examples are given emphasizing the usefulness of the analytical solution. The presented geometry-invariant
GRIN lens can be used for modeling and reconstructing the crystalline lens of the human eye and other types of eyes
featuring a GRIN lens. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.5.055001]
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1 Introduction
Recent advances in new materials facilitate the application of
gradient refractive index (GRIN) lenses in a variety of optical
devices, especially in the development of bio-inspired lenses1

and optical systems. Employing optical elements with a spatially
variable index of refraction is a powerful way to achieve
improved imaging. The best example of such a GRIN lens is
the well-known Luneburg lens,2which is free fromallmonochro-
matic aberrations. The crystalline lens in the human eye is another
example of a GRIN lens. In the present paper we explore a new
mathematical model describing the crystalline GRIN lens. The
gradual variation of the refractive index of the crystalline lens
has been known for a long time and several models have been
developed to account for theGRIN structure.3–7 Advances in ocu-
lar aberration measurements,8 magnetic resonance imaging,9,10

optical tomography,11 optical coherence tomography imaging,12

and X-ray Talbot interferometry13 have enabled researchers to
improve existing eye models. Using this new data, several
research groups have attempted to construct more realistic mod-
els of the GRIN lens. Navarro et al. proposed a GRIN lens model
with concentric iso-indical contours mimicking the external
conic surfaces of the lens.14 The GRIN spatial distribution of
this model follows the experimental age-dependent formula sug-
gested in earlier work.15 For the first time, a GRIN lens model
features a curved equatorial plane, where anterior and posterior
hemispheres meet. Using a different approach, Goncharov and
Dainty introduced a wide-field schematic eye model with a
GRIN lens, which uses a fourth-order polynomial describing
the refractive structure of the lens.16 Similar to the Navarro
model, the external shape of the lens defines its GRIN structure.
By estimating a parabolic path for the rays in the human GRIN

lens17 and using Sands’ third-order aberrations study in inhomo-
geneous lenses,18 this model presents approximated formulas for
the power of the lens and its spherical aberration. Another recent
model proposed byDíaz et al. uses a combination of polynomials
and trigonometric functions for describing the refractive index
distribution.19 The coefficients of the refractive index of the lens
are given as a linear function of age. Bothmodels, Goncharovand
Dainty and Díaz et al., are complete eye models providing age-
dependent equations for the curvatures of the cornea and lens.
Following the Navarro et al. model for the GRIN lens in vitro,14

in a recent work by Castro et al., the power law of the GRIN lens
profile has been modified to account for a possible toricity of the
lens surface.12 The variety of eye models featuring different
GRIN profiles shows the great interest in lens structure and its
effect on optical performance. In spite of the apparent progress
made in this area, there is no simple GRIN lens model providing
exact paraxial equations for the path of the rays inside the GRIN
structure. It would be beneficial to have an analytical way to
calculate the power and the third-order aberrations for the lens.
Analytical solutions can help researchers gain a better under-
standing of the GRIN structure role in image formation and sim-
plify the optical analysis of the lens. In addition, if such a model
could also provide a more realistic (continuous) geometry of the
GRIN lens’s iso-indicial contours, it would become a valuable
tool for reconstructing the human eye and modeling the accom-
modationmechanism. In the following sectionwe introduce such
a GRIN lens model and outline its main geometrical properties.

2 Parametric Model of the GRIN Lens

2.1 Refractive Index Equation Based on Experimental
Data

There are many experimental studies focusing on the distribu-
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et al. suggested a parabolic distribution for the refractive index
in all directions:20

nðrÞ ¼ c0 þ c1r2; (1)

where c0 is the refractive index at the center of the lens, c1 is the
difference between the central index and the surface index, and r
is a normalized distance from the lens center defining the geom-
etry of the lens. Following this approach, Smith et al.6 intro-
duced more terms in Eq. (1) to get a better fit to experimental
data.21 Later, Smith et al.15 proposed power-law to describe the
distribution of refractive index along the optical axis as:

nðrÞ ¼ c0 þ c1r2p; (2)

where the parameter p in the exponent is used to account for age-
related changes in the GRIN lens. Equation (2) was used by
Navarro et al. as a starting point for modeling GRIN lenses
in vitro.14 For clarity we rewrite Eq. (2) as

nðζÞ ¼ nc þ ðns − ncÞðζ2Þp; (3)

where ζ is the normalized distance from the center of the lens, nc
and ns are the refractive indices at the center and at the surface of
the GRIN lens, respectively. Here, ζ changes between −1 to þ1
to cover both anterior and posterior hemispheres of the lens; also
we avoid introducing complex numbers by using the form ðζ2Þp.

