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Abstract. The formation of kidney stones is a common and highly studied disease, which causes intense pain and
presents a high recidivism. In order to find the causes of this problem, the characterization of the main compounds is
of great importance. In this sense, the analysis of the composition and structure of the stone can give key information
about the urine parameters during the crystal growth. But the usual methods employed are slow, analyst dependent
and the information obtained is poor. In the present work, the near infrared (NIR)-hyperspectral imaging technique
was used for the analysis of 215 samples of kidney stones, including the main types usually found and their mix-
tures. The NIR reflectance spectra of the analyzed stones showed significant differences that were used for their
classification. To do so, a method was created by the use of artificial neural networks, which showed a probability
higher than 90% for right classification of the stones. The promising results, robust methodology, and the fast
analytical process, without the need of an expert assistance, lead to an easy implementation at the clinical labora-
tories, offering the urologist a rapid diagnosis that shall contribute to minimize urolithiasis recidivism. © 2012 Society of

Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.7.076027]
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1 Introduction
Urolithiasis, the formation of calculi within the urinary tract, is a
rather common disease, which affects approximately 10% to
12% of the population in developed countries.1 In this field,
much effort has been done,2 basically addressing the reduction
of the recidivism rates and the increasing of the quality of life of
patients, while cutting the medical costs for related treatments
and surgery.

A careful study of the structure of the expelled kidney stone
can give key information on the stone formation process and the
urine conditions during the crystal growth.3 Thus, by specifi-
cally analyzing the core and outer shells of the sample, it is pos-
sible to determine the material that was serving as the
precipitation nucleus and the substances that were precipitating
afterwards. This information will provide a robust diagnosis that
could lead to the appropriate treatment for every patient.

So far, several methodologies have been developed for the
classification of kidney stones. The most extended ones are
the examination of kidney stones by stereoscopic microscopy3,4

and infrared (IR) analysis.5,6 The former has an advantage in
which it allows the identification of different substances on
the whole area of the sample; so it is possible to fully determine
the morphological characteristics of the stone. However, this
methodology is laborious and, more significantly, it is strongly
dependent on the operator. Concerning IR methodologies, they

require grinding the sample losing so the possibility of any
spatial analysis.

In addition, the use of other techniques, namely near infrared
(NIR),7 scanning electron microscopy- energy-dispersive X-ray
spectroscopy (SEM-EDS),8 and even X-ray diffraction,9 has also
been assessed. NIR spectroscopy showed a good performance
for the determination of the composition of renal calculi and
quantification for mixtures. Nevertheless those works still
require some sample pretreatment which makes the analysis
impractical to be applied in hospital facilities.

1.1 Hyperspectral Imaging Technique

Hyperspectral imaging (HSI) or chemical imaging technique is
based on the utilization of an integrated hardware and software
architecture able to measure a spectrum for each pixel of the
acquired image, being then possible to characterize the whole
surface of the sample,10,11 characteristics really useful for the
objectives of the present work. It is desirable to analyze samples
with flat surface because it always yields a better spectrum as the
signal-to-noise (S/N) ratio increases due to better recording of
the reflected radiation from the sample to the detector.

The acquired information is contained in a three-dimensional
(3-D) dataset, characterized by two spatial dimensions and one
spectral dimension, the so-called “hypercube”. According to the
different wavelength and the spectral sensitivity of the device,
several physical-chemical characteristics of a sample can be
investigated and analyzed. For these reasons, HSI techniquesAddress all correspondence to: Manuel Valiente, Universitat Autònoma de Bar-
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represent an attractive solution for characterization, classifica-
tion, and quality control of different products in many different
fields, such as pharmaceuticals,12,13 medicine,14,15 food inspec-
tion,16,17 artworks,18 and materials recycling.19–22

There are two conventional ways to construct the hypercube;
the first one known as the “staring imager” configuration and the
second known as “pushbroom” acquisition.

