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Abstract. Most studies evaluating the potential of optical coherence tomography (OCT) for the diagnosis of
oral cancer are based on visual assessment of OCT B-scans by trained experts. Human interpretation of the
large pool of data acquired by modern high-speed OCT systems, however, can be cumbersome and extremely
time consuming. Development of image analysis methods for automated and quantitative OCT image analysis
could therefore facilitate the evaluation of such a large volume of data. We report automated algorithms for
quantifying structural features that are associated with the malignant transformation of the oral epithelium
based on image processing of OCT data. The features extracted from the OCT images were used to design
a statistical classification model to perform the automated tissue diagnosis. The sensitivity and specificity of
distinguishing malignant lesions from benign lesions were found to be 90.2% and 76.3%, respectively. The
results of the study demonstrate the feasibility of using quantitative image analysis algorithms for extracting
morphological features from OCT images to perform the automated diagnosis of oral malignancies in a ham-
ster cheek pouch model. © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JB0.19.8.086022]
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1 Introduction

Optical coherence tomography (OCT) is a noninvasive imaging
modality based on the principle of low-coherence interferom-
etry. A typical OCT system consists of an arrangement similar
to a Michelson’s interferometer, where light from a low-coher-
ence source is split into two arms: the reference arm and the
sample arm. In a fiber-based implementation of OCT, the light
in the reference arm is directed back after reflection from a
mirror to a 2 X 2 fiber coupler, where it gets combined with
the backscattered light from the sample in the sample arm, to
generate an interference fringe pattern, which can be processed
to obtain the depth reflectivity profile of the sample. Data from
an OCT system are typically presented in the form of two-
dimensional (2-D) images called B-scans, in which the lateral
and axial dimensions correspond, respectively, to the sample’s
spatial dimension perpendicular (along the surface) and parallel
(along depth) to the light beam. The depth reflectivity profiles in
an OCT B-scan are called the A-lines, and several B-scans can
be collated to form a three-dimensional OCT volume. The axial
resolution of an OCT system is determined by the wavelength
and bandwidth of the light source. The typical low-coherence
light source used in an OCT system has a coherence length
of ~5 to 10 um, which makes it an attractive imaging modality
for high-resolution imaging of subsurface tissue structures.
While the diagnostic potential of OCT in fields like ophthal-
mology and coronary artery diseases' has been widely studied,
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few studies have been performed to assess the application of
OCT for the diagnosis of oral malignancies; most of which
are based on visual assessment of OCT B-scans by trained
scorers.”™ The approach of visually identifying changes in
structural features like keratinization, epithelial thickening
and proliferation, loss of basement membrane, irregular epi-
thelial stratification, and basal hyperplasia, which are associ-
ated with the malignant transformation of the oral tissue, has a
limited scope for two main reasons. First, it is extremely time
consuming and practically impossible to visually evaluate the
large amount of data obtained from a high-speed OCT system,
and second, certain properties of tissue texture, like graininess
and homogeneity, are difficult to quantify by direct visualiza-
tion. Therefore, it is highly desirable to develop automated
image processing methods that can characterize tissue mor-
phology and texture in OCT images for quantitative diagnosis
of oral malignancies.

In the context of oral cancer, very few studies®’ have
assessed the performance of computational methods for tissue
characterization. Yang et al.® analyzed the diagnostic potential
of three OCT features, namely the standard deviation of an
A-line signal, the exponential decay constant of the spatial-
frequency spectrum of an A-line profile, and the epithelial thick-
ness. These features were derived from one-dimensional A-line
profiles, which provide a partial characterization of an inher-
ently 2-D OCT B-scan image. Likewise, in a recent publication,
Lee et al.” have described a metric based on the standard
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deviation of the intensity in an OCT B-scan, similar to the pre-
vious study, to characterize the oral tissue. To make better use of
the information contained in a 2-D OCT B-scan, the standard
deviation metric described was computed over a moving 2-D
window to obtain a map of standard deviations for each OCT
B-scan. However, the authors of this study, similar to the pre-
vious study, used a simple threshold-based approach for per-
forming tissue classification and assessing the sensitivity and
specificity of the proposed features.

