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Abstract. Difference imaging aims at recovery of the change in the optical properties of a body based on mea-
surements before and after the change. Conventionally, the image reconstruction is based on using difference of
the measurements and a linear approximation of the observation model. One of the main benefits of the linear-
ized difference reconstruction is that the approach has a good tolerance to modeling errors, which cancel out
partially in the subtraction of the measurements. However, a drawback of the approach is that the difference
images are usually only qualitative in nature and their spatial resolution can be weak because they rely on the
global linearization of the nonlinear observation model. To overcome the limitations of the linear approach, we
investigate a nonlinear approach for difference imaging where the images of the optical parameters before and
after the change are reconstructed simultaneously based on the two datasets. We tested the feasibility of the
method with simulations and experimental data from a phantom and studied how the approach tolerates model-
ing errors like domain truncation, optode coupling errors, and domain shape errors. © 2015 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.20.10.105001]
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1 Introduction
Diffuse optical tomography (DOT) is a noninvasive technique
for imaging biological tissues with applications in imaging of
human brain1–3 and breast4,5 and small animals.6,7 In brain im-
aging, DOT has been used for functional brain activation stud-
ies,1,3,8–10 imaging hemorrhages at birth,2 and stroke.7,11 DOT is
portable, which makes it a potential imaging method for bed-
side monitoring of newborn infants or adults in intensive care.8

Recently, it has also been suggested that using high-density im-
aging arrays DOT could achieve spatial resolution comparable
to functional magnetic resonance imaging.12,13 DOT has also
applications in cancer tumor diagnosis in humans and small ani-
mals.4–6

Absolute imaging in DOT uses a single set of measurements
to reconstruct spatially distributed absorption and scattering
coefficients. However, absolute imaging is very sensitive to
modeling errors, which can be caused, e.g., by inaccurately
known object shape or unknown optode coupling coefficients
or optode positions. A variety of techniques have been devel-
oped that could provide tolerance toward such modeling errors.
Some of the techniques rely on explicit calculation of coupling
coefficients from experiments14,15 or using computational meth-
ods.16,17 For estimating the domain shape, several registration
methods are available that typically use a finite set of measured
surface points to fit a generic head model, in the form of an ana-
tomical atlas.18 However, interpolating the object shape using a

few measured points does not guarantee obtaining the exact sur-
face of the patient; hence, the process might still retain modeling
errors. Also, techniques using data from other imaging modalities
such as computed tomography (CT)19 or magnetic resonance im-
aging (MRI)20,21 to obtain the domain shape and optode positions
have been proposed. Such data might not always be available.
The Bayesian approximation error approach22 is an alternative
computational technique where the statistics of such model-
based errors are precomputed using prior probability distributions
of the unknowns and the uncertain nuisance parameters. These
statistics are then used in the image reconstruction process to
compensate for the modeling errors.23–28

Nevertheless, the most popular technique for in vivo DOT
imaging has been difference imaging where the objective is
to reconstruct change in the optical properties using measure-
ments before and after the change. Conventionally, the image
reconstruction is carried out using the difference of the measure-
ments and a linearized approximation of the observation
model.3,8–10,14,29–32 In the case of imaging brain activation, the
reference measurement from the state before the change is typ-
ically obtained at the “rest stage” of a brain.8,9 In some cases,
the reference measurement can also be obtained from a homo-
geneous tissue mimicking phantom.32 In Refs. 29–31, 33, the
difference imaging problem is stated as reconstructing moment-
by-moment relative differences of the parameters using mean of
the time series of measured data as the reference data. One of the
main benefits of the linearized difference imaging approach is
that it has a good tolerance to (invariant) modeling errors, such
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as inaccurately known source and detector locations and cou-
pling as well as inaccurately known body shape. When recon-
structing images using differences in data resulting from a
change in the optical properties, several modeling errors, which
are invariant between the measurements, cancel out (partially) in
the subtraction of the measurement before the change from the
measurement after the change.14 The performance of linear dif-
ference imaging in the presence of mismodeled background
was studied in Refs. 25, 31 and in imaging objects of different
sizes and target optical properties in Ref. 29. The method was
extended for extracting dynamic information from time series
data in Refs. 33 and 34. A nonlinear (postprocessing) update
method based on spatial deconvolution of the difference images
was implemented in Refs. 34–39 to improve on the linearized
solutions. A drawback of the linear reconstruction approach is
that the difference images are usually only qualitative in nature
and their spatial resolution can be weak because they rely on the
global linearization of the nonlinear observation model. The per-
formance of the linear reconstruction also depends on the lin-
earization point, which ideally should be equivalent to the initial
state, which in practice is always unknown. According to sim-
ulations in Ref. 40, inaccurately known background optical
properties together with linear difference imaging can lead to
inaccurate contrast in the reconstructed images, and in some
cases it is possible that the method even fails to detect and local-
ize the changes.

To overcome the limitations of the linear reconstruction
approach, we apply a new nonlinear approach for difference im-
aging in DOT that has been initially developed for estimating
conductivity distribution in electrical impedance tomography
in Refs. 41 and 42. In this approach, the optical parameters
after the change are parameterized as a linear combination of
the initial state and the change. The approach is based on the
regularized nonlinear least-squares approach. Instead of using
the difference of the data before and after the change, the meas-
urement before and after the change is concatenated into a single
measurement vector, and the objective is to estimate the un-
known initial state and the change based on the data. This
approach allows naturally for modeling independently the spa-
tial characteristics of the background optical parameters and the
change of the optical parameters by separate regularization func-
tionals. The approach also allows the restriction of the optical
parameter changes to a region of interest (ROI) inside the
domain in cases where the change is known to occur in a certain
subvolume of the body. We test the feasibility of the method with
two-dimensional (2-D) simulations using frequency domain
data from a simplified head geometry and experimental fre-
quency domain data from a cylindrical phantom using three-
dimensional (3-D) models.