2.2 Geometry of Iso-Indicial Contours

From the optical design point of view, it is convenient to
describe the external surfaces of the GRIN lens as a conicoid
of revolution:

z ¼ cρ2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1þ kÞc2ρ2

p ; (4)

where c and k are respectively the curvature and the conic con-
stant of the surface, and ρ is the distance from the optical z axis.
There are other possible mathematical representations for the
geometry GRIN lens, for example hyperbolic cosines22 or
Fourier series of cosines.23 However these alternative represen-
tations do not have a straight forward connection with the radius
of curvature and conic constant of the lens surface. On the other
hand, using Eq. (4) greatly simplifies the parameterization of the
surface. Following the idea of constructing the lens with conic
surfaces on both sides,14 one might get discontinuity of iso-indi-
cial contours in equatorial interface joining two hemispheres. To
avoid this problem, one could add an additional term on the right
side of Eq. (4). Before we derive the continuity condition for iso-
indicial contours at the equatorial interface, it is more convenient
to rewrite Eq. (4) as a function of surface sag:

ρ2 ¼ 2rz − ð1þ kÞz2; (5)

where r is the radius of curvature of the surface. Now introdu-
cing an additional term on the right side will help achieve the
continuity condition. The surface equation becomes as:

ρ2 ¼ 2rz − ð1þ kÞz2 þ bz3; (6)

where b is a constant, which is used to satisfy the continuity
condition by making the first derivative dρ∕dz ¼ 0 at the
equatorial interface connecting the posterior and anterior

hemispheres. Based on this approach, Eq. (7) represents our
new description for the surface of iso-indical contours:

ρ2a ¼ 2raðta þ zÞ − ð1þ kaÞðta þ zÞ2 þ baðta þ zÞ3;
− ta ≤ z < 0 (7a)

ρ2p ¼ 2rpðtp − zÞ − ð1þ kpÞðtp − zÞ2 þ bpðtp − zÞ3;
0 ≤ z ≤ tp (7b)

where subscripts a and p respectively stand for anterior and pos-
terior parts of the lens, and t is the intercept of the iso-indicial
contours measured from the origin O along the optical axis.
Figure 1 depicts the continuous contours described by
Eq. (7). With these recent techniques one could determine
the intercept and the radius of curvature of the external surface,
T and R, respectively. Iso-indical contours plots obtained by
Jones et al. 9 show that the center of curvature of the inner con-
tours gradually shifts toward the center O as a result of their
steepening. This effect is more obvious in younger eyes,
where central contours are still distinguishable. The simplest
way to account for such a gradual change in curvature with
depth is to define r as a linear function of the normalized dis-
tance from the center, r ¼ Rζ. It is worth noting that for both
anterior and posterior hemispheres r, R, t, and T are numerically
positive quantities; see Fig. 1.

By using Eq. (3), now we shall derive the continuity condi-
tion and find the corresponding refractive index for each iso-
indicial contour. To satisfy the continuity condition we have
to fulfill two constraints for an iso-indicial contour: zero deri-
vative, dρ∕dz ¼ 0, and equal heights, ρaðzcÞ ¼ ρpðzcÞ, at the
joining point zc, as shown in Fig. 1. Using the first constraint,
we determine ba and bp. As a result, for both hemispheres of the
lens we have:

ra

ρ

z

RpRa rp

t a tp Tp T a

O
zc

-

-

-

-

Fig. 1 Iso-indicial shells based on Eq. (7). Solid lines indicate the ante-
rior part of the lens and the dashed lines specify the posterior part.
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ba ¼
2

3

ð1þ kaÞðta þ zcÞ − ra
ðta þ zcÞ2

; (8a)

bp ¼
2

3

ð1þ kpÞðtp − zcÞ − rp
ðtp − zcÞ2

: (8b)

Using the second constraint we find the coordinate of the joining
point as a function of the lens parameters ra, rp, ka, kp, ta, and tp:

zc ¼
2η

−μ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − 4νη

p ; (9)

where

η¼1

3
½−t2að1þkaÞþ4taraþtpð−6rpþtpð1þkpÞð3þ2rpÞÞ�;

μ¼2

3
½−tað1þkaÞþ2raþ3rp−tpð1þkpÞð3−tpð1þkpÞþrpÞ�;

and ν¼1

3
½2−kaþ3kp−2tpð1þkpÞ2�.

