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Abstract. Medical diagnosis of biopsies performed by fine needle aspiration has to be very reliable. Therefore,
pathologists/cytologists need additional biochemical information on single cancer cells for an accurate diagnosis.
Accordingly, we applied three different classification models for discriminating various features of six breast cancer
cell lines by analyzing Raman microspectroscopic data. The statistical evaluations are implemented by linear dis-
criminant analysis (LDA) and support vector machines (SVM). For the first model, a total of 61,580 Raman spectra
from 110 single cells are discriminated at the cell-line level with an accuracy of 99.52% using an SVM. The LDA
classification based on Raman data achieved an accuracy of 94.04% by discriminating cell lines by their origin
(solid tumor versus pleural effusion). In the third model, Raman cell spectra are classified by their cancer subtypes.
LDA results show an accuracy of 97.45% and specificities of 97.78%, 99.11%, and 98.97% for the subtypes basal-
like, HER2þ ∕ER−, and luminal, respectively. These subtypes are confirmed by gene expression patterns, which
are important prognostic features in diagnosis. This work shows the applicability of Raman spectroscopy and stat-
istical data handling in analyzing cancer-relevant biochemical information for advanced medical diagnosis on the
single-cell level. © 2013 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.18.4.047001]
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1 Introduction
With 1.3 million new cases and 458,000 deaths worldwide in
2008, breast cancer is one of the most common cancer in
females.1 Increasing incidences of male breast cancer 2 should
not be underestimated, with about 13,000 new cases world-
wide annually.3 Hence, the very early detection and quick
sampling of palpable breast masses combined with an unam-
biguous medical diagnosis is of utmost importance to reduce
mortality rates of breast cancer patients. Conventional diagnos-
tic techniques for tissue and cell collection are surgically
implemented biopsy, punch biopsy, and fine needle aspiration
biopsy (FNAB), followed by extensive cytological evaluation.
In comparison to punch biopsies, FNAB is known to be a min-
imally invasive, very fast,4,5 and cost-effective technique,4–6

accompanied by a low traumatization of breast tissue because
of the very small needle diameter.

Rosa4 has outlined developments in cell collection tech-
niques from 1847 to date. She mentioned that needles with a
smaller diameter (improved from 18-gauge to 22-gauge needles)
were employed, and the experience of clinicians and patholo-
gists is increased. Further, cytological examinations were
advanced by sophisticated staining techniques. Hence, the
increasing diagnostic accuracy has a large share in today´s
popularity of FNAB. At this point it is necessary to mention
that the rates of patients with false-positive results who undergo
a biopsy after 10 mammograms or 10 clinical breast examina-
tions are enormous, with 18.6% and 6.2%, respectively.7

Ariga et al.8 illustrated the precision in estimating palpable
breast lesions by means of FNAB without image guidance. They
accomplished examinations of 1158 fine-needle aspirates over
almost 20 years. Here, malignant FNA results have been diag-
nosed with an accuracy of 99%. The otherwise suspicious FNA
results needed to be examined by adjuvant clinical diagnostic
techniques because they bear ambiguous features, which com-
plicate an accurate diagnosis by pathologists and cytologists.

Also, Alkuwari et al.9 described FNA as a sensitive and spe-
cific method for detecting breast cancer metastasis. In all 115
cases of axillary lymph node FNAs, they achieved an overall
sensitivity of 65%, and the specificity was 100%.

Further studies by Mansoor and Jamal10 in 2002 achieved an
overall diagnostic accuracy of 93% on 72 FNA cytologies. They
compared their results with 27 other studies between 1975 and
2002, and revealed diagnostic results of malignancy for FNAs
with sensitivities between 66% and 100%, and specificities
between 82% and 99%.

A recent study6 worked out that the differences in grading
results of palpable breast lesions applying FNAB or core-needle
biopsy (CNB) with image guidance are comparably low, with an
accuracy of 96% for both cases. They have achieved sensitivities
of 89% and 100% for FNAB and CNB, respectively, while the
specificity for FNAB and CNB accounted for 98% and 90%,
respectively.