The “staring imager” configuration keeps the image field of
view fixed, obtaining images one wavelength after another.23

Hypercubes obtained using this configuration thus consist of
a three-dimensional stack of images (one image for each wave-
length examined), stored in band sequential (BSQ) format.
Wavelength in the “staring imager” configuration is typically
moderated using a tuneable filter being the acousto-optic tune-
able filters (AOTFs) or the liquid crystal tuneable filters
(LCTFs), the most predominantly employed. AOTFs have
been used in the construction of commercially available
NIR-CI systems. The main advantages of AOTFs are the
good transmission efficiency, fast scan times, and large spectral
range. On the other hand, LCTFs show greater promise in filter-
ing of Raman images due to the superior spectral bandpass and
image quality.

The “pushbroom” configuration is based on the acquisition of
simultaneous spectral measurements from a series of adjacent
spatial positions, which require relative movement between the
object and the detector.24 Some devices produce hyperspectral
images based on a point step and acquire mode: spectra are
obtained at single points on a sample, then the sample is moved
and another spectrum taken. Hypercubes obtained using this
configuration are stored in the band interleaved bypixel (BIP) for-
mat. Advances in detector technology have reduced the time
required to acquire hypercubes. Linemapping instruments record
the spectrum of each pixel in a line of sample which is simulta-
neously recorded by an array detector; the resultant hypercube
is stored in the band interleaved by line (BIL) format.

In this study, a “pushbroom” configuration was adopted,
based on the utilization of a device of the ImSpector™ series
spectrometers, developed by SpecIm™ (Finland). The spectro-
graphs are constituted by optics based on volume type
holographic transmission grating.10 The grating is used in
patented prism-grating-prism construction (PGP element), char-
acterized by a high diffraction efficiency, good spectral linearity,
and nearly free geometrical aberrations due to the on-axis
operation principle.

For handling of the huge amount of data available from HSI,
chemometric techniques are required. Principal component ana-
lysis (PCA) is usually used for screening the raw data before the
application of a classification technique such as artificial neural
network (ANN). ANNs show an ever-increasing number of
applications in many fields, since they can satisfactorily solve
complex analytical problems.25–27 Although simple in structure,
the vast number of interconnections inside the ANN structure
show an interesting potential for calculations.

The aim of the present study is to evaluate the application of
HSI in the NIR field (1000 to 1700 nm) for the characterization
and classification of renal calculi with the help of ANN, as this
would be helpful for medical diagnosis, improving the conven-
tional characterization done so far. In fact, HSI seems to be an
interesting possibility to implement in hospital analyses where
kidney stone samples have to be analyzed. This technique has
already been used for testing a resolution method by analyzing
two examples of kidney stones28 and it has also been proved to

be useful for other medical applications such as surgery mon-
itoring.29,30 However, HSI has not been deeply used for the study
of kidney stones, once removed from the human body, or for the
classification of the different types of kidney stones. On the
other hand, ANNs have already been used in medicine with
good results, even in urology,31 where the main applications
have been related to cancer diagnostics and other illnesses,
although they have never been used for the classification of kid-
ney stones.

2 Materials and Methods

2.1 Sample Preparation

Two hundred and fifteen samples were selected from a library
of more than 1400 renal calculi. Samples were collected at the
urology service of the Hospital, Universitari de Bellvitge,
Barcelona (Spain). All kidney stones were obtained either by
surgical removal or by natural expulsion. After collection, the
stones were thoroughly rinsed with water and ethanol. Once
cleaned, the stones were stored in individual clean vials showing
no decomposition or damage in the structure during periods
longer than a year.

Eleven types of different kidney stone components, including
their mixtures, were considered. Firstly, seven main types of kid-
ney stones were considered as formed by the pure compounds:
uric acid anhydrous (AUA), brushite (BRU), calcium oxalate
dihydrate (COD), calcium oxalate monohydrate (COM), cystine
(CYS), hydroxyapatite (HAP), and struvite (STR). Secondly,
mixtures of the former ones, namely: uric acid dihydrate
(AUD), mixed calcium oxalate and hydroxyapatite (MXL),
mixed calcium oxalate and hydroxyapatite (MXD), and COD
transformed into COM (TRA) were analyzed. The selection cri-
terion was based on variability appearance, for each type
of stone.