In the following sections we shall describe the optical properties
of this GRIN lens model.

3 Thin Lens Approximation
The optical characteristics of a GRIN lens, such as the optical
power and third-order aberrations, are usually not available in
analytical form. However, in some cases (e.g., Ref. 24) and
for our GRIN lens model it is possible to derive analytical
expressions, which are given in Secs. 6 and 7. Although in
Sec. 5 we discuss exact paraxial equations, it would be useful
to start with a simplified power equation. The optical power of
the GRIN lens can be described as the sum of the contributions
from three components: the anterior surface of the lens, Fas; the
GRIN structure of the lens, FGRIN; and the posterior surface of
the lens, Fps. The optical power for the anterior and the posterior
surfaces are given by a conventional equation25

Fs ¼
n2 − n1

R
; (10)

where n1 and n2 are respectively the refractive indices before
and after the surface and R is the radius of curvature. To derive
the expression for the optical power arising from the GRIN
structure of the lens, we consider the GRIN lens structure as
an infinite sum of thin homogeneous shells. Now by adding
the power of all shells and considering that their thickness is
negligibly small, we can obtain an approximate expression
for the lens power. To do this, we rewrite Eq. (10) using the
definition of derivative in a continuous medium

δFGRIN ¼ n 0ðζÞδζ
R

: (11)

Using Eq. (3) and taking the integral we find the optical power
of the GRIN structure.

FGRIN ¼
Z

0

−1

2pðns − ncÞðζ2Þp−1
2

−Raζ
dζ

−
Z

1

0

2pðns − ncÞðζ2Þp−1
2

Rpζ
dζ: (12)

Experimental data suggest that for human eyes p is always larger
than 2 (e.g., Ref. 14) and therefore Eq. (12) can be simplified to

FGRIN ¼ 2p
2p − 1

ðnc − nsÞ
�
1

Ra
þ 1

Rp

�
: (13)

Finally, the total power of the lens is

Fthin ¼
ns − naqu

Ra
þ 2p

2p − 1
ðnc − nsÞ

�
1

Ra
þ 1

Rp

�
þ nvit − ns

−Rp
;

(14)

where naqu and nvit are respectively the refractive indices of the
media before and after the lens.

4 Optical Path Length
One other useful characteristic of an optical element is its optical
path length (OPL), defined as the product of the geometric
length of the light path and the refractive index of the medium.25

In a GRIN lens the refractive index gradually changes, then the
OPL can be calculated as the sum of the small propagations in
each infinitely thin iso-indicial shell. Since the paraxial thick-
ness of these thin shells is simply Tadζ and Tpdζ for anterior
and posterior hemispheres, respectively, using Eq. (3) we can
define the paraxial OPL of the presented GRIN model as

OPL ¼
Z

0

−1
ðnc þ ðns − ncÞðζ2ÞpÞTadζ

þ
Z

1

0

ðnc þ ðns − ncÞðζ2ÞpÞTpdζ; (15)

which results

OPL ¼ ðTa þ TpÞ
2ncpþ ns
2pþ 1

: (16)

It is worth mentioning that the geometry of the iso-indicial
contours is not contributing to the paraxial OPL of the lens, so
Eq. (16) is applicable for any GRIN lens employing the paraxial
refractive index distribution in Eq. (3) (e.g., the GRIN lens
model proposed by Navarro et al.14).

5 Analytical Paraxial Ray Tracing
It is notoriously difficult to perform exact ray tracing through a
GRIN lens, which is done numerically using optical design soft-
ware. Even exact paraxial ray tracing equations are not available
for GRIN lenses. One could also use an approximate method,
where the ray path within the GRIN lens is assumed to be para-
bolic.17 However, it would be desirable to have an exact method
for paraxial ray tracing so that all optical characteristics of the
lens can be found in closed form. Due to the linear dependence
of the iso-indicial contours radius r on the normalized axial dis-
tance, ζ ¼ z∕T , we are able to derive a closed-form solution for
paraxial ray tracing in the geometry-invariant GRIN lens. Para-
xial ray tracing is based on two main equations.25 According to
the first one we have

n2u2 ¼ n1u1 −
y1
R1

ðn2 − n1Þ; (17)

where n1 and n2 are respectively the refractive indices before
and after the interface surface, u1 and u2 are the angles of
the incident and refracted rays, y1 is the height of the ray at
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the surface, and R1 is the radius of the surface. For the next sur-
face located at the axial distance d2 from the first one, the height
of the incident ray, y2, is obtained by

y2 ¼ y1 þ d2u2: (18)