All these studies demonstrate that there is a broad range of
sensitivities and specificities for diagnostic FNA results.
Suspicious FNAs are also commonly occurring because of
unavoidable limitations of FNA, like a limited cellular amount
of the tumor and problems during histological examination.10Address all correspondence to: Jürgen Popp, University of Jena, Institute of
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Here, it is complicated to obtain an accurate differentiation
between malignant and benign breast lesions. Accordingly, the
diagnosis of suspicious FNAs requires additional and cost-
intensive surgical biopsies5 to clarify the breast lesions. These
facts imply that the diagnostic accuracy is extremely dependent
on the clinician’s experience taking samples and the expert
knowledge of pathologists and cytologists. Hence, improving
diagnostic techniques associated with higher diagnostic accu-
racy would make such additional surgical operations dispen-
sable. Biochemical information on the molecular level of
protein, lipid, and nucleic acid structures11 would enhance
the cytologist´s and pathologist´s knowledge on breast cancer
lesions.

Aside from commonly used staining techniques like hema-
toxylin and eosin stain, papanicolaou stain, or May-Grunwald
Giemsa stain, Raman microspectroscopy is a valuable technique
for collecting supplementary biochemical information without
staining. Raman microspectroscopy is a noninvasive and label-
free technique that enables the investigation of biological systems,
e.g., eukaryotic12 and prokaryotic cells.13–15 Hence, Raman
spectra can be recorded from single cells just after FNAB because
only a minimal sample preparation is needed, and Raman signals
are unimpaired by aqueous ingredients. This fact allows a
following application of cytological staining techniques on the
same sample. The combination of chemometric evaluation meth-
ods and Raman spectroscopy has been successfully applied for
bacterial identification16–18 and differentiation of benign and
malignant cells.11,19–21 Already, in 1995, Frank et al.22 character-
ized pathological alterations in breast tissue by applying Raman
spectroscopy. They highlighted the diagnostic potential of the
biochemical information provided by Raman spectra.
Thereupon, Haka et al.23 studied an algorithm that describes
precise chemical alterations that are associated with breast dis-
eases. They emphasized that the biochemical information based
on the contribution of lipid and collagen are diagnostically rel-
evant. Accordingly, the results showed an increased amount
of collagen in pathological tissues, whereas normal tissue reveals
a larger amount of fat. The FT-Raman spectroscopic investiga-
tions on normal and tumoral human breast tissue by Bitar et
al.24 also demonstrated that Raman spectra provide diagnostically
relevant information. They distinguished between normal tissue
and six pathological subtypes of breast tissue by utilizing the bio-
chemical Raman information on the lipid content, alterations in
the collagen amount, and variations in the DNA content. Further
studies by Moreno et al.25 achieved a correct identification of
pathologically altered tissues with 98.5% accuracy by using prin-
cipal component analyses. For instance, they found different
amounts of phenylalanine in normal tissue compared to altered
tissue. Kelly et al.26 already mentioned the potential of biospec-
troscopic tools like IR spectroscopy and Raman spectroscopy
combined with multivariate analysis for supporting the diagnosis
of FNA.

In this contribution, we are aiming to improve cancer diag-
nosis of FNAB with very poor cellular amounts of breast tumors
in order to avoid insufficient diagnostic results. Therefore,
Raman microspectroscopy is utilized to study six breast cancer
cell lines (MCF-7, JIMT-1, T47-D, MT-3, BT-20, and HCC-
1143) on a single-cell level. Here, chemometric evaluation pro-
cedures are implemented to establish classification models for
the obtained Raman data. We used an SVM to discriminate
between the different breast cancer cell lines. To classify

based on the origin of extraction and on the grade of the breast
cancer subtypes, we used LDA.

2 Materials and Methods

2.1 Cell Cultures and Preparation

The cell lines MT-3, MCF-7, BT-20, T47-D, JIMT-1, and HCC-
1143 were obtained from the Department of Hematology and
Oncology at Jena University Hospital, Germany. BT-20, MCF-7,
and JIMT-1 were grown in 90% Dulbecco’s modified eagle
medium (Dulbecco’s MEM, cell culture medium) with 10% fetal
calf serum (FCS). MT-3 and T47-D were grown in 90% Roswell
Park Memorial Institute medium (RPMI) 1640 with 10% FCS.
HCC-1143 was grown in 80% RPMI 1640 with 20% FCS.

Cells were cultivated in cell culture flasks with an optimal
incubation temperature of 37°C and a constant humified atmos-
phere (90% humidity) of 5% carbon dioxide (CO2) in air. After
cultivation in cell culture flasks, cells were removed from the
flasks surface by applying trypsin. The resuspended cells were
then cultivated on fused silica slides (Frank Optic Products
GmbH, Germany) in petri dishes. For Raman analysis, fused
silica slides were removed from culture media and air-dried.

