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Abstract. Two-photon (2P) excitation of the second singlet (S2) state was studied to achieve deep optical micro-
scopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the
“tissue optical window” (650 to 950 nm). S2 state technique was used to investigate chlorophyll α (Chl α) fluo-
rescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P micro-
scopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S2 state of Chl α enabled the
imaging depth up to 450 μm through rat brain tissue. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
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1 Introduction
In biological and biomedical studies, most of the events or func-
tions occur in a complex tissue environment and ultimately need
to be studied in preparations as intact as possible.1,2 It is also
important to image as deep as possible in living tissues. In
brain research, optical imaging technique is still the only way
to study neural tissues with micrometer or submicrometer spatial
resolution. New methods have been applied to image the brain
with submicrometer spatial resolution, among them two-photon
(2P) microscopy offers the advantages of deeper tissue penetra-
tion3 and less photodamage, such as phototoxicity and photo-
bleaching, in comparison with conventional confocal microscopy.
2P microscopy offers micrometer scale resolution in the brain,
whereas magnetic resonance imaging techniques are limited to a
millimeter scale. To minimize strong scattering of visible light in
tissue and to obtain high quality images of deeper layers of cor-
tex, further investigation on 2P fluorescence technique becomes
important.4,5 Previous approaches to increase imaging depth
include optimization of photodetection and implementation of
regenerative amplification multiphoton microscopy.6,7 In com-
parison with the traditional 2P technique, a newly developed
technique is proposed in this study to achieve increased depth
of imaging with both excitation and emission wavelengths fall-
ing within the “tissue optical window.8”

According to Beer’s law, the imaging intensity of the carry-
ing photons (ballistic photons) is determined by the wavelength-
dependent scattering length (ls) and absorption length (la),

Iout ¼ Iin exp

�
−
�
L
ls
þ L

la

��
; (1)

where Iout is the intensity of transmitted light, Iin is the intensity
of incident light, and L is the penetration depth. To reach a
deeper layer of the tissue, a smaller absorption coefficient
(l−1a ) or scattering coefficient (l−1s ) is required for imaging in
the therapeutic optical window, also called the “tissue optical
window,” in the range from far-red to near infrared (NIR, 650
to 950 nm). Our previous study by Pu et al.8 conducted experi-
ments on Chl α-coated beads using a 2P microscope to demon-
strate and observe S1 emission from S2 excitation, but did not
investigate any imaging depth in tissues. Under the current 2P
microscopy technique, the wavelength to excite 2P fluorescence
lies in the range of ∼650 to 950 nm (red to infrared, low
energy),9–11 which is within the “tissue optical window.” The
probe agent’s emission wavelength, usually at 400 to 600 nm
(low wavelength, high energy), limits the depth of imaging.
When both the pumping and emission wavelengths are in the
“tissue optical window,” an optimal tissue penetration depth will
be reached. Nevertheless, the traditional 2P singlet (S1) excita-
tion cannot make both pumping and emission wavelengths fall
within the NIR “tissue optical window” at the same time.

The objective of this study was to test the hypothesis that by
exciting S2 state fluorescent agents with both pumping and
emission wavelength in the “tissue optical window,” the imaging
depth in tissue is increased as compared to the traditional tech-
nique using the S1 state for imaging in brain tissue.

2 Materials and Methods
Our study utilized spinach leaves covered by fresh rat brain sli-
ces at different thicknesses, and imaged the chlorophyll α (Chl
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α) fluorescence penetrating the brain tissue layer by using 2P
fluorescence and S2 technique. All procedures and animal use
were approved by the Institutional Animal Care and Use
Committee of the City College of New York.

2.1 Preparation of Spinach Leaf

Spinach leaves were purchased fresh from the local market.
Each selected fresh spinach leaf was glued onto a microscope
slide. The fresh leaf contains the light-absorbing molecule Chl α
and plant organelle chloroplast, which are essential for the proc-
ess of photosynthesis. It is known that the Chl α strongly
absorbs red and blue-violet light from S1 and S2 bands to give
the green color of leaves. The absorption of photons could drive
the molecules of Chl α from the ground (S0) state to the first
singlet (S1) or excited (S2) state, converting photon energy
into electronic excitation. There are three ways to obtain the
emission of Chl α in far-red light of ∼680 nm, (1) S1 excitation
caused by red light at a wavelength of about 630 nm, (2) S2
excitation by violet light at a wavelength of 404 nm,12 or
(3) S2 excitation by 2P at a wavelength of 800 nm, which gives

a nonradiative process from S2 to S1 following 2P excitation.
Figure 1 illustrates the mechanism of one-photon (1P) and 2P
excitation of S1 and S2 bands of Chl α [Jablonski energy level
diagram, Fig. 1(a)], and the measured absorption and fluores-
cence spectra of Chl α [Fig. 1(b)].