Since good tolerance for modeling errors such as domain
truncation, inaccurately known optode coupling coefficients,
and inaccurately known domain shape are some of the main ben-
efits of linear difference imaging, we also study how the new
nonlinear approach tolerates the same modeling errors.

The remainder of the paper is organized as follows. In Sec. 2,
a brief review of the light transport modeling in DOT is given.
Next, the absolute and difference imaging approaches in DOT
and the reconstruction algorithms are explained. In Sec. 3,
we describe the methods used in data simulation and construct-
ing the prior models. Then, we present the results in a 2-D
geometry with and without modeling errors. Next, we describe
our experimental setup and present the reconstruction results

with the experimental data. Finally, the conclusions are given
in Sec. 4.

2 Forward Model of Diffuse Optical
Tomography

Let Ω ⊂ Rn, n ¼ 2; 3, denote the object domain and ∂Ω the
domain boundary. In a diffusive medium, the commonly used
light transport model for DOT is the diffusion approximation
to the radiative transport equation. 43 In this paper, the frequency
domain version of the diffusion approximation is used,

EQ-TARGET;temp:intralink-;e001;326;622

�
−∇ · κðrÞ∇þ μaðrÞ þ

jω

c

�
ΦðrÞ ¼ 0; r ∈ Ω; (1)

EQ-TARGET;temp:intralink-;e002;326;578ΦðrÞ þ 1

2γ
κðrÞα ∂ΦðrÞ

∂k̂
¼

� Qp

γ r ∈ sp
0 r ∈ ∂Ω \ sp

; (2)

where ΦðrÞ ¼ Φ is the fluence, μaðrÞ ¼ μa is the absorption
coefficient, and κðrÞ ¼ κ is the diffusion coefficient. The diffu-
sion coefficient κ is given by κðrÞ ¼ 1∕fn½μaðrÞ þ μs

0ðrÞ�g,
where μ 0

sðrÞ ¼ μ 0
s is the (reduced) scattering coefficient. Further-

more, j is the imaginary unit, ω is the angular modulation fre-
quency of the input signal, and c is the speed of light in the
medium. The parameter Qp is the strength of the light source
at locations sp, p ¼ 1; : : : ;Ns ⊂ ∂Ω, operating at angular fre-
quency ω. The parameter γ is a dimension-dependent constant
(γ ¼ 1∕π when Ω ⊂ R2, γ ¼ 1∕4 when Ω ⊂ R3) and α is a
parameter governing the internal reflection at the boundary
∂Ω. The measurable quantity exitance ΓðrÞ by detector q
under illumination from source p is given by

EQ-TARGET;temp:intralink-;e003;326;394ΓpqðrÞ ¼ −κ
∂ΦpðrÞ
∂k̂

¼ 2γ

α
ΦpðrÞ r ∈ dq; (3)

where k̂ is the outward normal to the boundary at point r and dq,
q ¼ 1; : : : ;Nd ⊂ ∂Ω are the detector locations.

The numerical approximation of the forward model (1)–(3) is
based on a finite-element (FE) approximation. In the FE
approximation, the domain Ω is divided into Ne nonoverlapping
elements joined at Nn vertex nodes. The photon density in the
finite dimensional basis is given by

EQ-TARGET;temp:intralink-;e004;326;272Φh ¼
XNn

k¼1

ϕkψkðrÞ; (4)

where ψk is the nodal basis functions of the FE mesh and ϕk is
the photon densities in the nodes of the FE mesh. Furthermore,
we write finite dimensional (piecewise constant) approximations
for μaðrÞ and μ 0

sðrÞ

EQ-TARGET;temp:intralink-;e005;326;178μaðrÞ ¼
XN
l¼1

μa;lχlðrÞ; (5)

EQ-TARGET;temp:intralink-;e006;326;129μ 0
sðrÞ ¼

XN
l¼1

μs;lχlðrÞ; (6)

where χl denotes the characteristic functions of disjoint image
pixels.

Journal of Biomedical Optics 105001-2 October 2015 • Vol. 20(10)

Mozumder et al.: Nonlinear approach to difference imaging in diffuse optical tomography



The measurement data for frequency domain DOT typically
contains the measured log amplitude and phase for all source-
detector pairs

EQ-TARGET;temp:intralink-;e007;63;701y ¼
�
Re logðΓÞ
Im logðΓÞ

�
∈ R2NsNd ; (7)

where y is the data vector. The FE-based solution of Eqs. (1)–(3)
is denoted by AðxÞ, where

EQ-TARGET;temp:intralink-;sec2;63;635x ¼ ðμa; μ 0
sÞT ∈ R2N

is the discretized optical coefficients. The observation model is
written as

EQ-TARGET;temp:intralink-;e008;63;581y ¼ AðxÞ þ e; (8)

where e ∈ R2NsNd models the random noise in measurements.

2.1 Absolute Imaging

In absolute imaging, the optical coefficients x are reconstructed
using a single set of measurements y during which the target is
assumed to be nonvarying.

Assuming that the additive measurement noise is indepen-
dent of the unknowns and distributed as zero-mean Gaussian
e ∼N ð0;ΓeÞ,44 the estimate amounts to the minimization
problem

EQ-TARGET;temp:intralink-;e009;63;437x̂ ¼ argmin
x>0

f��Le½y − AðxÞ���2 þ fðxÞg; (9)

where the LT
eLe ¼ Γ−1

e is the Cholesky factor and fðxÞ is the
regularization functional, which should be constructed based
on the prior information on the unknowns.