2.2 Raman Microspectroscopy

Raman measurements were carried out using the confocal
Raman microscope (CRM),27 CRM 300 (WITec, Germany).
The output of a 785-nm diode laser was focused with a 50×
numerical aperture (NA) 0.95 objective (Zeiss, Germany)
onto the sample. The back-scattered light was spectrally dis-
persed with a monochromator of 300-mm focus length and
equipped with 600 lines∕mm grating. An electron multiplying
charge-coupled device (EM-CCD) camera with 1024 × 128 pix-
els cooled down to −75°C was used for detection.

The scan mode was carried out for single cell measurements,
where a given number of line scans with a given number of
points was performed. The number of lines and points were
chosen to achieve a step size of 0.5 μm. An acquisition time of
10 s and a laser power of about 50 mW on the sample was
applied for each spectrum.

Raman data from two independently cultivated batches were
recorded at different times. The first data set comprised single
cell maps of complete cells including cell-free areas. Here, for
each cell map, a rectangular grid with approximately 50 × 70
points was defined covering the spherically formed sample
(single cell). For the second data set, one complete cell map
and a large amount of small Raman cell maps were recorded.
These small Raman cell maps were collected in the middle
of the cell with a square base of 10 × 10 points. This measure-
ment method was chosen to keep the measurement time for
a single cell sufficiently short. Accordingly, approximately
15 cells were measured in the same amount of time (approxi-
mately 12 h), which allowed us a better insight into the cell-
line diversity by studying more Raman data.

2.3 Chemometric Evaluation

The spectral analysis of Raman spectra starts with a preprocess-
ing routine, which corrects various corrupting effects, like fluo-
rescence phenomena, CCD baselines, noise, and cosmic spikes.
First, all spikes are removed from the scans with the upper
bound method,28 and a wavenumber calibration is performed.29

Thereafter, a polynomial of degree five is subtracted30 in order to

Journal of Biomedical Optics 047001-2 April 2013 • Vol. 18(4)

Becker-Putsche et al.: Toward improving fine needle aspiration cytology. . .



reduce the influence of fluorescence from the sample. At the end
of the preprocessing procedure, a principal component analysis
(PCA)31 was implemented by doing singular value decomposi-
tion (SVD) on the covariance matrix. The number of principal
components (PCs) was determined by prestudies.11,32 The opti-
mal number of PCs depends on the classifier and number of
classes. Therefore, 20 scores with 99.42% variance were used
for analysis by the SVM with six classes (breast cancer cell
lines). Thirty scores with 99.57% variance were utilized for
evaluation by LDA of the cell line origin with two classes.
Fifty scores with 99.72% variance were determined for the LDA
of the cancer subtypes (three classes).

Before starting final data analysis techniques, a further pre-
selection of Raman spectra was necessary, since Raman data of
single cell measurements (cell scans) contain Raman spectra
with substrate as well as Raman spectra with vibrational
(i.e., molecular) information of measured cancer cells. To
achieve a suitable preselection of Raman data, the cell value
was evaluated for each Raman spectrum. The cell value defines
the amount of biological information, and thus, the applicability
of each Raman cell spectrum for investigation.

max½Ið1426 − 1467 cm−1Þ�P
737−877 cm−1

I
> 0.013 (1)

In Eq. (1), the maximum peak intensity of the wavenumber
region between 1426 and 1467 cm−1, referring to biological
information (CH2), was divided by the sum of all Raman inten-
sities between approximately 737 and 876 cm−1, including
Raman signals from DNA (phosphate backbone) and amino
acids, as well as fused silica information in background. All
Raman spectra exhibiting a larger cell value than 0.013 were
assigned as cell Raman spectra, since they present an optimal
amount of biologic information. Verification was done by com-
paring white light images with visualized cell values over the
measured area. Thus, the area above the threshold of 0.013 was
accordant with the cell shape in white light images. Figure 1
shows the fingerprint region of such mean Raman spectra of
all breast cancer cell lines containing a useful amount of biologi-
cal information. These Raman spectra were then used for further
chemometric evaluations.