For HSI technique, it is desirable to get a flat surface for the
analysis, so all the samples were cut with a surgical knife,
although it was also possible to measure and correctly classify
round parts of stones. The inner part of the whole sample was
used for the analysis, since the equipment allows the measure-
ment of the entire stone. Besides, the use of the complete stone
helped on the characterization of all its parts, contributing to the
correct classification of each sample. Many samples showed a
heterogeneous surface. In those cases, both the external part of
the stone and the core were analyzed.

2.2 Conventional Methodologies

Samples were firstly analyzed by means of stereoscopic micro-
scopy. The analyses were carried out as described in the reported
bibliography.3,4 For those samples that were not well character-
ized by this method, an SEM-EDS analysis was performed.8 For
this purpose, two different SEM equipments were used: JEOL
JSM-6300 Scanning Electron Microscope (Japan), coupled to
an Oxford Instruments Link ISIS-200 (UK) X-Ray Dispersive
Energy Spectrometer (Univ. Autònoma de Barcelona); and a
HITACHI S2500 (Japan) Scanning Electron Microscope,
coupled to a Kevex 8000 (USA) X-Ray Dispersive Energy Spec-
trometer (Univ. “La Sapienza” of Rome). The structure of the
samples was analyzed, and the EDS analysis was performed
on some parts of the stone to confirm the elemental composition
of the sample. Some representative results are shown in Figs. 1
and 2.
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The results coming out from these conventional methodolo-
gies were used as references for the results obtained from
HSI data.

2.3 Hyperspectral Imaging Device
and Architecture Set-Up

The HSI system used (Univ. “La Sapienza” of Rome) was con-
stituted by the following components: optics, spectrograph,
camera, translation unit, energizing source, and control unit
(Fig. 3). The core of the system was a spectral camera NIR (Spe-
cim, Finland) embedding an ImSpector™ N17E imaging spec-
trograph working in the wavelength region 1000 to 1700 nm and
a Te-cooled InGaAs photodiode array camera (spatial resolu-
tion: rms spot radius <15 μm; spectral resolution: 7 nm; 121
wavelengths measured).

The spectrometer was coupled to a 50 mm lens. The resolu-
tion of the image width was 320 pixels, while the number of
frames, that is, the resolution of the image in the Y axes varied

from 200 to 350 pixels, depending on the number of samples
measured at a time.

The energizing source was constituted by a diffused light
cylinder with aluminium internal coating, embedding five halo-
gen lamps that produce an intense and continuous spectrum sig-
nal, which was optimized for the NIR region.

The spectral camera was hosted in a laboratory platform
equipped with an adjustable speed (from 0 to 50 mm∕s) con-
veyor belt (width ¼ 26 cm and length ¼ 160 cm). Spectra
acquisition can be carried out continuously or at specific
time intervals. The device was fully controlled by a PC unit
equipped with the Spectral Scanner™ v.2.3 acquisition/prepro-
cessing software (DV srl, Italy).

The spectra of the samples were measured fixing them to a
plastic holder with the inner side upwards, so the core was visi-
ble to the detector.

The stones previously classified as pure compounds, by
means of conventional methodologies, were used for creating
a library of compounds, which could be later applied for the
classification of unknown samples.

Fig. 1 SEM images of the internal part of some kidney stones. (a) AUD, (b) COD, (c) COM, and (d) HAP.

Fig. 2 Mapping experiments on the surface of a kidney stone. (a) SEM image of some a struvite kidney stone; (b) mapping for Mg; and (c) mapping
for Ca.
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2.4 Spectra Handling

The acquisition of the spectral signatures was carried out after a
preliminary calibration performed in two steps: i) black image
acquisition and ii) measurements of “white reference image”
using a standard white ceramic tile. After the calibration
phase, the spectral image was acquired and the reflectance
(R) was computed according to the following equation:

R ¼ rs − rb
rw − rb

;

where rs is the reflectance measured for the sample, rb is the
reflectance measured for the black (background noise), and
rw is the reflectance of the standard white (100% reflectance).