Usual choices for the regularization functional include stan-
dard Tikhonov regularization fðxÞ ¼ α

��x��2, smoothness regu-
larization fðxÞ ¼ α

��Lxx
��2, where Lx is a (possibly spatially and

directionally weighted) differential operator,3,45,46 total variation
(TV)47–50 regularization fðxÞ ¼ α

��∇x��
1
, and so on.

We note that the estimate (9) can be interpreted in the
Bayesian inversion framework as the maximum a posteriori
estimate from a posterior density model, which is based on the
observation model (8) and a prior model for the unknowns.22,23,51

2.2 Difference Imaging

Consider two DOT measurement realizations y1 and y2 obtained
from the body at times t1 and t2 with optical coefficients x1 and
x2, respectively. The observation models corresponding to the
two DOT measurement realizations can be written as in Eq. (8)

EQ-TARGET;temp:intralink-;e010;63;194y1 ¼ Aðx1Þ þ e1; (10)

EQ-TARGET;temp:intralink-;e011;63;164y2 ¼ Aðx2Þ þ e2; (11)

where ei ∼N ð0;ΓeiÞ, i ¼ 1;2. The aim in difference imaging is
to reconstruct the change in optical parameters δx ¼ x2 − x1
based on the measurements y1 and y2.

2.2.1 Conventional linear approach to difference imaging

Conventionally, the image reconstruction in difference imaging
is carried out as follows. Equations (10) and (11) are approxi-
mated by the first-order Taylor approximations as

EQ-TARGET;temp:intralink-;e012;326;734yi ≈ Aðx0Þ þ Jðxi − x0Þ þ ei; i ¼ 1;2; (12)

where x0 is the linearization point and J ¼ ∂A∕∂xðx0Þ is the
Jacobian matrix evaluated at x0. Using the linearization and sub-
tracting y1 from y2 gives the linear observation model

EQ-TARGET;temp:intralink-;e013;326;679δy ≈ Jδxþ δe; (13)

where δx ¼ x2 − x1 and δe ¼ e2 − e1.
Given the model (13), the change in optical coefficients δx

can be estimated as

EQ-TARGET;temp:intralink-;e014;326;615

bδx ¼ argmin
δx

fkLδeðδy − JδxÞk2 þ fδxðδxÞg; (14)

where fδxðδxÞ is the regularization functional. The weighting
matrix Lδe is defined as LT

δeLδe ¼ Γ−1
δe , where Γδe ¼ Γe1 þ Γe2 .

The regularization functional fδxðδxÞ is often chosen to be of
the quadratic form fδxðδxÞ ¼ kLδxδxk2, where Lδx is the regu-
larization matrix. In such a case, the problem (14) is linear and
has a closed form solution13,52

EQ-TARGET;temp:intralink-;e015;326;511

bδx ¼ ðJTΓ−1
δe J þ Γ−1

δx Þ−1ðJTΓ−1
δe δyÞ: (15)

In this paper, we refer to Eq. (15) as the conventional differ-
ence imaging estimate.

The main benefit of the difference imaging is that at least part
of the modeling errors cancel out when considering the differ-
ence data δy. Hence, the estimates are often to some extent tol-
erant of modeling errors. A drawback of the approach is that the
difference images are usually only qualitative in nature and their
spatial resolution can be weak because they rely on the global
linearization of the nonlinear observation model (8). Moreover,
the estimates depend on the selection of the linearization point
x0. Typically, x0 is selected as a homogeneous (spatially con-
stant) estimate of the initial state x1. This choice can lead to
errors in the reconstructions if the initial optical coefficients are
not accurately known.25,31

2.2.2 Nonlinear approach to difference imaging

In this section, we formulate the reconstruction of the change of
optical coefficients in the nonlinear regularized least squares
framework. However, instead of reconstructing both states x1
and x2 using Eq. (9) separately for datasets yi, i ¼ 1;2 and
then subtracting δx ¼ x2 − x1, we use an approach where δx
is reconstructed together with x1 by using both datasets y1
and y2 simultaneously.41,42 This approach allows us to model
prior information in cases where, e.g., the spatial characteristics
of the initial state x1 and change δx are different (e.g., smooth x1
and sparse δx). This approach also allows in a straightforward
way the restriction of the change δx into a ROI.

Let us assume that the change in optical coefficients δx ¼
x2 − x1 is known to occur in ΩROI ⊆ Ω, and denote the change
of optical coefficients within ΩROI by δxROI. Then, δx ¼
MδxROI, where M is an extension mapping M∶ΩROI → Ω
such that

EQ-TARGET;temp:intralink-;e016;326;118MδxROIðrÞ ¼
�
δxROIðrÞ; r ∈ ΩROI

0 r ∈ Ω \ ΩROI
: (16)

Obviously, if no ROI constraint is used, we set ΩROI ¼ Ω.
The optical coefficients after the change x2 can now be represented
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as a linear combination of the initial state and the change
as

EQ-TARGET;temp:intralink-;e017;63;712x2 ¼ x1 þMδxROI: (17)

Inserting Eq. (17) into Eq. (11) and concatenating the meas-
urement vectors y1 and y2 and the corresponding models in
Eqs. (10) and (11) into block vectors, leads to an observation
model41

EQ-TARGET;temp:intralink-;e018;63;637

�
y1
y2

�
|fflffl{zfflffl}
ỹ

¼

�
Aðx1Þ

Aðx1 þMδxROIÞ
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ãðx̃Þ þ

�
e1
e2

�
|fflffl{zfflffl}
ẽ

; (18)