LDA33 was utilized to analyze the Raman spectra. Here, clas-
sification models were constructed to differentiate the cancer
cell line origin as well as the breast cancer subtypes. This is a
supervised classification technique, which creates a linear model
for separating the data into given classes. For a binary classifi-
cation task, only two classes exist (group 1 and group 2), and the
model can be written with the LD scaling vector s

→
by

s
→ ¼ Σ−1 · ðμ→1 − μ

→
2Þ: (2)

In this equation, μ
→
1 and μ

→
2 stand for both group means, and

Σ−1 represents the inverse covariance matrix. The dot product of
a Raman spectrum S

→
with s

→
is called the LD value, and is con-

verted by a threshold to a classification decision. The LD value
can be interpreted as a class membership property. In order to
evaluate the prediction properties of such a model a leave-one-
out cross-validation (LOOCV) was used, and the result is
arranged in a matrix called a confusion table.34

Another supervised classification method is the SVM.35 The
SVM seeks to construct a hyper-plane, which separates two
groups from each other, and the classification function is then

sgn

�XN
i¼1

yi · αi · ~sðiÞ · ~S − b

�
: (3)

In this equation, s
→ðiÞ are the N-support vectors, yi are their

class values, and αi are weights. A new Raman spectrum S
→
is

then classified to the group −1 or þ1 depending of the sign of
the equation above. This large margin classifier is implemented
using the library, libSVM. The parameters cost ¼ 1 and
gamma ¼ 1∕number of spectra36 were used. These are the
default parameters from the libSVM library and can be further
optimized. The SVM builds up a multiclass classifier by the one-
against-one scheme. In doing so, a binary SVM was constructed
for each breast cancer cell line combination, and voting based on
the prediction for each binary SVM provides the results for cell
line classification. Accordingly, an SVM based on the one-
against-one scheme is more suitable over other schemes for clas-
sification tasks on several groups. Therefore, SVM was utilized
for the classification of the cell lines itself. For the evaluation of
prediction properties of the SVM, a 10-fold cross-validation was
used, where the results are demonstrated in a confusion table.

3 Results and Discussion
Single cell measurements were performed on a Raman micro-
spectroscopic setup with an excitation wavelength of 785 nm,
and Raman maps were generated using a linear scanning mode.
Altogether, 110 Raman cell maps were collected. These maps
include 19, 23, 26, 16, 5, and 19 single cell maps of the breast
cancer cell lines BT-20, HCC-1143, JIMT-1, MCF-7, MT-3, and
T47-D, respectively.

After a preselection based on the calculated cell value as
mentioned in Sec. 2, a total of 61,580 Raman cell spectra (cor-
relating with 65.7% of all Raman data) were finally evaluated.
The enormous data volume, and the crucial but often minute

Fig. 1 Selected and preprocessed Raman mean spectra in the finger-
print region of the breast cancer cell lines (a) MCF-7, (b) T47-D,
(c) BT-20, (d) HCC-1143, (e) JIMT-1, and (f) MT-3. The light-gray high-
lighted wavenumber regions were chosen for preselecting cancer cell
Raman spectra from the complete cell scan data. Therefore, the maxi-
mum Raman intensity of the Raman band at approximately 1449 cm−1

was divided by the sum of Raman intensities of the wavenumber region
between 737 and 876 cm−1. The Raman spectra exhibiting a cell value
larger than 0.013were assigned as Raman spectra containing significant
cell information [see Eq. (1)].
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spectral differences in Raman spectra of cancer cells, requires a
statistically based data processing method.

Figure 1 shows selected Raman mean spectra in the finger-
print region of all breast cancer cell lines, demonstrating the
impossibility to distinguish such small spectral differences
for several thousand Raman spectra by eye. Thus, we used
supervised classification methods like SVM and LDA for
data evaluation. The classifier SVM with the one-against-one
voting scheme was used for a stable evaluation of multiclass
problems, while the LDA was used for tasks with only few
group members.

In this contribution, a classification model was created for
discriminating all Raman cell spectra by their breast cancer
cell line through application of SVM. Table 1 shows the SVM
results for all Raman cell spectra. This classification model
revealed an almost exact separation of all Raman data, with
an overall accuracy of 99.52%. Thus, the classification model
achieved specificities (true-negative rate) of 99.96%, 99.99%,
99.96%, 99.88%, 99.86%, and 99.83% for breast cancer cell
lines T47-D, MT-3, MCF-7, JIMT-1, HCC-1143, and BT-20,
respectively. Also, the sensitivities (true-positive rate) are
between 98.05% and 99.98% for cell lines MT-3 and MCF-7,
respectively. An additional correction of the internal correlation
within the Raman cell scans was implemented. In doing so,
we studied the influence of similar Raman spectra within one
cell scan on the overall classification capability of the model.
Here, the SVM yields an accuracy of 97.22%, which is in
the range of the result obtained from the correction-free model.
We refrained from using this computationally expensive correc-
tion technique in further calculations, since this evaluation
allows only the prediction of single-cell scans (by LOOCV)
and not of single Raman spectra.