The analysis of the stones was performed on five randomly
selected region of interests (ROIs) on the surface of the sample
in order to avoid the selection of any part of the stone that might
contain organic matter. Then, all the regions in a sample were
considered as a single sample for data treatment. Although the
ROIs analysis loses the information for every single pixel, it has
two main advantages. First, it is a way of smoothing the data,
since the surface of the sample might not be homogeneous con-
sidering adjacent pixels due to organic matter which could have
been trapped into the structure of the stone during the crystal-
lization process. Second, the amount of information that is going
to be handled is much smaller than in the analysis of the full
pixel matrix.

Additionally, an image analysis for each individual pixel was
performed using a PCA treatment to show the capabilities of this
technique for handling entire images on the classification
process.

2.5 Data Treatment

For the analysis of the data, three different methods were used:
factor analysis (FA), PCA, and ANN.

Although FA and PCA share the same main goal, that is, the
reduction of the number of variables of the system by finding
latent connections between real variables, they have a basic dif-
ference that allows obtaining different information.32

FA is based on correlation between variables, and the number
of factors considered descriptors of the system is selected
according to the associated eigenvalue.33,34 Several criteria
have been suggested in order to decide this number of factors.
Kaiser’s rule, which states that only those factors with an
associated eigenvalue greater than 1 are representative for the
system,32 has been applied in this study. All other factors
stand for linear combinations of real variables, describing
only noise.

On the other hand, PCA is based on the variance of the
data.35 Therefore, the main principal component (PC) for the
system follows the direction in which the data have a bigger
variance.

Due to these properties, FA was used to check how many
different components can be distinguished in all the samples,
while PCA was useful for the variable selection.

With regard to ANNs, they are considered a sophisticated
and powerful computational tool which solves difficult analyti-
cal problems by learning from real cases. An ANN is a compu-
tational model formed from a certain number of single units,
artificial neurones or nodes, connected with coefficients
(weights), wij, which constitute the neural structure. Despite
many different structures that ANNs can take, already described
in the literature,25,36 the structure used in this study was consti-
tuted by three layers: inputs, one hidden layer, and outputs.
The input layer receives the information about the system
(the nodes of this layer are simple distributive nodes, which
do not alter the input value at all). The hidden layer processes
the information initiated at the input, while the output layer is
the observable response or behavior. The algorithm chosen for
the learning process was the backpropagation. The optimization
of the ANN was carried out by minimizing the root mean square
(RMS) error,37 when modifying the number of nodes in the hid-
den layer.

2.6 Software

HSI data has been treated using the following software: STATIS-
TICA(Tulsa,OK);38TheUnscramblerv9.1 (CamoProcess,Oslo,
Norway);39MATLABv7.0 (MA,USA),40PLS toolboxbyEigen-
vector Research, Inc. and TRAJAN v 3.0 (Horncastle, UK).41

3 Results

3.1 Factor Analysis

The software STATISTICAwas used to perform FA on the data.
The data used for this analysis was the spectra corresponding to
the seven types of different components, since they represent the
whole variety of substances studied.

Figure 4 shows how the weight of the Eigenvalue associated
to each factor decreases for less important factors, being the
seventh factor the last one having a value greater than 1. Accord-
ing to Kaiser’s rule, it can be seen that FA distinguishes the main
species forming renal calculi.

Taking into account these results, a PCA analysis was carried
out in order to create a model that is able to classify the different
types of kidney stones analyzed.

Fig. 3 HSI based architecture employed for the acquisition of the
kidney stones spectra.
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3.2 Principal Components Analysis

PCA was used for screening the spectral data. It was useful for
selecting variables before performing the classification, which
was made using ANNs.

3.2.1 PCA on each type of renal calculi: identification
of outliers

To determine the existence of outliers within the raw data, a
PCA analysis was performed on the seven types of kidney
stones, including each type of different samples of the same che-
mical composition. The data was cleaned in order to have a more
reliable database.

The elimination of any point from the original samples is a
crucial step, since it decreases the variability of the system.
Moreover, there is no way to be completely positive whether
a sample is correctly considered as an outlier. Hence, the criter-
ion for the determination of outliers was based on the variability
of the spectra. Due to the biological nature of the samples, the
structure of the crystals that form the kidney stone might contain
organic matter. Moreover, the surface measured may not be
completely regular (even after cutting with a surgical knife),
thus having a reflectance value differing from the average of
the group.