In this study, we present algorithms for extracting morpho-
logical features from OCT B-scans of hamster cheek pouches to
quantify structural changes like the loss of layered structure and
epithelial proliferation in oral tissue, which are known to be
associated with the progression of oral cancer. The OCT features
are subsequently used to design a statistical classification model
to discriminate between samples belonging to three histological
grades of carcinogenesis, namely benign, precancerous, and
cancerous. To obtain an unbiased measure of classification
performance, a cross-validation (CV) procedure is used, which
involves multiple rounds of classifier training and testing.
Finally, using a feature selection algorithm, a smaller subset of
most relevant OCT features is identified and its performance is
compared against the complete set of OCT features.

2 Materials and Methods
2.1 Animal Model and Protocol

The standard Syrian golden hamster (Mesocricetus auratus)
cheek pouch model of epithelial cancer was used in this
study. The animal protocol consisted of scheduled application
of a suspension of 2.0% benzo[a]pyrene (Sigma Aldrich
Corporation, St. Louis, Missouri) in mineral oil to the right
cheek of 18 hamsters three times per week for up to 32
weeks. Eleven control animals were similarly treated with min-
eral oil alone. The procedure was approved by the Institution for
Animal Care and Use Committee at Texas A&M University.
Before imaging, the hamsters were anaesthetized by an intraper-
itoneal injection of a mixture of ketamine and xylazine. The
cheek pouches of the anaesthetized animals were inverted
and positioned under the microscope objective of the imaging
system. OCT volumes were acquired from different locations on
the check pouch, which were marked with tissue ink to allow the
correlation between the imaging and biopsy sites, as shown in
Fig. 1. After imaging, the animal was euthanized by barbiturate
overdose.

Fig. 1 In vivo imaging of a hamster cheek pouch. The imaging sites
are marked with tissue ink to allow the correlation of imaging sites with
histology.
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2.2 Imaging System

The Fourier-domain OCT system used in this study was based
around a 830-nm (40-nm full width at half maximum) super-
luminescent light-emitting diode (SLED) (EXS8410-2413,
Exalos, Langhome, Pennsylvania) as the light source, providing
an axial resolution of 7.6 ym (in air). Light from the SLED
was directed to a 2 X 2 optical fiber coupler through a sin-
gle-mode fiber, where it was split into reference and sample
arms. The reflected beam from the reference mirror and the
backscattered light from the sample were recombined at the
fiber coupler, and the spectral interferogram was obtained
using a custom-designed grating-based high-speed spectrometer
(1200 lines/mm, Wasatch Photonics, Logan, Utah; bandwidth:
102 nm) and a CCD line-scan camera (Aviiva, SM2CL1014,
EV2 Technologies, Essex, England; line rate up to 53 kHz).
The detected signal was acquired and digitized using a high-
speed imaging acquisition board (PCle-1427, National
Instruments, Austin, Texas). The OCT system had a sensitivity
of 98 dB (defined by the system SNR of a perfect reflector) and
a 3-dB single-sided fall-off of 900 ym. Beam scanning over a
field of view of 2 X 2 mm [corresponding to 600 x 600 x 1024
(x X y X depth) pixels] was achieved using a set of galvo mirrors
(6230H, Cambridge Technology, Lexington, Massachusetts).
Standard Fourier-domain OCT signal processing, involving
conversion from A to k-space, resampling, and Fourier trans-
form, was performed in MATLAB (The Mathworks, Inc.,
Natick, Massachusetts).

2.3 Histological Evaluation

Biopsy samples from the imaged areas were processed follow-
ing the standard procedures for histopathology analysis (H&E
staining). On average, 10 sections per tissue sample were
obtained and each section was assessed by a board-certified
pathologist to be one of the following five grades: (1) normal
(GO), (2) hyperplasia and hyperkeratosis (G1), (3) hyperplasia
with dysplasia (G2), (4) carcinoma in situ (G3), and (5) squa-
mous cell carcinoma (G4). For classification analysis, the fol-
lowing criteria (listed in Table 1) were used to assign class
labels to each tissue sample: (1) class 1 (benign; 22 samples):
samples from the control group (15 samples) and samples for
which all histology sections were graded as G1 (7 samples);

Table 1 Summary of histopathological assessment and class
assignment for different samples.