EQ-TARGET;temp:intralink-;e019;63;575ỹ ¼ Ãðx̃Þ þ ẽ; (19)

where

EQ-TARGET;temp:intralink-;e020;63;537x̃ ¼
�

x1
δxROI

�
: (20)

Given the model in Eq. (19), the initial state x1 and the
change δx can be simultaneously estimated as

EQ-TARGET;temp:intralink-;e021;63;475

^̃x ¼ argmin
x1>0

f��Lẽ½ỹ − Ãðx̃Þ���2 þ fðx̃Þg: (21)

Here, L~e ∈ R4NsNd×4NsNd is the Cholesky factor such that
LT

~eL~e ¼ Γ−1
~e , where

EQ-TARGET;temp:intralink-;sec2.2.2;63;414Γẽ ¼
�

Γe1 02NsNd×2NsNd

02NsNd×2NsNd
Γe2

�
;

and 02NsNd×2NsNd
∈ R2NsNd×2NsNd is an all-zero matrix. fðx̃Þ is the

joint regularization functional of x̃ ¼ ðx1; δxÞT, which allows for
separate models for x1 and δx as

EQ-TARGET;temp:intralink-;e022;63;336fðx̃Þ ¼ f1ðx1Þ þ f2ðδxÞ: (22)

The estimate in Eq. (21) can be computed iteratively using
for example a Gauss–Newton (GN) algorithm53 as

EQ-TARGET;temp:intralink-;e023;63;283

^̃xiþ1¼ ^̃xiþ ŝi½J̃Ti Γ−1
ẽ J̃iþℋð ^̃xiÞ�−1½J̃Ti Γ−1

ẽ fỹ−Ãð ^̃xiÞ�−Gð ^̃xiÞg;
(23)

where ŝi is the step length, and Gð ^̃xiÞ andℋð ^̃xiÞ are the gradient
and Hessian of the regularization functional fðx̃Þ, respectively.
The Jacobian matrix J̃i ¼ ∂Ã∕∂x̃ is of the form

EQ-TARGET;temp:intralink-;sec2.2.2;63;204J̃ið ^̃xÞ ¼
�

Jðx̂1;iÞ 02NsNd×NROI

Jðx̂1;i þM dδxROI;iÞ Jðx̂1;i þM dδxROI;iÞM
�
;

where JðxÞ is the Jacobian matrix for the forward mapping AðxÞ,
02NsNd×NROI

∈ R2NsNd×NROI is an all-zero matrix, and NROI is the
dimension of the vector δxROI.

3 Results
The feasibility of the method was tested with 2-D simulations
and with 3-D experimental measurement data.

3.1 Estimates

The following reconstruction approaches were considered:

Nonlinear: nonlinear reconstruction of x̃ ¼ ðx1; δxROIÞT with
the proposed (nonlinear) difference imaging method

EQ-TARGET;temp:intralink-;e024;326;677

^̃x ¼ argmin
x1>0

f��Lẽ½ỹ − Ãðx̃Þ���2 þ f1ðx1Þ þ f2ðδxROIÞg:
(24)

Linear: conventional (linear) difference reconstruction by
solving

EQ-TARGET;temp:intralink-;e025;326;603

bδx ¼ argmin
δx

f��Lδeðδy − JδxÞ��2 þ fðδxÞg: (25)

3.2 Regularization Functionals

For modeling x1 in the nonlinear difference imaging approach
Eq. (24), we used a quadratic Gaussian smoothness regulariza-
tion of the form

EQ-TARGET;temp:intralink-;e026;326;502f1ðx1Þ ¼
��Lx1ðx1 − x1;�Þ

��2: (26)

In the construction of the Gaussian smoothness regulariza-
tion functional Eq. (26), the absorption and scatter coefficients
μa;1 and μ 0

s;1 were modeled as mutually independent Gaussian
random fields. In the construction of prior covariances, the ran-
dom field x1 was considered in the form

EQ-TARGET;temp:intralink-;sec3.2;326;414x1 ¼ x1;in þ x1;bg;

where x1;in is a spatially inhomogeneous parameter with zero
mean, x1;in ∼N ð0;Γin;x1Þ, and x1;bg is a spatially constant (back-
ground) parameter with nonzero mean. For the latter, we can
write xbg ¼ I, where I is a vector of ones and q is a scalar ran-
dom variable with Gaussian distribution q ∼N ðc; σ2bg;x1Þ. In the
construction of Γin;f , the approximate correlation length was
adjusted to match the expected size of the inhomogeneities
and the marginal variances of xin were tuned based on the
expected variation of the optical properties in the initial state.
See Refs. 22, 23, and 26 for further details. Modeling x1;in
and x1;bg as mutually independent, we obtain

EQ-TARGET;temp:intralink-;sec3.2;326;261x1;� ¼ cI; Γx1 ¼ Γin;x1 þ σ2bg;x1II
T;

where the Cholesky factor LT
x1Lx1 ¼ Γ−1

x1 in Eq. (26). This par-
ticular Gaussian smoothness regularization has been previously
used in absolute imaging in Refs. 23–25, 27, 28, 48 and in dif-
ference imaging in Ref. 54. In this paper, the correlation length
was chosen as 8 mm. The standard deviations of the background
and inhomogeneities are given in Table 1.