The software ‘The Unscrambler’ was used to perform PCA
analysis on 5 ROIs for every type of each group of samples con-
sidering each ROI as a different sample in terms of the software
application. In this very first step, the whole range of variables
was taken into account for the calculations, that is, 97 variables.
By organizing the data, it was possible to check if any of the
regions or even a whole sample was really different from
the rest.

A point was considered an outlier if it was located outside the
Hotelling T2 ellipse of the scores plot. Nonetheless, a sample
was not considered if many regions of it were in such a position.
In this way, the over-fitting of the data was avoided.

3.2.2 PCA on the seven main groups of renal calculi

After cleaning the data, a PCAwas performed on the seven main
groups of renal calculi in order to create a model able to cor-
rectly classify the kidney stones studied. This model was

done taking all variables into calculation. The efficiency was
checked by means of cross-validation and all data was mean
centered.

Firstly, the model was directly calculated from the acquired
reflectance spectra. Figure 4 Model A shows that, in this case,
the two first PCs stand for the 95% of the variance of the model,
having the rest of PCs a really low value.

In order to get a wider distribution of the variance of the data,
the first derivative of the raw spectra was calculated. This step
requires a previous smoothing of the data, which was done by
means of the Savitzky-Golay algorithm, using a 5-point win-
dow. In this case, a much distributed explanation of the variance
is seen; namely, up to 7 PCs are needed to explain the 96% of the
variance for the model (Fig. 4 Model B).

Consequently, it can be concluded that first derivative mag-
nifies the slight differences existing between the seven groups of
renal calculi. For this reason, the first derivative of the spectra
was used for further treatment of the data.

3.2.3 Variable selection

Multivariate methods can certainly give a higher amount of
information than univariate ones, though many variables from
the measured range might not give valuable data, but noise.
In this sense, we can take advantage profit from the fact that
one of the basic statements of PCA is the reduction of number
of variables, by taking only the information contained in the
independent variables. Actually, not all the regions of the
NIR spectrum give relevant information to the model. Then,
by choosing those wavelengths with the greatest classification
capabilities, the noise of the system is reduced thereby increas-
ing its precision and simplifying the calculations.

To achieve this goal, the selection of variables is based on
their loading value. In a PCA analysis, the loadings stand for
the weight that every real variable has on each of the principal
components. The wavelengths to be taken into further calcula-
tions are those that have a highest value for the loading for each
PC. The representation of the loadings of every wavelength for
each PC (Fig. 5) is a clear way to see the most important wave-
lengths, since it can be seen which regions of the spectrum are
mostly influencing for a given PC. On the other hand, the
regions of the spectrum that have a bigger weight on a given

Fig. 4 Eigenvalues for the seven main groups of renal calculi and explained variance for the PCA model. Model A: reflectance data, Model B: first
derivative.
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PC should correspond to the vibration wavelength of the
compound classified by this PC.

Following the above mentioned path, it was possible to
define the variables defining every compound from the informa-
tion in Fig. 5 and the representation of the scores values, see
results in Table 1.

3.3 ANN: Optimization of the Neural Network

The software ‘TRAJAN’ was used for creating the ANN model,
using the first derivative of the reflectance spectra measured.

The raw data of the spectra contain all the measured wave-
lengths, so in order to decrease the number of variables in the
system 50 wavelengths were selected according to the values of
the loadings for each wavelength, as shown in Fig. 5. In this
way, a matrix of 140 samples (seven main types of kidney
stones) and 50 variables was used for the analysis.

The ANN to be optimized was defined as: (inputs, number of
nodes in the hidden layer, outputs), where inputs stand for
the number of samples used to create the model, and outputs,
the number of types of kidney stones, that is (140, n, 7). The
value for the outputs was a single variable, which could take
up to seven different nominal values.

The algorithm used for the optimization of the structure was
the backpropagation. After the optimization of the ANN, it was
seen that the optimum number of nodes in the hidden layer was
four, and the value after which a non decrease in the RMS error24

was observed. To avoid an overfitting of the model, no more
nodes were used.