Histopathological Number Number
grading Class of animals  of datasets
Normal hyperplasia with Benign 16 22
hyperkeratosis

Dysplasia with Precancerous 82 12
hyperplasia carcinoma

in situ

Squamous cell Cancerous 82 14

carcinoma

aThree animals were common to the precancerous and cancerous

classes, which means that these animals had both precancerous
and cancerous lesions that were considered as different datasets
for classification purposes.
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(2) class 2 (precancerous; 12 samples): samples for which at
least 50% sections were graded as G2 or G3 and none of
the sections were graded as G4; and (3) class 3 (cancerous;
14 samples): samples for which all sections were graded as
G4. Samples that could not be assigned to any of the above-
mentioned classes were excluded from the analysis.

2.4 OCT Features

Progression of oral cancer is associated with several structural
modifications of the oral tissue such as loss of the layered struc-
ture, irregular epithelial stratification, and epithelial infiltration
by immature cells. As can be seen in Fig. 2(a), different layers of
normal oral tissue can be easily identified in an OCT B-scan.
Stratum corneum, the topmost kertainized layer of the oral tis-
sue, can be seen as a bright layer at the air-tissue interface. Just
below this layer, a dark band corresponding to the stratified squ-
amous epithelium can be seen. Finally, the epithelium layer is
followed by the lamina propria, the top portion of which appears
as a region of bright intensity. In contrast, as shown in Fig. 2(b),
B-scan of a malignant oral tissue shows an absence of the lay-
ered structure. The B-scan of a malignant tissue can be seen to
have the brightest intensity at the surface that gradually fades off
with depth. Likewise, the presence of epithelial cell infiltration
in malignant oral tissue manifests as an interspersed speckled
region in an OCT B-scan as shown in the inset in Fig. 2(b),
whereas the epithelial region in a B-scan of a normal tissue
appears as a low-intensity region flanked on either side by
regions of high intensity [inset in Fig. 2(a)]. To characterize
these differences in tissue morphology between normal and
malignant tissues, we evaluated two sets of OCT features,
which shall be referred to as the A-line derived features and
B-scan derived features.

2.4.1 A-line derived features

As shown in Fig. 3 (top left), an A-line of a normal oral tissue
shows multiple prominent peaks corresponding to the different
layers of the oral mucosa, whereas for a nonlayered tissue, there
is only one prominent peak corresponding to the tissue surface
(top right). To quantify these characteristics of A-lines, we

defined two types of A-line features, which shall be referred
to as the “peaks and valleys” and “crossings” features.

To calculate these features, the A-lines were processed using
a multistep procedure outlined in Algorithm 1. Briefly, the B-
scans were first filtered in the lateral direction by using a moving
average kernel of size 60 to reinforce the layered structure in
B-scans. Next, the A-lines were filtered, in the axial direction,
by performing morphological closing (to flatten insignificant
valleys), followed by opening (to eliminate narrow peaks) by
flat structuring elements of size 10 and 5 pixels, respectively.
The intensity values of each A-line were subsequently normal-
ized to the range [0,1] by a simple shifting and scaling
procedure. Finally, for all A-lines, any spurious peaks having
a normalized magnitude of less than 0.1 were suppressed
by performing the h-maxima transformation. Details about
morphological opening and closing operations and h-maxima
transform can be found in any standard text on morphological
image processing.®

To calculate the peaks and valleys features, local maxima
(peaks) and minima (valleys) of the filtered A-lines were
detected and the following four peaks and valleys features
were computed: (1) Y- p;, (2) - pi = > vi 3) Xopi+ > v,
and (4) > (p; — (v; + vi11)/2), where p; and v; denote the nor-
malized intensity values of the i’th peak and valley, respectively.
This is illustrated in Fig. 3 (middle row). To calculate the cross-
ings features, a crossings vector of size 15 X 1 was defined for
each A-line, such that the j’th element of the crossings vector is
equal to the number of times the filtered A-line would intersect
an imaginary line drawn parallel to the x-axis (depth) and having
a y coordinate (normalized intensity value) of (20— j)/20
[shown as dashed lines in Fig. 3 (bottom row)]. Intuitively, if
an A-line has just one prominent peak, then all the elements
of the crossings vector would be two, whereas for an A-line
that has multiple prominent peaks, several elements of the cross-
ings vector would be greater than two, as shown in Fig. 3. Four
crossings features defined as the (a) mean, (b) median, (c) mode,
and (d) standard deviation of the elements of the crossings vec-
tor were computed. Overall, eight A-line derived features (four
peaks and valleys and four crossings features) were obtained for
each A-line, resulting in eight 2-D feature maps of size 600 X
600 pixels for each OCT volume.