Following the same approach used to derive Eq. (11), we rewrite
the axial thickness of the infinitely thin shells as d2 ¼ δz, then
Eq. (18) becomes

uðzÞ ¼ y 0ðzÞ. (19)

Using Eq. (3) and substituting the definition of the derivative
from Eq. (19) into Eq. (17) results in

n

�
zþδz
T

�
yðzþ2δzÞ−yðzþδzÞ

δz

¼ n

�
z
T

�
yðzþδzÞ−yðzÞ

δz
þ yðzÞ
Rðz∕TÞ

�
n

�
zþδz
T

�
−n

�
z
T

��
:

(20)

Finally considering u and y as continuous functions of z, we
expand Eq. (20) around the origin for δz and keep only the
first order terms, which gives us

yðzÞn 0ðz∕TÞ
Rz

−
n 0ðz∕TÞy 0ðzÞ

T
− nðz∕TÞy 0 0ðzÞ ¼ 0: (21)

Solving Eq. (21) for the anterior and posterior hemispheres
(where T corresponds to Ta and Tp, respectively) leads to a gen-
eral ray equation:

yðzÞ ¼

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

c12F1

�
−1þ 2p − α

4p
;
−1þ 2pþ α

4p
; 1 −

1

2p
;
nc − ns
nc

�−z
Ta

�
2p
�

þ z
c2
Ta

2F1

�
1þ 2p − α

4p
;
1þ 2pþ α

4p
; 1þ 1

2p
;
nc − ns
nc

�−z
Ta

�
2p
�

−Ta ≤ z < 0

c12F1

�
−1þ 2p − β

4p
;
−1þ 2pþ β

4p
; 1 −

1

2p
;
nc − ns
nc

� z
Tp

�
2p
�

þ z
c2
Ta

2F1

�
1þ 2p − β

4p
;
1þ 2pþ β

4p
; 1þ 1

2p
;
nc − ns
nc

� z
Tp

�
2p
�

0 ≤ z ≤ Tp;

(22)

where 2F1 is Gaussian (ordinary) hypergeometric function
and

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8Tap∕Ra þ ð1 − 2pÞ2

q

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8Tpp∕Rp þ ð1 − 2pÞ2

q

c1 ¼ −
ℱ2Tau0 þ y0ðℱ5 þℱ4γ1Þ
ℱ2ℱ3γ2 −ℱ1ðℱ5 þℱ4γ1Þ

c2 ¼ −
y0
ℱ2

þℱ1

ℱ2

c1;

where u0 and y0 are respectively the angle and the height of the
incident ray after refraction by the anterior surface of the lens
and the expressions for ℱi and γj are given in the appendix.
Using Eqs. (19) and (22), the angle of the ray can be found as

uðzÞ ¼

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

c1
Ta

γ2
�−z
Ta

�
2p−1

2F1

�
−1þ 6pþ α

4p
;
−1þ 6p − α

4p
; 2 −

1

2p
;
nc − ns
nc

�−z
Ta

�
2p
�

þ c2
Ta

γ1
�−z
Ta

�
2p

2F1

�
1þ 6p − α

4p
;
1þ 6pþ α

4p
; 2þ 1

2p
;
nc − ns
nc

�−z
Ta

�
2p
�

−Ta ≤ z < 0

þ c2
Ta

2F1

�
1þ 2p − α

4p
;
1þ 2pþ α

4p
; 1þ 1

2p
;
nc − ns
nc

�−z
Ta

�
2p
�

c1
Tp

γ4
� z
Tp

�
2p−1

2F1

�
−1þ 6pþ β

4p
;
−1þ 6p − β

4p
; 2 −

1

2p
;
nc − ns
nc

� z
Tp

�
2p
�

þ c2
Ta

γ3
� z
Tp

�
2p

2F1

�
1þ 6p − β

4p
;
1þ 6pþ β

4p
; 2þ 1

2p
;
nc − ns
nc

� z
Tp

�
2p
�

0 ≤ z ≤ Tp:

þ c2
Ta

2F1

�
1þ 2p − β

4p
;
1þ 2pþ β

4p
; 1þ 1

2p
;
nc − ns
nc

� z
Tp

�
2p
�

(23)
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Both the height yðzÞ and the angle uðzÞ of the ray are necessary
to describe the optical properties of the GRIN lens, which is the
main goal of Secs. 6 and 7.