4 Discussion

4.1 PCA and Variable Selection

It has been seen that PCA allows for the determination of the
main variables that define the system. For instance, the scores
and loadings for PC2 can be also analyzed (see Fig. 6). In this
case, AUA and CYS have opposite scores sign, meaning that
PC2 is clearly differentiating between these two components.
PC2 is well defined with positive loading values for wavelengths
from the ranges 1188 TO 1230 nm and 1440 to 1542 nm. All
these vibrations are associated to C–H bond vibrations. This
association perfectly fits with the structure of cystine, since
this is the only component of the studied set which has C–H
bonds. On the other hand, wavelengths 971 to 978 nm and
1083 to 1167 nm have negative loading values for PC2. In

Fig. 5 Loadings of each variable for the seven first PCs.

Table 1 Characteristic NIR vibrations for each type of renal calculi.

Type of kidney stone Characteristic PC Λ with highest loading (nm) Associated NIR vibrations

CYS PC1 < 0 · · · PC2 > 0 1188–1230, 1440–1542 CH, CH2, CH3

AUA PC1 < 0 · · · PC2 < 0 971–978, 1083–1167 Ar-OH

COD PC3 > 0 · · · PC2 > 0 1426–1475 H2O
COM PC3 < 0 · · · PC4 > 0

BRU PC3 < 0 · · · PC4 < 0 1223–1244 CH

HAP Not well defined
STR
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this case, the associated bond vibrations are the Ar-OH, which
can be related only to AUA.

Additionally to this case, some other data defining the rest of
compounds can be observed in Table 1. Clearly, the vibration
differentiating COM and COD is the band for water.

It canbeappreciated that theNIRbands thatdefineBRUappear
in the rangeofC–Hvibrations.This factmight be explaineddue to
especially high amount of organic matter contained in BRU cal-
culi, since no C–H bonds are found in brushite structure.

The main drawback the PCA has shown was the difficulty to
distinguish HAP and STR results which can be clearly seen in
Fig. 6, where these two compounds appear as two overlapped
clusters. These results can be understood because of their very
similar composition. Struvite calculi are basically hydroxyapa-
tite stones with a variable amount of struvite crystals spread
within the whole stone. It means that most of the sample is simi-
lar to a pure HAP kidney stone.

Though the only exception of HAP and STR renal calculi,
the PCA analysis has shown to be useful for the classification
of the components of kidney stones.

4.2 Image Analysis

A different PCA analysis was also performed on the seven
groups of kidney stones, taking directly the hyperspectral
cube and using the software MATLAB.

One sample from each type of kidney stone was analyzed,
getting a classification pixel-by-pixel. As in the previous
PCA, the data used was the first derivative of the spectra and
the data were again mean centered.

Some samples considered pure compounds (as characterized
by means of stereoscopic and SEM-EDS microscopies) were
used to create a model for later classification of unknown
samples.

The identification of the different compounds was done by
interpretation of the colors obtained when creating reconstructed
RGB images from the hyperspectral cube. When using this kind

of representation, the scores values for each of the 3 PCs used
for the plot will determine the color of the pixel.

Figure 7 shows different colors for each kind of kidney
stones, providing a simple way to distinguish a type among
the others, except for STR and HAP. Indeed, the results obtained
analyzing the hyperspectral cube completely matched with those
obtained by taking ROIs from the samples.

Moreover, the software allows the selection of a group of
pixels from the scores representation. Therefore, it is possible
to identify which area of a sample or group of samples contain
a given compound, when the scores values of each one
are known.

An example is shown in Fig. 8. Three different areas are
highlighted: COD, COM, and the interface, namely TRA.

Fig. 7 RGB image for the seven main groups of renal calculi.

Fig. 8 (a) Image of the real stone; highlighted: (b) COD, (c) COM, and
(d) TRA.Fig. 6 3D representation of scores for PC1, PC2, and PC3.
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This last compound is the result of the slow change that the
COD (kinetic derivative) undergoes into COM (more stable).

4.3 ANN Performance

The model was applied to the seven groups of main compounds
forming kidney stones, using the previous conditions. The
results, checked with cross-validation leave-one-out, show up
to 100% of accuracy for the classification.