The absorbed photons excite Chl α from the ground state (S0)
to the S1 or S2 excited states, converting photon energy into
electronic excitation. The decay of excited Chl α to the S0 state
can be achieved by emitting photons from S1 directly or after the
nonradiative process from S2 to S1. The latter plays a key role in
2P-excited S2 for deep imaging.

2.2 Preparation of Brain Tissue Sample

A Wistar rat (P10) was decapitated, the brain was transferred
into a chilled oxygenated Ringer solution containing (in milli-
molar) (126 NaCl; 2.5 KCl; 1.25 NaH2PO4; 2 CaCl2; 1 MgCl2;
10 glucose; 26 NaHCO3; 5 pyruvate; pH 7.40 to 7.45) and then
was rapidly embedded in 2% low melting point agarose and
processed for coronal sectioning using a compresstome (VF300,
Precisionary Instruments, Greenville, North Carolina). Brain tis-
sue slices (in an elliptical shape, ∼6 × 5 mm2 for the long and
short diameters, respectively) were cut at the thicknesses of
200, 400, 450, and 500 μm, and then were quickly transferred
one at a time to a gridded container filled with oxygenated
Ringer solution.

Each brain slice was carefully placed on top of a fresh spin-
ach leaf and a cover slip was placed on top of the brain tissue.
Chlorophyll α in fresh spinach leaf samples was imaged with 2P
microscopy. Experiments were conducted one by one on the
samples covered by 0, 200, 400, 450, and 500-μm-thick brain
tissues, respectively. All sample preparations and measurements
were performed at room temperature.

2.3 Multiphoton Microscope and Image Collection

Twelve-bit two-dimensional images were captured by a multi-
photon microscopy system (Prairie Technologies Inc., Middleton,
Wisconsin) equipped with a Ti:Sapphire femtosecond laser
source (<140 fs, Coherent Inc., Santa Clara, California), as illus-
trated in Fig. 2. The excitation wavelength 800 nm was used to
achieve the 2P pumping S2 band of 400 nm and to accomplish
fluorescence imaging in Chl α’s spectral range of around

Fig. 1 (a) Jablonski diagram of energy level that was pumped to S1
and S2 excited singlet state by 1P or 2P absorption; (b) Chl α spectra
of measured absorption (solid line) and fluorescence (dotted line).

Fig. 2 Schematic diagram of the two-photon microscopy system for
the second singlet (S2) state excitation.
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680 nm. This is the optimal condition for studying 2P S2 exci-
tation of Chl α due to the strong S1 band absorption and emis-
sion at 680 nm. Images of spinach leaves, with regions of
interest (ROIs) 469.5 × 469.5 μm2 and 512 × 512 resolution,
were obtained by the 2P microscope with a water immersion
objective lens (20×, NA ¼ 0.5, Olympus, Center Valley,
Pennsylvania) through two-different photomultiplier tube chan-
nels, a testing channel and a control channel outfitted with a
wide band filter of 685� 40 and 525� 35 nm (Chroma
Technology, Bellows Falls, Vermont), respectively, while
other imaging parameters were kept constant.

3 Results and Discussion
Figure 3 shows 2P microscopy images of the spinach leaf under
the testing and control channels without any tissue covered. Red
or green dots inside the cells were likely the chloroplast organ-
elles which contain Chl α and other fluorescent molecules. The
red channel represented the 2P S2 state of Chl α and showed a
much stronger peak at 685 nm. The 2P microscopy images of
spinach leaves covered with 200, 400, and 450 μm freshly cut
brain slices under testing and control channels are displayed in
Figs. 4(a) and 4(b), 5(a) and 5(b), and 6(a) and 6(b), respectively.
The 2P microscopy images of Chl α can be clearly observed
under the testing channel with a 200 or 400-μm-thick brain tissue
on top, but others cannot be clearly distinguished under the con-
trol channel. With a 450-μm brain tissue covering, the testing
channel shows some vague profiles of Chl α but no profile visible
in the control channel, indicating that brain tissue with a thickness
of 450 μm is the maximum penetration depth for the Chl α at S2
state among the slices prepared in our study, while the actual
maximum penetration depth could be slightly deeper.