It is worth mentioning that the tilt or decenter of the lens can
be seen as a change in the angle and the height of the incident
ray, respectively, and Eqs. (22) and (23) are still applicable.

6 Analytical Expression for Optical Power
In this section we present an analytical expression for the
optical power of the GRIN lens derived with the help of
Eqs. (22) and (23). First we consider the power of a homo-
geneous lens:25

FL ¼
ðn2 − n1Þ

R1

−
ðn2 − n3Þ

R2

þ d
ðn2 − n3Þðn2 − n1Þ

n2R1R2

; (24)

where n1, n2, and n3 are respectively the refractive indices of
the medium before the lens, within the lens, and the medium
after the lens; d is the thickness of the lens, and R1 and R2 are
respectively the radius of curvatures for the anterior and pos-
terior surfaces. Equation (24) is derived from Eqs. (17) and
(18). Using a similar approach, Eqs. (22) and (23) will
give the optical power of the GRIN lens

F ¼ Aa
ðns − naquÞ

Ra
þ AGRIN − Ap

ðns − nvitÞ
−Rp

þ Ad
ðns − nvitÞðns − naquÞ

−nsRaRp
; (25)

where Aa, AGRIN, Ap, and Ad are constants associated with the
GRIN structure of the lens, the expressions of which are given
in Appendix. For a simple lens, where ns ¼ nc, it can be
shown that Aa ¼ 1, AGRIN ¼ 0, Ap ¼ 1, and Ad ¼ Ta þ Tp,
which reduces Eq. (25) to Eq. (24). On the other hand, by
assuming ta and tp are small enough to be ignored, we get
Aa ¼ 1, AGRIN ¼ FGRIN, Ap ¼ 1, and Ad ¼ 0, which simplifies
Eq. (25) to Eq. (14).

Using Eq. (25), we can find the focal length, f , and the back
focal length of the lens, f back as

f ¼ nvit
F

; (26)

and

f back ¼ f Bf ; (27)

where Bf is defined in the Appendix.
We shall stress that the optical power of the lens is not

affected by its tilt or decenter and remains one of the fundamen-
tal characteristics of the lens.

7 Third-Order Aberrations
In general, the contribution of a GRIN lens to Seidel aberrations
can be divided in two parts. The first part is the surface contri-
bution of the interface between the homogeneous medium and
inhomogeneous (GRIN) medium. The second part is the transfer
contribution originating inside the GRIN media. For a GRIN
lens with iso-indicial contours being coincident with the
external surfaces, the surface contribution can be calculated
as a conventional contribution from an interface between homo-
geneous media. Therefore we shall start with a single surface

contribution to the primary third-order monochromatic aber-
rations. The coefficient of third-order spherical aberration is
given by26

SI ¼ −y
��

u2 − u1
1∕n2 − 1∕n1

�
2
�
u2
n2

−
u1
n1

�
þ k

ðn2u2 − n1u1Þ3
ðn2 − n1Þ2

�
;

(28)

where y is the height of the marginal ray at the surface, u1 and u2
are respectively the incident and refracted rays angles relative to
the optical axis, n1 and n2 are respectively the refractive indices
before and after the surface, and k is the conic constant of the
surface. Similar to our derivation of Eq. (20), from Eq. (28) we
find the contribution of an infinitely thin layer within the GRIN
structure as

δSI ¼ −yðzÞ
�
Tn2ð zTÞy 0 02ðzÞ½−n 0ð zTÞy 0ðzÞ þ Tnð zTÞy 0 0ðzÞ�

n 02ð zTÞ

þk
½n 0ð zTÞy 0ðzÞ þ Tnð zTÞy 0 0ðzÞ�3

Tn 02ð zTÞ
	
δz; (29)

then by considering the contribution of the anterior and posterior
surfaces and summing up all thin layer contributions of the
GRIN structure we have
X