For modeling δxROI (in all the following test cases except for
case 2 in Sec. 3.3.2), we used a sparsity promoting TV func-
tional f2ðδxROIÞ ¼ αTVðδxROIÞ, where

EQ-TARGET;temp:intralink-;e027;326;128TVðδxROIÞ ¼
XN
k¼1

jΩkj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��ð∇δxROIÞjΩk

��2 þ β
q

; (27)

is a differentiable approximation of the isotropic TV func-
tional55 and ð∇δxROIÞjΩk

is the gradient of δxROI at element
Ωk. β > 0 is a small parameter that ensures TV ðδxROIÞ is
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differentiable and α is the regularization parameter. In this paper,
α and β were manually selected. For systematic approaches of
the regularization parameter selection see, e.g., Refs. 56 and 57.
The values of α and β used in our reconstructions are listed in
Table 2.

For modeling of δx in the conventional linear difference im-
aging Eq. (25), we used the same quadratic Gaussian smooth-
ness regularization as before,

EQ-TARGET;temp:intralink-;e028;63;460fðδxÞ ¼��LδxðδxÞ
��2; (28)

except in this case, while modeling the random field δx, the
spatially constant part x1;bg had a zero mean x1;bg ¼ qI with
q ∼N ð0; σ2bg;x1Þ. The standard deviations of the background
and inhomogeneities are given in Table 1.

Note that the standard deviations chosen for x1 are larger than
in δx since x1 are absolute values of optical parameters unlike
δx. Also, since x1 is the “unchanging” parameter between obser-
vations y1 and y2 in the model (18), the presence of the same
modeling errors in both observations y1 and y2 should mainly
affect the estimate x1 (not δx). Thus, to allow for large variations
in x1 in the presence of modeling errors, we choose larger std’s
for prior modeling of x1.

3.3 Two-Dimensional Target and Simulations

The measurements y1 and y2 were simulated using 2-D simu-
lation target states x1 and x2 shown in Fig. 1. The shape of the
domain was extracted from a segmented adult brain CT scan.
The diameter along the saggital plane was scaled to 100 mm
(approximately the size of a newborn baby head). The state
x1 had three outer layers (mimicking the skin, skull, and cer-
ebrospinal fluid) and two overlapping circular inclusions in
the brain area. State x2 was the same as x1, except that one

additional inclusion in μa and one in μ 0
s were added in the dorsal

(back) part of the brain. The optical properties of the states x1
and x2 are listed in Table 3. The measurement setup consisted of
16 sources and 16 detectors modeled as 1-mm-wide surface
patches located on the boundary ∂Ω. Random measurement
noise ei; i ¼ 1;2, drawn from zero-mean Gaussian distributions
πðeiÞ ¼ N ð0;ΓeiÞ, i ¼ 1;2 where the standard deviations were
specified as 1% of the simulated noise free measurement data,
were added to the simulated measurement data. The means
ei;� ¼ 0, i ¼ 1;2 and covariances Γei , i ¼ 1;2 were assumed
known.

3.3.1 Using different optode arrangements on the
boundary

We investigated situations where the optodes (16 sources, 16
detectors) were arranged at (a) equiangular intervals around
the boundary of the 2-D target and at (b) equiangular intervals
only in the dorsal part of the boundary of the 2-D target. In this
case, we used a quadratic smoothness promoting functional for
modeling x1, f1ðx1Þ ¼

��Lx1ðx1 − x1;�Þ
��2 and sparsity promot-

ing TV functional for modeling δxROI, f2ðδxROIÞ ¼ αTVðδxROIÞ
in the estimate (24). We used a quadratic smoothness promoting
functional for modeling δx, fðδxÞ ¼ ��Lδxδx

��2 in the esti-
mate (25).

Table 2 Regularization parameters of the TV regularization for δx .
The first row shows α and β values of μa and μ 0

s used in the 2-D recon-
structions. The second row shows the regularization parameters for
the 3-D reconstructions.

αδμa αδμs βδμa βδμs

2-D 30,000 30 5 × 10−5 5 × 10−4

3-D 500 0.5 2 × 10−6 1 × 10−4

0   

0.02

0

2
0    

0.008

0

0.8

μ
s
,

μ
a

x
2

x
1 δ x

(a)

(b)

Fig. 1 Two-dimensional target optical properties: (a) absorption and
(b) scattering. First column: reference state x1, second column: state
x2, third column: change δx .

Table 1 Parameters of Gaussian smoothness regularization. The
first two rows show standard deviations of the background σbg;δx
and the inhomogeneities σin;δx chosen for modeling δx . The next
two rows show σbg;x1

and σin;x1
chosen for modeling the initial state

x1. Here, x1;� is selected as a homogeneous (spatially constant) esti-
mate of the initial state x1.

Regularization parameters (2-D and 3-D)

σbg;δx 0.1 × x1;�

σin;δx 0.2 × x1;�

σbg;x1
0.4 × x1;�

σin;x1
0.8 × x1;�

Table 3 Optical properties of the target head.