Figures 3 through 6 show the surface plots of emission inten-
sity in the testing channel (panel c) and control channel (panel
d). The vertical axis (z-axis) in these plots represents the fluo-
rescent intensity. More regions show higher emission intensity
in Figs. 3(c) through 6(c) than those in Figs. 3(d) through 6(d),
indicating a much stronger emission intensity of the Chl α under
the testing channel (685 nm) over the control channel (525 nm).
These surface plot results demonstrate that the optimized 2P
microscopy imaging of Chl α at 685 nm was exactly the strong
fluorescence peak of Chl α under the 2P S2 state, which leads to
an excellent tissue penetration depth of more than 450 μm and
with a much better image quality than that at 525 nm (control
channel). Although the scattering properties of the brain tissue
were likely changed shortly after it was cut into slices, experi-
ments were conducted in a sufficiently oxygenated environment
and in an acute way to keep the maximum penetration depth
with limited variation and to avoid a reduction in the maximum
penetration depth. The technique of combining 2P and S2 to
achieve deep tissue imaging can be further optimized and tested
with in vivo experiments of the brain vasculature13 and neural
structures.9

In order to quantify the emission through the tissue, in each
image, five different ROIs with peak intensity were selected and
another five ROIs were also selected from the background. The
integrated light intensity of each region was calculated and
then averaged for each image as Ipeak and Ibackground. Figure 7
shows the normalized intensity Inormalized ¼ ðIpeak − IbackgroundÞ∕
Ibackground for each test group. As the thickness of the covering
tissue increased from 0 to 400 μm, the intensity in the control
channel dropped tremendously from 119 to 7, whereas that in
the testing channel dropped from 183 to 140.

In contrast to diffusion optical tomography that studies the
multiple scattering optical imaging,14 2P microscopy technique
explores the optical imaging using the ballistic and snake light
within a number of single scattering events governed by Eq. (1).
It is well-known that the depth resolution for light transporting
in tissue depends on the scattering coefficient (μs) and

Fig. 3 2Pmicroscopy images of Chl α in spinach leaf without covering
tissue. The excitation wavelength was 800 nm. (a) Under
685� 40-nm filter; (b) under 525� 35-nm filter; (c) surface plot of
the light intensity under 685� 40-nm filter; (d) surface plot of the
light intensity under 525� 35-nm filter.

Fig. 4 2P microscopy images of Chl α in spinach leaf covered with
200-μm brain tissue. The excitation wavelength was 800 nm.
(a) Under 685� 40-nm filter; (b) under 525� 35-nm filter; (c) surface
plot of the light intensity under 685� 40-nm filter; (d) surface plot of
the light intensity under 525� 35-nm filter.
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absorption coefficient (μa). Within the range of far-red to near
infrared, μs ≫ μa in tissue and their inverses lead to the penetra-
tion lengths in tissue, where lsð¼ 1∕μsÞ is the mean free scatter-
ing length and lað¼ 1∕μaÞ is the absorption length. In tissue, the
μs at 525 nm is larger than that at 685 nm, and therefore a higher
depth resolution is expected for 685 nm over 525 nm in 2P

microscopes. This led to the objective of the present 2P imaging
depth study. In another study,15 the scattering coefficients were
measured for fresh rat brain tissue at different wavelengths, the
corresponding la and ls can be calculated as 2 and 0.06 mm,
respectively, at a wavelength of 525 nm, and 2.2 and
0.09 mm, respectively, at a wavelength of 685 nm. van der
Zee et al.16 measured μa and μs of 40-week-old human brain
gray matter; the corresponding la and ls at a wavelength of
525 nm are calculated to be 5.88 and 0.02 mm, respectively,
at a wavelength of 525 nm, and 20 and 0.025 mm, respectively,
at a wavelength of 685 nm. Both studies evidence higher depth
resolutions at a wavelength of 685 nm.

In our previous study,8 the intensity was almost zero under
525 nm as demonstrated in Fig. 4(b) in Ref. 8, since the beads
were passively coated with Chl α by soaking in the Chl α-ethyl
solution, which could lead to nonuniform distribution of Chl α
on the surface of the beads, and did not present enough detect-
able signal from the shoulder emission at 525 nm. There are no
accessory pigments in Chl α soaked beads. The present study
used spinach leaves that contain cells and chloroplasts organ-
elles with a high concentration of Chl α and other accessory
fluorophores, such as flavins (the emission peak of S1 is close
to 525 nm), such that detectable signals could be observed at
525 nm [Fig. 3(b)]. For the first time, the present study imaged
Chl α through fresh rat brain tissue layers with 2P S2 excitation
where both the emission and excitation were in the “tissue opti-
cal window,” and can be applied for further studies.

4 Conclusions
The 2P S2 excitation of Chl α in chloroplast of spinach leaf
under brain tissue provides positive results for a deeper tissue
imaging technique in comparison with a traditional 2P micros-
copy technique. Both the excitation and emission wavelengths
fall within the “tissue optical window” and penetrate rat brain
tissue up to 450 μm. This is the first study that applies a 2P S2
state technique to investigate the imaging depth of Chl α inside
rat brain tissue. This S2 pumping technique can be potentially
used as a reference for deeper and better quality images in future
studies of brain blood vessels and neural tissue in vivo.
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