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Abstract. It is more complicated to write the analytical
expression for the fluorescence simplified spherical har-
monics (SPN) equations in a turbid medium, since both
the processes of the excitation and emission light and
the composite moments of the fluence rate are described
by coupled equations. Based on an eigen-decomposition
strategy and the well-developed analytical methods of
diffusion approximation (DA), we derive the analytical solu-
tions to the fluorescence SPN equations for regular geom-
etries using the Green’s function approach. By means of
comparisons with the results of fluorescence DA and
Monte Carlo simulations, we have shown the effectiveness
of our proposed method and the expected advantages of
the SPN equations in the case of small source–detector
separation and high absorption. © 2014 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.19.7.070503]
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In recent years, the simplified spherical harmonics (SPN) equa-
tions were applied for modeling light propagation in biological
tissues.1–5 They were considered to effectively remedy the appli-
cability of the diffusion approximation (DA) and reduce the
complexity of solving the full spherical harmonics (PN) or
the discrete ordinates (SN) equations. In a previous paper, we
derived the analytical solutions to the SPN equations in turbid
medium.3 It will thus be useful to proceed with its extension for
studying the response of fluorophores, since fluorescence spec-
troscopy/imaging has some important applications in the field of
biomedical optics.4–6

In this study, we derive the analytical solutions to the fluo-
rescence simplified spherical harmonics (FSPN) equations based
on the Green’s function method in the homogeneous turbid
medium. The eigen-decomposition strategy developed in our pre-
vious paper and the analytical methods to fluorescence diffusion

approximation (FDA) proposed by Yalavarthy and Ayyalaso-
mayajula6 are used. The analytical method validation is presented
against the Monte Carlo (MC) simulations and FDA data.

The principle of the SPN equations can be extended to the
FSPN equations as a two-stage system of excitation and emis-
sion. Here, the FSP3 equations in the steady-state domain are
given by the following system of coupled partial differential
equations:
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where μaiðvÞ ¼ μa0ðvÞ þ μsðvÞð1 − giÞ is the absorption coeffi-
cient of order i, g is the anisotropy factor, μsðvÞ is the scattering
coefficient, and subscript v represents excitation x or emission
m. ϕiðvÞðrÞ is the light fluence rate, and SðvÞðrÞ is the light
source. For the excitation process, SðxÞðrÞ denotes the excitation
light source. For the emission process, SðmÞðrÞ ¼ ϕðxÞðrÞNrðrÞ,
where ϕðxÞ ¼ ϕ1ðxÞ − ð2∕3Þϕ2ðxÞ is the total excitation light flu-
ence rate, and NrðrÞ is the fluorescence yield distribution, which
is the product of the quantum efficiency η and the absorption
coefficient of the fluorophore μaf . For FSPN equations, the par-
tially reflective boundary conditions can be used.1

In the homogeneous medium with a spatially uniform distri-
bution of fluorophores, Eq. (1) can be rewritten as

ð∇2 − AðνÞÞΦðνÞðrÞ ¼ −εðνÞSðνÞðrÞ; (2)

where ΦðvÞðrÞ ¼ ½ϕ1ðvÞðrÞϕ2ðvÞðrÞ�T , εðvÞ ¼ ½ε1ðvÞε2ðvÞ�T , with
the coefficient matrix
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and the vector εðvÞ ¼ ½3μa1ðvÞ − 14∕3μa3ðvÞ�T.
By our proposed transformation matrix Φ 0

ðvÞ¼ BðvÞΦðvÞ and
ε 0ðvÞ ¼ B−1

ðvÞεðvÞ, where B is the eigenvector and λ2
1ðvÞ; λ

2
2ðvÞ are the

two real eigenvalues of coefficient matrix AðvÞ,
3 the excitation

and emission equations can be reduced to the form of a system
of independent differential equations that are mathematically
consistent with the FDA equation

ð∇2 − λ2iðxÞÞφ 0
iðxÞðrÞ ¼ −ε 0iðxÞSðxÞðrÞ

ð∇2 − λ2iðmÞÞφ 0
iðmÞðrÞ ¼ −ε 0iðmÞNr½φ1ðxÞðrÞ − ð2∕3Þφ2ðxÞðrÞ�:

(3)

In Ref. 6, the Green’s functions for the time-domain and fre-
quency-domain FDA have been derived in detail. Here, we can
further write the universal formula of the steady-state Green’s
function for regular geometries
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where gψ fl
geoðr − r 0Þ represents the Green’s function of the emis-

sion light fluence rate, with the isotropic source δðr − r 0Þ placed
at r 0, and the subscript “geo” represents the relevant geometry
under consideration. γ2x;m ¼ c∕½3ðμax;am þ μ 0

sx;smÞ�, μax;am and
μ 0
sx;sm are the absorption and reduced scattering coefficients,

respectively, and c is the speed of light in the medium.
ζ2¼ðγ2m−γ2xÞ∕ðγ2mμaxc−γ2xμamcÞ, gψx;m

geo ðr − r 0Þ are the Green’s
functions evaluated by substituting μax and μam into excitation
and emission DA equations, respectively.

Based on Eqs. (3) and (4), we are encouraged to further
derive the Green’s functions for the FSP3 equations. For the
excitation equation, by applying the transformation relationship
of ΦðxÞ ¼ BðxÞΦ 0

ðxÞ, the Green’s function of the total excitation
light fluence rate is given by
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For the emission equation, using the result of Eq. (4) and
the principle of linear superposition theory, we can write the
Green’s function of ϕ 0

iðmÞ as
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where B1jðx;mÞ and B2jðx;mÞ denote the entry of Bðx;mÞ at the first
and second row and the j’th column, respectively, g 0

jðxÞ and g
0
jðmÞ

are the Green’s functions evaluated by substituting λjðxÞ, ε 0jðxÞ,
and λiðmÞ, ε 0iðmÞ into Eq. (3).