Fig. 2 Textural differences between B-scans of a normal tissue and a malignant tissue [(a) and (b),
respectively]. Different layers of the oral mucosa can be clearly seen in the normal tissue as opposed
to the malignant tissue, where the layered structure of the tissue is absent. Magnified views of portions of
the epithelial regions (insets) show the continuous dark and bright bands in the case of a normal tissue
versus an interspersed speckled region for the malignant tissue.
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Fig. 3 Schematic illustrating the process of obtaining peaks and valleys and crossings features from
representative A-lines from a normal oral tissue (left column) and a squamous cell carcinoma tumor tis-
sue (right column). The top row shows the raw A-lines that were filtered to remove spurious peaks and
valleys. The filtered A-lines were subsequently used to compute the peaks and valleys and crossings
features. The following four metrics constituted the peaks and valleys features: (1) >~ p;, (2) Y- pi —>_ v,
B> pi+> vi,and (4) > (pi — (v; + viy1)/2), where p; and v; denote the normalized intensity values of
the peaks and valleys, respectively. To compute the crossings features for an A-line (bottom row), the
intensity axis was partitioned into 20 equal intervals (shown as dashed lines). A 15 x 1 crossings vector
(shown as a color-coded vector; also see the legend) was defined such that the j'th element is equal to
the number of times the filtered A-line intersects the j’th partition line. The mean, median, mode, and
standard deviation of the elements of the crossings vector comprised the crossings features.

2.4.2 B-scan derived features

Speckle pattern in an OCT image of a tissue sample is known
to contain information about the size and distribution of the
subresolution tissue scatterers.”'? Oral dysplasia is often char-
acterized by basal cell hyperplasia and epithelial proliferation.
The presence of dysplastic cells in the epithelium results in an
interspersed speckle pattern in an OCT B-scan [Fig. 2(b)],
which is different from the speckle pattern seen in B-scans
of normal oral tissue, where different layers appear as more
homogeneous bright and dark regions. To quantify this differ-
ence in speckle patterns, several B-scan derived texture fea-
tures were computed.

The first step in computing these features was to segment out
the epithelial region in a B-scan. In the case of a layered tissue,
the region between the first and the second peaks of filtered
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A-lines, obtained from Algorithm 1, was identified as the epi-
thelial region. In the other extreme case, where the tissue lacks
the layered structure, a simple approach based on k-means clus-
tering!! was employed to delineate the epithelial region. In this
approach, outlined in Algorithm 2, a B-scan after log transfor-
mation and normalization was clustered into three groups using
k-means clustering algorithm. The dominant foreground region
was subsequently identified as the largest connected component
of the cluster containing the pixel that has the maximum inten-
sity value. Any discontinuities in the region thus identified are
eliminated by performing an image filling operation based on
morphological reconstruction® to obtain a contiguous segmented
epithelial region. For B-scans that had both layered as well as
nonlayered regions, the epithelial region was delineated by
using the A-line based approach for the layered regions (iden-
tified as regions having A-lines with two or more peaks) or the
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Algorithm 1 Algorithm for filtering A-lines in a B-scan.

Input: bscan

Output: aline_filt_bscan

1: filt_bscan < moving average filter (bscan) > Filtered B-scan
2: for all A-lines in filt_bscan do > Along lateral direction

3: Nonlinear filtering based on morphological closing followed by
opening

4: Normalization to [0,1]

5: h-maxima transformation > To get rid of spurious peaks
6: end for

7: aline_filt_bscan « filt_bscan

8: return aline_filt_bscan

Algorithm 2 Algorithm for generating a binary mask corresponding
to the epithelial region in a nonlayered B-scan.