The next step was to further reduce the number of variables
in the system, so that the foretold advantages of the variable
reduction become clearer. With only 30 wavelengths selected,
the accuracy for the classification remained at 100%.

When even less variables are taken for the calculations, the
percentage for right classification dropped down to 95% at most.
Consequently, the final choice was the model including 30
wavelengths.

However, due to the importance of a precise classification
regarding the diagnostic for the patient, the really interesting
objective is the classification of 11 groups of different types
of kidney stones, that is, the seven main compounds and
their mixtures.

Thus, an optimization of a new ANN model, capable for the
classification of this much more complex data was required. For
this purpose, 50 wavelengths were introduced as variables,
being the structure of the optimized ANN (215, 13, 11). In
this case, the rate of well-classified samples reached 94.4%.
The reader is referred to Table 2 for the accurate classification
of the set of 215 samples of kidney stones used for this study
showing the classification obtained by the conventional techni-
que and that developed in the present work.

Table 2 Comparison between the results obtained using conventional
techniques (stereoscopic microscopy and SEM) and the new developed
methodology (HSI-ANN). Note: For the classification of the samples by
HSI, a library of substances was defined with some stones considered as
pure compounds. The items highlighted are the erroneously classified.

Sample
Classification

conventional tech. Classification HSI

1 COM COM

2 COM COM

3 TRA TRA

4 MXD MXD

5 AUA AUA

6 COM COM

7 STR STR

8 TRA TRA

9 HAP HAP

10 COM COM

11 MXL MXL

Table 2 (Continued ).

Sample
Classification

conventional tech. Classification HSI

12 COM COM

13 COD COD

14 AUA AUA

15 AUA AUA

16 STR STR

17 COD COD

18 STR STR

19 HAP HAP

20 MXD MXD

21 COM COM

22 COM COM

23 COM COM

24 MXD MXD

25 AUA AUA

26 AUA AUA

27 COD COD

28 AUA AUA

29 COM COM

30 HAP HAP

31 MXD MXD

32 MXL MXL

33 TRA COM

34 STR STR

35 MXD MXD

36 COM COM

37 COM COM

38 AUA AUA

39 AUD AUD

40 STR STR

41 TRA TRA

42 TRA TRA

43 COM COM

44 COM COM

45 HAP HAP
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Table 2 (Continued ).

Sample
Classification

conventional tech. Classification HSI

46 COD COM

47 MXD MXD

48 MXL MXL

49 TRA TRA

50 TRA TRA

51 COM COM

52 AUA AUA

53 AUA AUA

54 COD COD

55 COD COD

56 COM COM

57 AUA AUA

58 HAP HAP

59 BRU BRU

60 HAP HAP

61 TRA TRA

62 COM COM

63 AUA AUA

64 COM COM

65 COM COM

66 STR STR

67 COD COD

68 COD COD

69 MXL MXL

70 HAP HAP

71 COM COM

72 TRA COD

73 AUA AUA

74 AUA AUA

75 STR STR

76 STR STR

77 TRA TRA

78 COM COM

79 COM COM

Table 2 (Continued ).

Sample
Classification

conventional tech. Classification HSI

80 MXD MXD

81 AUA AUA

82 COD COD

83 HAP HAP

84 COD COD

85 COD COD

86 COM COM

87 AUD AUD

88 MXL MXL

89 TRA TRA

90 TRA COM

91 TRA TRA

92 COM COM

93 COD COD

94 COM COM

95 STR STR

96 MXD MXD

97 HAP HAP

98 BRU BRU

99 AUD AUD

100 COD COD

101 COD COM

102 AUA AUA

103 HAP HAP

104 HAP HAP

105 TRA TRA

106 COM COM

107 COM COM

108 COM COM

109 COD COM

110 CYS CYS

111 STR STR

112 STR STR

113 TRA TRA
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Table 2 (Continued ).

Sample
Classification

conventional tech. Classification HSI

114 HAP HAP

115 BRU BRU

116 MXL MXD

117 TRA TRA

118 TRA TRA

119 COD COD

120 COD COD

121 HAP HAP

122 COM COM

123 MXD MXD

124 AUD AUD

125 BRU BRU

126 AUA AUA

127 AUA AUA

128 TRA TRA

129 CYS CYS

130 MXL MXL

131 AUA AUA

132 TRA TRA

133 COM COM

134 STR STR

135 AUD AUD

136 COD COD

137 AUA AUA

138 MXL MXL

139 COM COM

140 AUD AUD

141 AUA AUA

142 BRU BRU

143 TRA COM

144 COD COD

145 COD COD

146 COD COD

147 COM COM

Table 2 (Continued ).