SI ¼− y0

��
u0 − ua

1∕ns − 1∕naqu

�
2
�
u0
ns

−
ua
naqu

�

þ ka
ðnsu0 − naquuaÞ3
ðns − naquÞ2

�

þ
Z

Tp

−Ta

dSI − yðTpÞ
��

up − uðTpÞ
1∕nvit − 1∕ns

�
2
�
up
nvit

−
uðTpÞ
ns

�

þ kp
½nvitup − nsuðTpÞ�3

ðnvit − nsÞ2
	
; (30)

where ua is the marginal ray angle at the anterior surface and
uðTpÞ and up are the angles of the marginal ray immediately
before and after the posterior surface, respectively. The latter
can be derived using Eq. (17)

up ¼
1

nvit

�
nsuðTpÞ þ

yðTpÞ
Rp

ðnvit − nsÞ
�
: (31)

In addition to the marginal ray we also need to trace the
chief (principal) ray when calculating coefficients for off-axis
aberrations. Using the chief and the marginal rays, the contribu-
tion of a single conic surface to the aberration coefficient of
third-order coma could be written as26

SII ¼ −y
��

u2 − u1
1∕n2 − 1∕n1

�
2
�
u2
n2

−
u1
n1

��
uc2 − uc1
u2 − u1

�

þ kðn2uc2 − n1uc1Þ
ðn2u2 − n1u1Þ2
ðn2 − n1Þ2

�
; (32)

where uc1 and uc2 are respectively the angle of the incident and
refracted chief ray. Note that the angles uc1 and uc2 are measured
with respect to the optical axis.

Similar to our derivation of Eq. (29), we find the contribution
to aberration coma from an infinitely thin layer of the GRIN
structure:
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δSII ¼ −yðzÞ
�
y 0 0c ðzÞ

Tnð zTÞ2y 0 0ðzÞ½−n 0ð zTÞy 0ðzÞ þ Tnð zTÞy 0 0ðzÞ�
n 0ð zTÞ2

þ k

�
n 0
�
z
T

�
y 0cðzÞ þ Tn

�
z
T

�
y 0 0c ðzÞ

�

×
½n 0ð zTÞy 0ðzÞ þ Tnð zTÞy 0 0ðzÞ2�

Tn 0ð zTÞ2
	
δz; (33)

where yc is the chief ray height defined by the general ray equa-
tion, Eq. (22), for which the input height at the anterior surface is
y0 ¼ 0, since in the human eye the aperture stop (iris) approxi-
mately coincides with the front surface of the lens, and u0 is the
chief ray angle after the refraction from the anterior surface,
u0 ¼ uc0. These initial conditions are reflected in coefficients
c1 and c2. Now using Eq. (23) we could also find the chief
angle uc within the GRIN lens. Finally by tracing both marginal
and chief rays we get the total third-order coma coefficient of the
GRIN lens:

X
SII ¼ −y0

��
u0 − ua

1∕ns − 1∕naqu

�
2
�
u0
ns

−
ua
naqu

��
uc0 − uca
u0 − ua

�

þ kaðnsuc0 − naquucaÞ
ðnsu0 − naquuaÞ2
ðns − naquÞ2

�

þ
Z

Tp

−Ta

dSII − yðTpÞ
��

up − uðTpÞ
1∕nvit − 1∕ns

�
2

×
�
up
nvit

−
uðTpÞ
ns

��
ucp − ucðTpÞ

ua − ua

�

þ kp½nvitucp − nsucðTpÞ�
½nvitup − nsuðTpÞ�2

ðnvit − nsÞ2
	
; (34)

where ucp is the outgoing chief ray angle at the posterior surface,
which could be calculated as up in Eq. (31), and uca is the angle
of the incident chief ray on the anterior lens surface.

Following the same concept we can calculate aberration
coefficients for third-order astigmatism, where the contribution
of a single surface has the following form

SIII ¼ −y
��

u2 − u1
1∕n2 − 1∕n1

�
2
�
u2
n2

−
u1
n1

��
uc2 − uc1
u2 − u1

�
2

þ kðn2uc2 − n1uc1Þ2
ðn2u2 − n1u1Þ
ðn2 − n1Þ2

�
(35)

and the contribution of an infinitely thin layer is

δSIII¼−yðzÞ
�
y 00c ðzÞ2

Tnð zTÞ2y 00ðzÞ½−n 0ð zTÞy 0ðzÞþTnð zTÞy 0 0ðzÞ�
n 0ð zTÞ2

þk½n 0
�
z
T

�
y 0cðzÞþTn

�
z
T

�
y 0 0c ðzÞ�2

×
n 0ð zTÞy 0ðzÞþTnð zTÞy 00ðzÞ

Tn 0ð zTÞ2
	
δz; (36)