Input: bscan
Output: mask_filt_bscan 1> Binary mask for the epithelial region
1: log_bscan « log (bscan)

2: norm_bscan < normalize (log_bscan) > Normalize intensity
values to

3: clust_bscan « k-means (norm_bscan, 3) > Cluster in three groups

4: dom_clust_bscan « largest foreground connected component
(clust_bscan)

5: mask_filt_bscan « fill holes (dom_clust_bscan) > Using
morphological reconstruction

6: return mask_filt_bscan

k-means based approach for the nonlayered regions (identified
as regions having A-lines with only one peak).

Once the epithelial region was identified, gray-level run
length (GLRL)-based texture analysis was performed on the
segmented region. A gray-level run is a sequence of consecutive
pixels, along some direction, having the same gray-level value.
The length of a gray-level run is the number of pixels in that run.
To quantify the texture based on GLRL, a 2-D GLRL matrix for
a given direction is computed. The element (7, j) of the GLRL
matrix denotes the number of times a run of length j and
pixel value i is found in the image. The process of obtaining
a GLRL matrix for a 4 X 4 image is illustrated in Fig. 4. To
obtain texture features from a GLRL matrix, 11 different mea-
sures characterizing different textural properties, like coarse-
ness, nonuniformity, etc.,'> were computed (Fig. 4). For an
intuitive understanding, the set of 11 GLRL features can be cat-
egorized into four groups. The first group of features comprises
features that characterize image texture based on the length of
runs in an image. This group consists of the short run emphasis
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(SRE) feature, which has a higher value for images in which
shorter runs as opposed to longer runs are more abundant, as
in the case of a fine-grained texture. The other feature in the
same group is the long run emphasis (LRE) feature, which is
complimentary to the SRE feature in the sense that it has a
higher value for images in which longer runs as opposed to
shorter runs dominate. The second group of GLRL features con-
sists of features that characterize image texture based on the
gray-level values of runs in an image. These include the low
gray-level emphasis (LGRE) and the high gray-level emphasis
(HGRE) features, which increase in images that are dominated
by runs of low- and high-gray values, respectively. The third
group consists of four features, which are combinations of
the features in the first two groups. These include short-run low
gray-level emphasis (SRLGE), long-run high gray-level empha-
sis (LRHGE), short-run high gray-level emphasis (SRHGE),
and long-run low gray-level emphasis (LRLGE) features.
Finally, the fourth group of GLRL features contains features
that characterize the variability of run lengths and gray levels in
an image. This group contains four features, namely gray-level
nonuniformity (GLNU), run length nonuniformity (RLNU), and
run percentage (RP), which have self-explanatory names. The
formulae to calculate these features from a run length matrix
are listed in Fig. 4.

To take care of the possible slanted tissue orientation, the B-
scans were aligned with respect to the air—tissue interface before
computing the texture features. The GLRL features were com-
puted for both vertical and horizontal directions and for two
quantization levels, namely binary and 32 gray levels, yielding
44 B-scan—derived texture features. The GLRL texture features
for each B-scan were computed over a sliding window region of
size 60 A-lines within the delineated epithelial region, resulting
in B-scan—derived texture feature maps of size 600 x 600 for
each OCT volume. The window size of 60 A-lines was heuris-
tically determined to ensure that the region of interest was large
enough to obtain statistically meaningful textural properties,
while still being small enough to capture textural variations
within a B-scan. Both the A-line— and B-scan—derived OCT fea-
ture maps were spatially averaged (window size: 30 X 30) to
yield a total of 52 2-D OCT feature maps of size 20 X 20, cor-
responding to a pixel resolution of 100 um/pixel.

2.5 Classifier Design and Evaluation

The objective of a classification algorithm is to assign a category
or class to a new data point based on the information obtained
from an available set of preclassified data points called the train-
ing set. A data point is characterized by certain attributes or fea-
tures, and the problem of classifier design is that of estimating
the parameters of a model describing the functional relationship
between the features and class labels. The process of estimating
these parameters constitutes the training phase of a classifier
design. To evaluate the classification accuracy of a classifier,
the trained classifier is tested to predict the class of data points
in a test set which have preferably not been used for training
(i.e., not included in the training set). The predicted class labels
produced by the classifier are compared with the true class labels
of the test data (assumed to be known) to evaluate the classifi-
cation accuracy of the classifier.