A further classification model was carried out to separate all
Raman cell spectra according to their cell line origin. Here, cell
lines MT-3, BT-20, and HCC-1143 had their origin in solid
tumors (group “solid tumor”), while cell lines MCF-7, JIMT-1,
and T47-D were extracted out of pleural effusions (group
“pleural effusion”). For this issue, the supervised classification
method LDAwas utilized for separating all Raman data by their
physiological origin.

Out of a total of 30,839 Raman spectra from the solid tumor
group, 28,896 Raman data were assigned correctly and 1943

Raman cell spectra were misclassified. For Raman data from the
pleural effusions group, 29,022 Raman spectra were assigned
correctly and 1727 Raman data were misclassified out of a
total of 30,749 cell spectra.

The LDA model achieved a classification accuracy of
94.04% with specificities of 94.4% and 93.7% for group
“solid tumor” and group “pleural effusion,” respectively. The
separation experiment of various cell lines by their origin
achieved no exact classification results for both groups. This
can be seen in Fig. 2 as an overlap in the histogram (right-
hand side) and in detail in the distribution of the single spectra
(left-hand side). An explanation for these results is that the cell
lines undergo enormous changes during their establishment and
maintenance.

Table 1 Confusion table with classification results for six breast cancer cell lines, T47-D, MT-3, MCF-7, JIMT-1, HCC-1143, and BT-20, generated by
SVM plus corresponding specificities and sensitivities.

True labels

Predicted labels

T47-D MT-3 MCF-7 JIMT-1 HCC-1143 BT-20 Sensitivity (%)

T47-D 13205 1 0 39 15 1 99.58

MT-3 0 8246 0 0 1 0 99.98

MCF-7 2 0 4362 0 5 80 98.05

JIMT-1 38 1 0 12952 45 3 99.33

HCC-1143 9 0 0 21 11762 1 99.74

BT-20 7 0 25 0 4 10763 99.67

Specificity 99.96% 99.99% 99.96% 99.88% 99.86% 99.83%

Fig. 2 Linear discriminant analysis (LDA) results for classification of
breast cancer cell lines by their origin of extraction (group “pleural effu-
sion” versus group “solid tumor”). The scatter plot and the histogram
show the distribution of single Raman spectra for the group “solid
tumor” containing Raman data of MT-3, BT-20, and HCC-1143 (tri-
angle) and for the group “pleural effusion” comprising Raman data
of MCF-7, JIMT-1, and T47-D (circle).
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More interesting than the origin of cell line development is
the information on the molecular profiles of each cell line.
Accordingly, the cancer cells had been characterized by domi-
nant differences in their gene expression pattern as subtypes
namely, basal-like, HER2þ ∕ER−, and luminal A and B.37,38

Such classifications are possible because breast cancer is

established molecularly as a very heterogeneous disease.
Especially the markers like estrogen receptor (ER), progesterone
receptor (PR), and human epidermal growth factor receptor 2
(ERBB2∕HER2) were used for subtype specification.

Table 2 summarizes molecular information corresponding to
distinct subtypes for all breast cancer cell lines used here. Hence,
breast cancer cell lines MT-3, BT-20, and HCC-1143 were
assigned to the basal-like subtype (group “basal-like”), since
their status is negative for ER, PR, and ERBB2∕HER2. The
luminal A subtype corresponding cell lines are T47-D and
MCF-7 (group “luminal”), as their status is positive for ER
and PR, while for ERBB2∕HER2 the status is negative.
The subtype grading for cancer cell line JIMT-1 (group
“HER2þ ∕ER−”) indicates an assignment to HER2þ ∕ER−
subtype, because of a positive ERBB2∕HER2 status and a neg-
ative status for ER and PR.

A LDAwas carried out to discriminate Raman cell spectra by
their molecular profiles. The scatter plot in Fig. 3 shows the clas-
sification result of the LDA. Here, 95.4% of the respective
Raman cell spectra for each subtype goup were localized within
each cluster area marked with a black circle. These data correlate
with the double standard deviation (SD) for all Raman data of
each subtype group.