and the total third-order astigmatism coefficient of the GRIN
lens is

X
SIII¼−y0

��
u0−ua

1∕ns−1∕naqu

�
2
�
u0
ns
−

ua
naqu

��
uc0−uca
u0−ua

�
2

þkaðnsuc0−naquucaÞ2
ðnsu0−naquuaÞ
ðns−naquÞ2

�

þ
Z

Tp

−Ta

dSIII−yðTpÞ
��

up−uðTpÞ
1∕nvit−1∕ns

�
2
�
up
nvit

−
uðTpÞ
ns

�

×
�
ucp−ucðTpÞ

ua−ua

�
2

þkp½nvitucp−nsucðTpÞ�2

×
½nvitup−nsuðTpÞ�

ðnvit−nsÞ2
	
. (37)

In a similar way, the field curvature of a single surface can be
achievable as

SIV ¼ −n1ðuc1y − u1ycÞ2
n2u2 − n1u1

yn2
; (38)

where yc is the height of the chief ray at the surface. Then for an
infinitely thin layer we have

δSIV¼−
½−ycðzÞy0ðzÞþyðzÞy0cðzÞ�2½n0ð zTÞy0ðzÞþTnð zTÞy00ðzÞ�

TyðzÞ δz;

(39)

and finally for the GRIN lens we haveX
SIV ¼ −naquy0u2ca

nsu0 − naquua
ns

þ
Z

Tp

−Ta

dSIV − ns½ucðTpÞyðTpÞ

− uðTpÞycðTpÞ�2
nvitup − nsuðTpÞ

yðTpÞnvit
: (40)

Despite the advantages of the Seidel theory, the third-order
aberration calculations are limited to centered, rotationally sym-
metric systems, and do not support tilted or decentered elements,
such as the crystalline lens in the eye. However, deriving the
Seidel aberration coefficients of the GRIN lens in closed form
is useful for understanding the nature of aberration compensa-
tion inside the GRIN structure. In addition to this, in vitro stu-
dies of the crystalline lens and its reconstruction based on the
experimentally measured lenticular aberrations can benefit from
the Seidel aberration representation.

It is worth mentioning that the capability of the geometry-
invariant GRIN lens model is not limited to paraxial ray tracing
and third-order aberration theory. In future work numerical ray
tracing will be developed to calculate Zernike coefficients of the
GRIN model lens, which can take the tilt and decenter of the
lens into account.

8 Numerical Examples
We present an example of the eye model with the corneal and
lenticular shape corresponding to a 40-year-old eye16 with
GRIN profile exponent p ¼ 3.13 found in.14 Figure 2 shows
the main optical characteristics of the GRIN lens including
the optical power, focal length, back focal length, as well as
Seidel aberration coefficients; the lens geometry and GRIN
structure parameters are given on the left side. Figure 2 actually
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depicts the user interface for the open-source code written by the
authors, available at.27 This code incorporates all mathematical
expressions presented in this paper.

The optical power of the lens shown in Fig. 2 is based on the
thin lens approximation in Eq. (14), and the exact power formula
in Eq. (25). It is easy to see that the difference in optical power
calculation is less than 1.4%, which indicates that Eq. (14) is
useful especially if one wants to determine the exponent p
for a given optical power. This can be done by solving
Eq. (14) for p, which leads to

p ¼ Ranvit þ Rpðnaqu þ FRaÞ − nsðRa þ RpÞ
2½Ranvit þ Rpðnaqu þ FRaÞ − ncðRa þ RpÞ�

. (41)

Knowing the external shape, measuring the optical power of the
lens and the surface refractive index ns, and assuming nc is based
on extensive experimental data, one could determine the GRIN
profile exponent p for lenses in vitro. This approach provides a
practical way to approximate the GRIN profile, which defines
all optical characteristics of the lens.

The optical power of the crystalline lens and its age-related
changes have been a controversial topic for decades. Many stu-
dies (e.g., Ref. 28) show that for an unaccommodated lens, its
external surfaces become more curved and therefore more
powerful with age. On the other hand, measurements of the
total optical power of the eye suggest that the power does
not change much with age.29 This lens paradox might be
explained, at least in part, by adjusting the center and surface
refractive indices of the GRIN structure (nc and ns), the axial
position of the peak in the refractive index profile (Ta or Tp),
the lens axial thickness (Ta þ Tp), and also the exponent

p.16,19,30–32 The latter parameter is the most challenging one
to analyze, since calculating the contribution of the GRIN
structure to the lens power has not been derived in an easily
accessible form.