To evaluate the discriminatory potential of OCT features, a
popular ensemble classification method called random forest
was used in this study. Ensemble-based classification methods
offer an attractive alternative to the traditional classification
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Fig. 4 Schematic illustrating the process of building a gray-level run length (GLRL) matrix. For a given
direction (here 0 deg), the element (/, ) of the GLRL matrix denotes the number of times a run of length j
and pixel value i is found in the image. Runs of length one, two, and three in the example image are color
coded in purple, orange, and green, respectively. Formulae to compute the 11 GLRL-derived texture

features are also listed.

algorithms to deal with complex classification problems. An
ensemble-based method, in simple terms, combines several
weak classifiers to produce a strong classifier. This often results
in an improved classification accuracy, which comes at the
expense of a higher computational overhead. The advantages
of an ensemble-based method over a single classifier have
been widely studied."® The ensemble classifier, random forest,
used in this study is an ensemble of simple decision trees
classifiers.'*

In the context of classification algorithms, a data point
characterized by n features is represented as a vector in a n-
dimensional feature space. The process of classification for a
$m$-class problem can then be thought of as partitioning the
feature space into m different regions. A decision tree classifier
partitions the feature space into disjoint rectangular regions
based on a set of recursive binary rules. This is illustrated in
Fig. 5(b) for the case of a three-class problem in a 2-D feature
space. The rules in the case of the example shown in Fig. 5(b)
are: (1) Region 1 (green): Feature 1 > 25; (2) Region 2 (red):
(Feature 1 < 25) and (Feature 2 < 20); and (3) Region 3 (blue):
(Feature 1 < 25) and (Feature 2 > 20). These rules are graphi-
cally represented as a tree shown in Fig. 5(a), where each split
point or an internal node in a tree represents a binary question
based on one of the features and the terminal nodes of the tree
represent a class label. The process of training a decision tree
involves determining the set of rules or the binary test conditions
for each internal node of the decision tree. Classifying a test data
point is straightforward once the decision tree has been built.
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Starting from the top-most node, the data point is propagated
down the tree based on the decision taken at each internal
node, until it reaches a terminal node. The class label associated
with the terminal node is then assigned to the test data point.

While decision trees have several advantages, like the ability
to handle multiclass problems, robustness to outliers, and com-
putational efficiency, they suffer from disadvantages such as low
prediction accuracy for complex classification problems and
high variance. Random forest overcomes the disadvantages of
decision trees by forming an ensemble of several decision
trees (denoted by ng. here) during its training phase.
Assuming that the training set consists of N data points charac-
terized by M features, each decision tree in a random forest is
trained over a set of M data points obtained by sampling by
replacement from the pool of training data points and f features
chosen randomly from the M original features. In this study, we
used nye. =200 and f = /M for training the random forest.
These parameters were heuristically chosen to provide a satis-
factory tradeoff between the computation time and accuracy.
To classify a new data sample, the class of the data sample is
first predicted by each decision tree and the final class predicted
by the random forest is obtained by simply taking a majority
vote of the classes predicted by individual trees. This process
is illustrated in Fig. 5(c).

To obtain an unbiased estimate of the classification accuracy,
it is necessary to test the performance of the classifier on inde-
pendent test data that has not been used for training. CV is a
commonly used, powerful resampling statistical technique for
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Fig. 5 Classification by random forest. (a) Graphical representation of the decision process in form of a
binary tree. (b) Partitioning of the feature space based on the rules of the decision tree in (a). (c) The

process of training and testing of a random forest.