Sample
Classification

conventional tech. Classification HSI

148 COM COM

149 HAP HAP

150 CYS CYS

151 AUD AUD

152 AUA AUA

153 TRA TRA

154 TRA TRA

155 AUD AUD

156 MXL MXL

157 BRU BRU

158 COD COD

159 MXD MXD

160 MXD MXD

161 COM COM

162 STR STR

163 COM COD

164 TRA TRA

165 COD COD

166 HAP HAP

167 CYS CYS

168 CYS CYS

169 AUD AUD

170 STR STR

171 AUD AUD

172 TRA TRA

173 COM COM

174 COM COM

175 AUA AUA

176 AUD AUD

177 MXL MXL

178 BRU BRU

179 CYS CYS

180 AUD AUD

181 COD COD
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As seen in this Table, the error for the last model, including
all types of kidney stones, is only slightly higher than that for the
simpler model. Nevertheless, the second model offers a great
advantage, since it is able to deal with any of the kidney
stone types usually found. The prediction differences between
the newly developed methodology and the conventional techni-
ques involve basically calcium oxalate kidney stones. Consider-
ing the similar nature of those types of stones and the fact that
their composition often includes mixtures of lithogenic sub-
stances, observed differences appear to be logical. Information
collected in Table 3 summarizes the results discussed here that
represent an efficient classification of kidney stones from a very
simple methodology.

In this work, the suitability of the NIR-HSI technique with
the use of ANNs for the characterization of kidney stones has
been demonstrated. The regions of the NIR reflectance spectra
that have the strongest power for the classification of the differ-
ent components have been identified. The use of ANNs for the
hyperspectral data treatment has proved to produce similar
results to those obtained from conventional techniques, includ-
ing samples containing compound mixtures. However, it is
important to remark that the conventional methodology requires
trained operators, whereas ANNs perform the classification
independently from the operator’s knowledge.

The implementation of this developed methodology as a rou-
tine analysis in medical practice might be achievable for a clin-
ical laboratory, and it would be simple to perform. The method
requires little training for its use, and no special knowledge
about chemistry is needed. Once the software has been installed
in the computer, the fast measurements allow a quick and easy
classification of the stones. This application would allow obtain-
ing a faster and much robust diagnosis, increasing the quality of
treatment to each specific patient.

Table 2 (Continued ).

Sample
Classification

conventional tech. Classification HSI

182 COD COD

183 STR STR

184 MXD MXL

185 AUD AUD

186 HAP HAP

187 TRA TRA

188 HAP HAP

189 AUD AUD

190 COM TRA

191 AUD AUD

192 STR STR

193 STR STR

194 COD COD

195 CYS CYS

196 BRU BRU

197 BRU BRU

198 TRA TRA

199 TRA TRA

200 TRA TRA

201 COM COM

202 CYS CYS

203 AUD AUD

204 COD COD

205 AUA AUA

206 AUA AUA

207 MXD MXL

208 CYS CYS

209 CYS CYS

210 BRU BRU

211 STR STR

212 STR STR

213 HAP HAP

214 AUD AUD

215 AUA AUA

Table 3 Percentage of samples correctly classified by the developed
HSI-ANN methodology.

Type of
kidney stone

No. of
samples

No. samples
correctly classified

% of correct
classification

COM 39 37 94.9

COD 27 24 88.9

TRA 27 23 85.2

HAP 18 18 100

STR 19 18 100

MXL 10 9 90

MXD 13 11 84.6

BRU 25 25 100

AUA 17 17 100

AUD 10 10 100

CYS 10 10 100

Total 94.4
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