Table 3 displays the discrimination result for each Raman
spectrum. Consequently, out of a total of 30,839 basal-like sub-
type Raman spectra, 30,304 were classified correctly into group
“basal-like”; 12,461 Raman spectra were assigned correctly into
group “HER2þ ∕ER−” out of a total of 13,039 Raman data
for the HER2þ ∕ER− subtype; and 17,253 out of 17,710
luminal subtype Raman data were accurately classified into
group “luminal.” Accordingly, the assignment of Raman cell
data into several subtypes achieved a classification accuracy

Table 2 Subtype grading for each breast cancer cell line with corresponding subtype features used for characterization.

Cell line Subtype ER PR ERBB2∕HER2 Source Tumor type Reference(s)

MT-3 Basal − − − Primary tumor Adenocarcinoma 39–41

BT-20 Basal A − − − Primary tumor Adenocarcinoma 37, 42

HCC-1143 Basal A − − − Primary tumor Ductal carcinoma 37, 43

MCF-7 Luminal A + + − Pleural effusion Metastatic adenocarcinoma 37, 38, 42, 43

T47-D Luminal A + + − Pleural effusion Invasive ductal carcinoma 37, 38, 42, 43

JIMT-1 Her2þ ∕ER− − − + Pleural effusion Ductal carcinoma 44

Fig. 3 LDA (linear discriminant analysis) subtype classification results
for breast cancer Raman spectra. All Raman data were classified into
the groups “basal-like” (circle), “HER2þ ∕ER−” (triangle), or “luminal”
(þ). A detailed breast cancer cell line assignment to respective subtypes
is given in Table 2.

Table 3 Confusion table with discrimination results for Raman cell spectra separated by their gene expression pattern (breast cancer subtype) plus
corresponding specificities and sensitivities.

True labels

Predicted labels

Basal-like subtype HER2þ ∕ER − subtype Luminal subtype Sensitivity (%)

Basal-like subtype 30304 371 164 98.27

HER2þ ∕ER − subtype 288 12461 290 95.57

Luminal subtype 394 63 17253 97.42

Specificity 97.78% 99.11% 98.97%
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of 97.45%. Here, the sensitivities and specificity are 98.27%
and 97.78% for group “basal-like,” 95.57% and 99.11% for
group “HER2þ ∕ER−,” and 97.42% and 98.97% for group
“luminal.”

These results demonstrate the high potential of Raman
spectroscopy to extract diagnostic relevant information from
single cancer cells without the use of time-consuming staining
techniques.

4 Conclusions
In conclusion, we showed that the biochemical information in
Raman cell spectra allow for classification experiments under
various aspects on single breast cancer cells. In this proof-of-
principle study, Raman microspectroscopy was combined
with multivariate analysis, namely SVM and LDA.

The Raman data of each cell line contain significant
biochemical information so that the SVM results exhibited a
differentiation between the breast cancer cell lines T47-D,
MT-3, MCF-7, JIMT-1, HCC-1143, and BT-20 with an accuracy
of 99.51%. Furthermore, all Raman cell spectra were assigned
according to their respective origin (solid tumor or pleural
effusion) with 94.04% classification accuracy by applying LDA.

A diagnostically relevant step is the differentiation of breast
cancer cell lines by their gene expression pattern. Accordingly,
LDA revealed a classification accuracy of 97.45% with high
specificities of 97.78%, 99.11%, and 98.97% for the dis-
crimination between the breast cancer subtypes basal-like,
HER2þ ∕ER−, and luminal, respectively. These results reveal
that biochemical information in Raman cell spectra have a high
potential to acquire diagnostically relevant information on single
cells. Hence, the application of Raman microspectroscopy com-
bined with chemometric evaluation can omit extensive cytologi-
cal evaluations, and thus, will improve clinical diagnosis.

In future research, the current data should be enhanced
with more breast cancer cell lines as well as patients’ samples,
because including information on biochemical diversity, e.g., in
age, sex, ethnic background, progress of the disease, molecular
profiling, diagnosis, and therapy, would optimize the statistical
model. Identification experiments on unknown samples are
planned in future studies. Exact identification of real samples
on the single-cell level by means of Raman microspectroscopy
can support pathologists and cytologists in clinical diagnosis on
samples with suspicious FNA results.
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