estimating the generalization performance (i.e., the performance
on data that has not been used for training) of an algorithm. In
the context of classification, CV provides a means of obtaining
an unbiased estimate for classification accuracy. In this study, a
variant of the leave-one-out CV (LOO CV) method was used to
estimate the classification accuracy. In the standard LOO CV
procedure, all but one data points are used for training the clas-
sifier and the left-out data point is used for testing. The process
of training and testing is repeated in an iterative round-robin
fashion (each iteration called a fold of CV), until all the data
points are used as test data points. Since the data points in
our study correspond to pixels in 2-D feature maps, to avoid
optimistically biased accuracy estimates resulting from spatial
correlation between pixels, we performed leave-one-sample-
out CV (LOSO CV), wherein CV folds were performed over
the datasets and not pixels. In addition to the mean classifica-
tion accuracy (obtained by averaging the accuracies obtained
on individual CV folds), the classifier performance was also
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evaluated by computing the sensitivity and specificity for
each class by pooling the results of the different CV folds.

2.6 Feature Selection for OCT Features

Feature selection is a process of selecting a subset of features
from a large pool of features. The objective of feature selection
is to remove redundant (correlated) and irrelevant features while
retaining the most relevant features for building a predictive
model. Getting rid of redundant and irrelevant features not
only results in reduced computational cost, both in terms of
training and testing the model, but also provides a better under-
standing of the importance of different features in the classifi-
cation model. Due to the large number of correlated OCT
features, we used the minimum redundancy maximum relevance
(mRMR) algorithm'® to identify the most important OCT fea-
tures. mRMR is a mutual information-based powerful feature
selection method that aims at selecting features that are mutually
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different but highly relevant for classification. The choice of
mRMR was motivated by its versatility in terms of its ability
to (a) handle both continuous and discrete data types, (b)
work with multiclass classification problems and, (c) be compu-
tationally more efficient and superior to several other feature
selection methods.!” Additionally, unlike most empirical feature
selection methods, mRMR is based on a sound theoretical
understanding in that it can be seen as an approximation to
maximize the dependency between the joint distribution of
the selected features and the classification variable. The predic-
tive power of the smaller set of OCT features obtained by
mRMR algorithm was also evaluated by using training and test-
ing procedures similar to what was used for the complete set of
OCT features.

3 Results and Discussion

3.1 Epithelial Segmentation

Results of the segmentation algorithm to delineate the epithelial
region in B-scans are presented in Fig. 6. The top row in
Figs. 6(a)-6(c) shows the B-scans representative of three differ-
ent cases of tissue architecture, in terms of the presence or
absence of the layered structure. These cases include B-scans
with (1) uniformly layered appearance [Fig. 6(a)], (2) both lay-
ered and nonlayered regions [(Fig. 6(b), layered region on the
left side and nonlayered on the right side], and (3) uniformly
nonlayered appearance [Fig. 6(c)]. The bottom row in Figs. 6(d)—
6(f) shows the delineated top and bottom boundaries of the epi-
thelial region, in blue and cyan, respectively, for the correspond-
ing B-scans in the top row. It can be seen from these results that
the proposed simple segmentation procedure was able to success-
fully identify the epithelial region in all three cases. It must
be noted that to achieve the accurate segmentation of OCT
image, it is desirable that the images have minimal noise. In

the context of present research, this means that the OCT images
corrupted by artifacts like bright stripes resulting from strong
backreflections from optical components would cause the pro-
posed segmentation algorithm to fail.

3.2 Classification Based on All OCT Features

Results of the random forest classification based on all OCT
features are presented in Table 2 and Fig. 7. The overall
classification accuracy estimated by the LOSO CV procedure
was 80.6%. The sensitivity and specificity values for the
three classes are presented in Table 2. The grouped bar graph
shown in Fig. 7 provides further insights into the classifier per-
formance. High values for the proportion of cancerous samples
that were classified correctly are reflected in the good sensitivity
for the cancerous class, whereas the relatively lower sensitivity
for the benign and precancerous classes results from the confu-
sion between the two classes. The confusion between the benign
and precancerous classes could possibly be due to two reasons.
First, it could be the case that the OCT features used in this study
are not discriminatory enough to provide good class separation
between the benign and precancerous classes. Second, the con-
fusion between the two classes could likely be due to mislabeled

Table2 Diagnostic sensitivity and specificity of the optical coherence
tomography (OCT) features.