μaðmm−1Þ μ 0
sðmm−1Þ

Layer 1 0.01 1

Layer 2 0.015 1.19

Layer 3 0.004 0.6

Inclusion 1 0.004 0.4

Inclusion 2 0.015 1.5

Inclusion 3 (only in x2) 0.018 1

Inclusion 4 (only in x2) 0.01 1.8

Background 0.01 1
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Figures 2(a) and 2(b) show the estimated optical coefficients
from a simulation setup where the optodes were placed at equi-
angular intervals around the whole boundary. Panel (a) shows
estimates of x1 and δxROI using nonlinear difference imaging,
Eq. (24). The ROI in the computations was selected as the dorsal
hemisphere of the brain domain. The computation time (tCPU) of
the nonlinear estimate was tCPU ¼ 24.39 s. The reconstructions
converged after three GN iterations. Panel (b) shows the corre-
sponding conventional linear difference imaging estimate of δx,
Eq. (25). The computation time of the linear estimate was
tCPU ¼ 1.31 s. The tCPU:s of all the remaining 2-D nonlinear
and linear estimates were of the same magnitude as the values
reported here. Figure 2(c) shows estimates x1 and δxROI,
Eq. (24) where the optodes were placed at the dorsal (upper)
half of the boundary. Figure 2(d) shows the corresponding esti-
mate δx using a linear difference imaging, Eq. (25). The error in
the reconstructions

EQ-TARGET;temp:intralink-;sec3.3.1;63;132Errorðx̂Þ ¼
��x̂ − x0

��2��x0��2 × 100%;

where x̂ is estimated δμa or δμ 0
s and x0 ¼ x2 − x1 is the simu-

lated (true) target change, are listed in Table 4.

As can be seen from Fig. 2 and Table 4, nonlinear difference
imaging shows better localization and recovery of the change
compared to the conventional linear reconstruction for both
optode arrangements. The nonlinear estimates of the change
are not as spatially spread as the linear estimates. The effect is
especially evident when only the upper part of the boundary is
covered by sources and detectors. Since only the partial sensor
coverage would be usually available in practical head imaging,
the remaining 2-D simulations using the head domain were car-
ried out using sources and detectors only at the dorsal part of the
boundary.

3.3.2 Using different region of interest constraints and
regularizations

The purpose of this test case is to demonstrate that the improve-
ment of the proposed approach over the conventional linearized
reconstruction is not only because of (1) ROI constraint and (2)
TV regularization for δx. The results are shown in Fig. 3.
Figure 3(a) shows nonlinear difference reconstruction Eq. (24)
without any ROI constraint i.e., ΩROI ¼ Ω. Figure 3(b) shows
nonlinear difference reconstruction Eq. (24) using quadratic
smoothness promoting functional for modeling δxROI,
fðδxROIÞ ¼

��LδxROIδxROI
��2. Figure 3(c) shows conventional lin-

ear difference reconstruction Eq. (25), and Fig. 3(d) shows con-
ventional linear difference reconstruction Eq. (25) with ROI
constraint

EQ-TARGET;temp:intralink-;sec3.3.2;326;142

dδxROI ¼ arg min
δxROI

f��Lδeðδy − JMδxROIÞ
��2 þ fδxROIðδxROIÞg:

We can see that the results with nonlinear difference imaging
[Figs. 3(a) and 3(b)] are quite similar to those obtained when
using ROI constraint and TV regularization [Fig. 2(c)]. Also,
the difference imaging estimates do not improve much by add-
ing the ROI constraint. This result shows that the improvement

0   0.02 0    0.008 0 2 0 1

Optodes around the body

Optodes in dorsal part

Non linear

Linear

Non linear

Linear

δ μ
a

μ
a

1
δ μ

s
,μ

s
1

,

(a)

(b)

(c)

(d)

Fig. 2 Difference imaging using different optode arrangements on the
boundary. (a) and (b) Estimated optical coefficients with nonlinear and
linear difference imaging, respectively, with the optodes placed at
equiangular intervals around the boundary. (c) and (d) Estimated opti-
cal coefficients with optodes placed at equiangular intervals only at
the dorsal part of the boundary. In each row, the first column is
μa;1, the second column is δμa, the third column is μs;1, and the fourth
column is δμ 0

s. In the δx images, the black lines indicate the domain
boundaries and the green circles indicate the position of the inclu-
sions. The blank (white) areas in nonlinear estimates of (δμa,δμ 0

s)
are regions outside region of interest (ROI).

Table 4 Reconstruction errors.

Section Method Error(δμa) Error(δμ 0
s)

3.3.1 Optodes around Nonlinear 81 69

Linear 87 58

Optodes dorsal Nonlinear 62 57

Linear 92 71

3.3.2 No ROI Nonlinear 79 70

Quadratic regularization
for δxROI

Nonlinear 58 52

No ROI Linear 92 71

ROI Linear 85 63

3.3.3 Domain truncation Nonlinear 73 67

Linear 98 57

Incorrect coupling Nonlinear 70 50

Linear 90 71
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of reconstruction is not only due to the choice of regularization
or using the ROI constraint alone—it is in significant part due to
the specific parametrization and formulation of the nonlinear
difference imaging problem.

3.3.3 Tolerance toward modeling errors

We tested with simulations the tolerance of the nonlinear and
linear difference imaging toward modeling errors. Reconstruc-
tions in the presence of (a) domain truncation, (b) unknown
optode coupling, and (c) unknown object shape were consid-
ered. The reconstructions are shown in Fig. 4. The errors in
the reconstructions are listed in Table 4.

Domain truncation: the first and second rows in Fig. 4 show
estimates x1, δxROI and δx, Eqs. (24) and (25) in the presence of
domain truncation, i.e., using a truncated domain as the model
domain. The errors in the reconstructions are listed in Table 4.