Pierscionek32 suggested that a slight change in the slope of
refractive index in the cortex might compensate the increase in
lens curvature and prevent the eye from becoming myopic with
age. Using Eq. (14) we can calculate the optical power change in
the lens due to an age-related increase in the exponent p.
Following a recent study14 we select three age groups (20-,
40-, and 60-year-olds) with corresponding empirical value for
p, see Table 1. To study the effect of p independently from
other variables, such radii and central thickness, all three age
groups have identical lens geometry. In Fig. 2 we can see that
1 D change in the optical power can be attributed to GRIN
profile steepening alone.

It can be seen from Eq. (25) that one can easily adjust other
parameters of the lens affecting the lens paradox and take into
account their effect due to aging on the lens power. To adjust
these parameters in a meaningful way, more experimental

Fig. 2 Optical characteristics of a typical 40-year-old eye (each contour indicates 0.005 change in the refractive index). The image depicts the user
interface for the open-source code available from the authors.27

Table 1 Three age groups (20-, 40-, and 60-year old) with corre-
sponding empirical value for p and corresponding powers.

Age (year) p Thin lens power (D) Exact power (D)

20 2.87 20.074 19.815

40 3.13 19.884 19.629

60 4.28 19.359 19.115
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data on the age-related changes in the GRIN structure is
required.

The model presented here is not only useful for human eyes,
it can also be beneficial for animal eye studies. For example,
Fig. 3 shows the octopus eye model based on the experimental
data provided by Jagger et al.,33 where a strictly symmetrical
lens was modeled. The original experimental data shows
some departure from symmetry, which is taken into account
in our model, presented in Fig. 3.

9 Conclusion
The characterization of GRIN lenses by ray-tracing is notor-
iously difficult and usually requires numerical methods, while
only a handful of analytical solutions exist (e.g., Lundberg lens).

In light of this, we introduce and analyze a new class of
GRIN lens, which has the following properties. The refractive
index distribution is based on the power law defined by the
exponent p, which can be adjusted in a continuous manner.
The mathematical description of the external surfaces is a stan-
dard conicoid of revolution with a higher-order term. Iso-inditial
contours feature smooth connection between the anterior and
posterior hemispheres. Analytical paraxial ray tracing is possi-
ble, which provides expressions for all optical characteristics of
the lens and its monochromatic aberrations. The description for
aberration coefficients of a thin homogeneous layer is useful for
a general GRIN lens description.

A few examples are presented to illustrate the advantage of
this GRIN mode with special emphasis given to the thin lens
approximation formula. The latter is very accurate, and can
be used to analyze the role of exponent p in lens paradox.
One could also determine the exponent p for a given optical
power measured experimentally in vitro.

The interior iso-indicial contours mimic the external shape of
the lens, which leads to invariant geometry of the GRIN struc-
ture. Due to this strong coupling between the external shape of
the lens and its GRIN structure, one could study the changes in
aberrations with accommodation. A dispersion model and chro-
matic aberrations of the lens will be derived in future work.

The new GRIN lens model can be used for other types of
eyes, even for such an extreme case as the octopus eye. A
user-friendly software incorporating all mathematical expres-
sions is available from the authors.27

Appendix: Coefficient Definitions
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TaTp½γ2ℱ2ℱ3 −ℱ1ðγ1ℱ4 þℱ5Þ�
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Ap ¼
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Fig. 3 The octopus eye model (each iso-indicial contour at 0.008 step
in the refractive index).
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Ad ¼
Tpℱ1ℱ8 þ Taℱ2ℱ9

ðℱ1γ1ℱ4 þℱ5Þ − γ2ℱ2ℱ3

Bf ¼ −
Taℱ10ðγ1ℱ4 þℱ5Þ þ γ2Tpℱ3ℱ8

Taðγ2ℱ2ℱ3 − γ1ℱ1ℱ4 −ℱ1ℱ5Þ

þ ns − naqu
nsRa

Taℱ10ℱ2 þ Tpℱ1ℱ8

γ2ℱ2ℱ3 − γ1ℱ1ℱ4 −ℱ1ℱ5
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