Class Sensitivity (%) Specificity (%)
Benign 78.5 87.6
Precancerous 76.6 86.2
Cancerous 87.8 94.3

Fig. 6 Results of the segmentation procedure used to delineate the epithelial region in optical coherence
tomography (OCT) B-scans for the case of a layered tissue [left, (a) and (d)], nonlayered tissue [right, (c)
and (f)], and a tissue having both layered and nonlayered regions [center, (b) and (e)]. The epithelial
region is identified as the region between the blue and cyan lines shown in the bottom row [(d)—(f)].
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Fig. 7 Stacked bar graph showing the proportion of samples belong-
ing to a given class: benign, precancerous, or cancerous (x-axis, true
class) that was classified correctly (predicted as belonging to the
same class) or incorrectly (predicted as belonging to one of the
other two classes).

data points in the training data. Recall that a sample was labeled
precancerous if the histopathological evaluation of at least 50%
of sections in that sample indicated the presence of some grade
of dysplasia. This means that not all the pixels in a precancerous
sample (although all labeled as precancerous) were truly repre-
sentative of precancerous conditions. The “label noise” arising
in this way could be responsible for the confusion between the
benign and precancerous classes. The performance of the clas-
sifier for the binary case when the precancerous and cancerous
classes are pooled together to form the malignant class was
also evaluated. The overall classification accuracy in this case
was 83.7%, and the sensitivity and specificity of distinguishing
malignant lesions from benign lesions were found to be 90.2%
and 76.3%, respectively.

3.3 Feature Selection

As mentioned in an earlier section, mRMR feature selection
method was used to obtain 52 incremental feature sets
S1,82,...,85 (S CS, C--- Ssp). The sequential feature
sets are ordered such that the m’th feature set, S,,, contains
the m most discriminatory features. The mean classification
accuracies for the sequential feature sets were subsequently
computed by using a random forest—based training and testing
procedure similar to what was used for the complete set of OCT
features. Figure 8 shows the mean classification accuracies for
the 52 sequential feature sets. The plot suggests that using more
than six features does not offer a significant improvement in the
mean classification accuracy; accuracy for the best six features
being 0.804 compared with 0.809 (shown by black dashed line
in Fig. 8) for all OCT features. Specifically, the set of six most
important OCT features obtained by the mRMR algorithm
included both A-line and B-scan derived features, viz.:
(1) std (crossings), (2) LRLGE (90 deg, 32 bits), (3) RP
(0 deg, 2 bits), (4) > p;+> v (5) RP (90 deg, 32 bits),
and (6) SRHGE (0 deg, 2 bits). This suggests that using both
types of OCT features (A-line— and B-scan—derived features)
would provide better diagnostic performance than using just
one type of OCT features. From a practical standpoint, using
fewer OCT features would reduce the computational cost,
which includes classifier’s complexity and time required for
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Fig. 8 Mean classification accuracies for the sequential OCT feature
sets using mRMR incremental feature selection procedure. The
dashed black line denotes the mean accuracy obtained by using
all 52 OCT features.

training and testing the classification model, without any signifi-
cant loss of predictive power.

Based on previous discussions, it is worthwhile to mention
that the choice of random forest as the classification method was
motivated by two key considerations. First, it has been shown
that the random forest-based classification is relatively more
immune to the presence of noisy labels in the training dataset.'®
This helps in mitigating the effect of the label noise discussed in
an earlier section. Second, random forest classifiers are robust to
overfitting in the case of a large number of possibly correlated
features,'® which is evident from Fig. 8, where it can be seen that
the LOSO CV classification accuracy does not deteriorate with
increasing number of features.

4 Conclusions

Not many studies have evaluated the potential of OCT for oral
cancer detection. Even fewer studies have focused on automated
classification of OCT images. In this study, we presented the
feasibility of using image analysis algorithms for automated
characterization and classification of OCT images in a hamster
cheek pouch tumor model. We recognize that the sample size
used in this study was rather small, and a larger pool of samples
with more diverse histological presentations is therefore war-
ranted to fully substantiate the findings of the current study.
Nevertheless, the results of the present study are encouraging
and provide promise for OCT-based automated diagnosis of
oral cancer.
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