Unknown optode coupling: the second and third rows in
Fig. 4 show estimates x1, δxROI, and δx, Eq. (24) and (25) in
the case of an inaccurately known optode coupling. The errors
in the reconstructions are listed in Table 4. The coupling error
was simulated as follows. Let ζ ¼ ðs; δ; d; ηÞT ∈ R512 represent
the coupling coefficients of the 16 sources’ and 16 detectors’
amplitude and phases. Let us define a vector valued mapping
gðζÞ ∈ C256 such that
EQ-TARGET;temp:intralink-;sec3.3.3;63;122

gkðζÞ :¼ ŝpd̂q ¼ dpsq exp½jðηp þ δqÞ�;
k ¼ ðq − 1Þ16þ p;

where p and q are the source and detector indexes, respectively.
The coupling error εðζÞ is given by27

EQ-TARGET;temp:intralink-;sec3.3.3;326;290εðζÞ ¼
�
Re log½gðζÞ�
Im log½gðζÞ�

�
:

The data were corrupted with coupling error as yi;εðζÞ ¼
yi þ εðζÞ, i ¼ 1;2. In this case, the source and detector ampli-
tude and phase coefficients were drawn from uniform distribu-
tion sp, dq ∼ Uð0.9; 1Þ, δp, ηq ∼ Uð0; π∕360Þ. The data used in
estimate (24) was ỹ ¼ ðy1;εðζÞ; y2;εðζÞÞT and for estimate (25), it
was δy ¼ y2;εðζÞ − y1;εðζÞ.

Unknown object shape: the fourth and fifth rows in Fig. 4
show estimates x1, δxROI, and δx, Eqs. (24) and (25) in the
case of using incorrect model domain, i.e., in this case an incor-
rectly shaped domain (domain obtained using some other seg-
mented adult CT scan) was used as the model domain. The
reconstruction errors for this case are not listed in Table 4
since the deformation map of the true optical properties from
the measurement domain to the model domain is not known.

From the estimates shown in Fig. 4, we can observe that in
most cases, the linear difference reconstruction Eq. (25) is
indicative of the location of change, although the spatial reso-
lution is weak. In the estimates obtained using the nonlinear dif-
ference imaging Eq. (24), the reconstructed initial state x1 is

0   0.02 0    0.008 0 2 0 1

Non linear

Non linear

Linear
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1
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(b)

(c)
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Fig. 3 (a) Estimated optical coefficients using nonlinear difference im-
aging with no ROI constraint. (b) Estimated optical coefficients with
nonlinear difference imaging using quadratic smoothness regulariza-
tion for modeling δxROI. (c) Estimated change in optical coefficients
using standard difference imaging. (d) Estimates obtained using
ROI constant in standard difference imaging.

0   0.02 0    0.008 0 2 0 1

Domain truncation error

Coupling errors

Shape error

Non linear
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Fig. 4 Tolerance toward modeling errors. (a) and (b) Estimates of
optical coefficients using the nonlinear difference imaging and the lin-
ear difference imaging in the presence of domain truncation. (c) and
(d) Estimates in the presence of coupling errors. (e) and (f) Estimates
in the presence of domain shape error.
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heavily affected by the modeling errors; however, the estimates
δx are relatively free from artifacts. The reason for the modeling
errors not affecting significantly the estimates δx lies in the para-
metrization of x2 as a linear combination of the initial state x1
and the change δx as the unknowns. The variable x1 is invariant
between models y1 ¼ Aðx1Þ þ e1 and y2 ¼ Aðx1 þMδxROIÞ þ
e2. Consequently, when the proposed parametrization is used,
the errors caused by the (invariant) modeling errors are propa-
gated mainly to the estimate of x1, which consists the parameters
that are common for the models of both observations y1 and y2.

3.4 Reconstructions in Three Dimensions with
Experimental Data

3.4.1 Experimental details

The experiment was carried out with the frequency domain DOT
instrument at the Aalto University, Helsinki.58 The measurement
domains were cylinders with radius 35 mm and height 110 mm
(see Fig. 5). The cylindrical phantoms corresponding to states x1
and x2 are illustrated in Fig. 5. The background optical properties
were approximately μa;bg ¼ 0.01 mm−1 and μ 0

s;bg ¼ 1 mm−1

at wavelength 800 nm for both phantoms. The cylindrical inclu-
sions in x2, which both have diameter and height of 9.5 mm,
are located such that the central planes of the inclusions
coincide with the central xy-plane of the cylinder domain. The
optical properties of inclusion 1 are approximately μa;inc:1 ¼
0.02 mm−1, μ 0

s;inc:1 ¼ 1 mm−1 (i.e., purely absorption contrast)
and the properties of inclusion 2 are μa;inc:2 ¼ 0.01 mm−1,
μ 0
s;inc:2 ¼ 2 mm−1 (i.e., purely scatter contrast), respectively.

Absolute imaging reconstructions using the phantom with inclu-
sions are presented in Refs. 53, 58, and 59.

The source and detector configuration in the experiment con-
sisted of 16 sources and 15 detectors arranged in interleaved
order on two rings located 6 mm above and below the central

xy-plane of the cylinder domain. The locations of sources and
detectors are shown with red and blue circles respectively in
Fig. 5. The measurements were carried out at 785 nm with an
optical power of 8 mW and modulation frequency ω ¼
100 MHz∕ð2πÞ. The log amplitude and phase shift of the trans-
mitted light was recorded and the nearest measurement data
from each source position were removed, leading to real valued
measurement vectors yi ∈ R360, i ¼ 1;2. We employed an error
model

EQ-TARGET;temp:intralink-;sec3.4.1;326;635e ∼N ð0; ΓeiÞ; i ¼ 1;2;

where the square roots of the diagonal elements (standard devi-
ations) of error covariances Γei were specified as 1% of the abso-
lute values of yi, i ¼ 1;2, implying that the standard deviations
of the measurement errors are assumed to be 1% of the measured
absolute values of the log(amplitude) and phase.