The Green function of the total emission light fluence rate for
the FSP3 equations can be obtained with
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The exiting flux at the boundary for the FSP3 equations can
be written as1
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where the constants Jiði ¼ 0; 1; 2; 3Þ are explicitly given
in Ref. 1.

From the above derivation, we note that if g 0
iðx;mÞ are given,

the Green’s functions for the FSP3 equations can be readily
obtained. As with our previous paper, the analytical solutions

for infinite medium and two-dimensional (2-D) circle are given
in the following section.

In the case of an infinite homogeneous medium excited by
an isotropic point source, the Green’s functions g 0

iðx;mÞ can be
expressed as3,7

g 0
iðx;mÞ ¼ ε 0iðx;mÞe

−λiðx;mÞr∕4πr: (9)

The Green’s functions g 0
iðx;mÞ of 2-D circular domain which

represents an infinite cylindrical medium excited by anaxially
parallel and infinite isotropic line source at r 0 can be expressed
as3,7

g 0
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where In and Kn are the modified Bessel functions of the first
and second kinds of n’th respectively, r is the radius of circle,
ajnðx;mÞ are unknown coefficients which can be determined by
boundary conditions.1

To demonstrate the effectiveness of the proposed method, the
analytical solutions to the FSP3 equations are compared with
FDA data and MC simulations. The turbid medium under con-
sideration is homogeneous and the entire medium can act as
a source for fluorescent light. In the following comparative
investigations, we mainly consider the effect of the different
absorption coefficients in biological tissue, and keep the others
to be constant: the scattering coefficient μs ¼ 10 mm−1, the
fluorophore absorption coefficient μaf ¼ 0.003, the quantum
efficiency of the fluorophore η ¼ 0.23, the anisotropy factor
g ¼ 0.9, and the refractive index n ¼ 1.4.

First, the analytical solution to the FSP3 equations in an
infinite turbid medium with relatively weak absorption μax ¼
0.03 mm−1 and μam ¼ 0.02 mm−1 was compared with the
FDA calculations and MC simulations. The fluorescence flu-
ence rate versus source–detector distance r (mm) and a plot of
the percentage error [ðϕfl−ϕMCÞ∕ϕMC × 100%] are shown in
Figs. 1(a1) and 1(a2), respectively. As expected, when the
source–detector separation is large, both the FSP3 and FDA sol-
utions show an excellent agreement with the MC data. However,
when the detector is placed near the isotropic source, the FSP3
shows smaller model error than FDA. Next, a similar com-
parison was performed for a highly absorbing medium. We
increased the absorption coefficient to μax ¼ 2 mm−1 and μam ¼
1 mm−1. We see that the error of the FDA solution is signifi-
cantly increased; however, the FSP3 solutions are still in a rel-
atively good agreement with the MC in Figs. 1(b1) and 1(b2).

In 2-D circular domain, the radius of circle is r ¼ 5 mm, the
isotropic point light source is placed at (r − 1∕μa1, 0 deg) and 15
detectors are distributed at equal spacing from (r, 22.5 deg) to
(r, 337.5 deg). First, we compared the exiting fluorescence
flux from the FSP3, FDA, and MC calculations with the small
absorption coefficients μax ¼ 0.03 mm−1 and μam ¼ 0.02 mm−1.
Figures 2(a1)and 2(a2) describe the exiting fluorescence flux
from the boundary versus the detection angle and a plot of the
percentage error (ðΓfl−ΓMCÞ∕ΓMC × 100%), respectively. Since
the absorption coefficient is small, it is natural to observe

Journal of Biomedical Optics 070503-2 July 2014 • Vol. 19(7)

JBO Letters



that the results obtained from FSP3 and FDA are close to MC
data, and the maximum model error is within 6.7%. Then we
increased the absorption coefficient to μax ¼ 0.03 mm−1 and
μam ¼ 0.02 mm−1. As can been seen in Figs. 2(b1) and 2(b2),
the error of FDA is more obvious than FSP3, and for the detector
at 180 deg the FSP3 and FDA errors reach a maximum of about
−29.5% and −16.8%, respectively.

In conclusion, we have derived the analytical Green’s
function for the FSP3 equations for the homogeneous turbid
medium and shown the effectiveness of our proposed method.
As expected, compared with the FDA, the FSP3 equations show
the advantages in the case of the small source–detector separa-
tion and high absorption. To the authors’ knowledge, this is the
first time that the analytical solutions are presented. Although
the analytical Green’s functions derived in this paper are limited
to the specific geometries (infinite medium and 2-D circle), the
proposed derivation process is principly concise and universally
extendable to other regular geometries. Moreover, the method is
applicable for an arbitrary order of FSPN equations.
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Fig. 1 Steady-state fluence rates versus the source–detector distance for an infinite geometry with
μax ¼ 0.03 mm−1 and μam ¼ 0.02 mm−1 (a1) and μax ¼ 2 mm−1 and μam ¼ 1 mm−1 (b1), calculated
from the FSP3, FDA, and MC, respectively, and corresponding model errors (a2), (b2).
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Fig. 2 The exiting fluorescence flux from two-dimensional circle boundary versus the detection angle,
with absorption coefficients of μax ¼ 0.03 mm−1, μam ¼ 0.02 mm−1 (a1) and μax ¼ 0.3 mm−1, μax ¼
0.2 mm−1 (b1), calculated from the FSP3, FDA, and MC, and corresponding model errors (a2), (b2).
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