3.4.2 Data calibration and initialization of the estimation

Raw instrument data cannot be directly used as a direct equiv-
alent to simulated data from a model. The measured phase and
amplitude were calibrated using the procedure described in
Ref. 58, accounting for differences between the lengths and cou-
pling efficiencies between different source and detector chan-
nels, as well as for the effects of detector gain adjustment
during the data collection. Finally, to calibrate the forward
model to the measurement setup, the initial estimates for the
optical properties of the model were assumed to be homo-
geneous and the measured data was used to fit global values
of absorption and scattering in the model as well as global cou-
pling factors for phase and amplitude between model and meas-
urement. The coupling is intrinsically unknown a priori;
therefore, the measured data are corrected by the coupling

Fig. 5 (a) Photograph of the diffuse optical tomography experiment using one of the phantoms.
(b) Cylindrical phantoms x1 and x2 with the position of sources (red circles) and detectors (blue crosses).
x1 is a homogeneous reference phantom with optical coefficients approximately μa;bg ¼ 0.01 mm−1 and
μ 0
s;bg ¼ 1 mm−1 at wavelength 800 nm. x2 has the same background optical coefficients as x1 and it

has two additional inclusion with optical coefficients approximately μa;inc:1 ¼ 0.02 mm−1, μ 0
s;inc:1 ¼

1 mm−1 (i.e., purely absorption contrast) of inclusion 1 and μa;inc:2 ¼ 0.01 mm−1, μ 0
s;inc:2 ¼ 2 mm−1

(i.e., purely scatter contrast) of inclusion 2. The gray patches on the cylinders show the ROI.
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coefficient obtained from this optimization process. In a
sense, the instrument data are calibrated to match the absolute
values of the simulations from the forward model. However,
to avoid unrealistical calibration setup of having access to
data from the homogeneous target, the four-parameter calibra-
tion was carried out using the data y2, corresponding to the

nonhomogeneous state after the change. Following the initial
estimation procedure in Ref. 59, the log of source strength
and phase coupling between the modeled phase and log ampli-
tude, and the measured phase and log amplitude were modeled
by additive constants. In other words, we assumed that the cou-
pling factors are constant for all source and detector fibers. Thus,
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the initialization step consisted of a four-parameter fit of global
background parameters μa;0 and μ 0

s;0 as well as a global additive
shift η of log amplitude data and a global additive shift ϕ of
phase data

EQ-TARGET;temp:intralink-;sec3.4.2;63;690fμa;0; μ 0
s;0; η;ϕg

¼ arg min
μa;0;μ 0

s;0;η;ϕ
f��Le2 ½ðy2 þ ΔyÞ − Aðμa;0; μ 0

s;0Þ�
��2g;

where Δy ¼ ðη;ϕÞT. The initialization problem was solved by a
GN optimization method with an explicit line search.53 Once the
initialization was completed, the measurement data were trans-
formed for the nonlinear estimation Eq. (24) by the recovered
global offsets as ỹ ¼ ðy1 þ Δy; y2 þ ΔyÞT, and the initial
parameter values for the nonlinear estimation were set to the
estimated values μa;0 and μ 0

s;0.

3.4.3 Results

Figure 6 shows 2-D slices of 3-D reconstructions obtained using
nonlinear difference imaging Eq. (24). The ROI in this case was
selected as a central part of height z ¼ 22 mm of the cylinder
(see Fig. 5). Figs. 6(a) and 6(b) are the absorption images and
Figs. 6(c) and 6(d) are the scattering images. The computation
time of the nonlinear estimate was tCPU ¼ 3247.68 s. Figure 7
shows the corresponding 3-D reconstructions with linear differ-
ence imaging Eq. (25). The computation time of the linear esti-
mate was tCPU ¼ 87.95 s.

From Figs. 6 and 7, one can see that the proposed approach
of nonlinear difference imaging shows better recovery of the
inclusions when compared to the conventional linear difference
imaging. Also, there is no “ringing” effect in nonlinear recon-
struction, while there are severe ones in linear reconstruction.
These could result in a masking effect when more target inclu-
sions are present. These results are in agreement with the 2-D
simulation results.

In the 3-D case, the CPU time needed for the reconstruction
with the nonlinear approach was approximately 36 times the
time needed for the linear reconstruction. This can be potentially
problematic when processing long time series of data, especially
if the reconstructions are needed online. However, in many cases
the requirement of better reconstruction accuracy may outweigh
the disadvantage of longer CPU time, especially if it is sufficient
to obtain the results off-line. It should be also noted that for both
the linear and nonlinear approach the reported CPU times are
based on nonoptimized implementation on MATLAB® using
the TOAST toolbox. Where needed, the computations can be
made faster by optimizing the implementation.

4 Conclusions
We applied a new approach to difference imaging in DOT. In the
approach, the optical coefficients after a change are parameter-
ized as a linear combination of the (unknown) initial state and
the change in optical properties. The DOT measurements taken
before and after the change are concatenated into a single meas-
urement vector and the inverse problem is stated as finding the
initial optical coefficients and the change given the combined
data. This model allows the use of separate spatial models
for the initial state and the change in optical coefficients.
Furthermore, it allows the use of a ROI constraint for the change
in optical coefficients in a straightforward way. The approach
was also tested with 2-D simulations using different optode

placement settings and also in the presence of modeling errors
arising from domain truncation, unknown optode coupling and
unknown domain shape. The conventional linearized difference
imaging was used as a reference approach. The approach was
tested with experimental phantom data. The results show that the
proposed approach produces better reconstructions compared to
standard linear difference imaging and the approach is robust for
the modeling errors at least in a similar extent as the conven-
tional linear reconstruction approach. We believe that the pro-
posed approach can improve the accuracy of difference imaging
compared to the linearization-based approach, which is the cur-
rent standard in difference imaging.
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